您好,欢迎来到微智科技网。
搜索
您的当前位置:首页POJ 2348/HDU 1525-Euclid's Game辗转相除法(博弈)

POJ 2348/HDU 1525-Euclid's Game辗转相除法(博弈)

来源:微智科技网

Euclid's Game

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 8582 Accepted: 3495

Description

Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtracts any positive multiple of the lesser of the two numbers from the greater of the two numbers, provided that the resulting number must be nonnegative. Then Ollie, the second player, does the same with the two resulting numbers, then Stan, etc., alternately, until one player is able to subtract a multiple of the lesser number from the greater to reach 0, and thereby wins. For example, the players may start with (25,7):
         25 7

         11 7

          4 7

          4 3

          1 3

          1 0

an Stan wins.

Input

The input consists of a number of lines. Each line contains two positive integers giving the starting two numbers of the game. Stan always starts.

Output

For each line of input, output one line saying either Stan wins or Ollie wins assuming that both of them play perfectly. The last line of input contains two zeroes and should not be processed.

Sample Input

34 12
15 24
0 0

Sample Output

Stan wins
Ollie wins

Source



题目意思:

给定两个整数a和b。Stan和Ollie轮流从较大的数字中减去较小数字的倍数(正整数倍),并且相减之后结果不能为零。
Stan先手,在自己 的回合中将其中一个数变成0的一方获胜。当双方都采取最优策略时,谁会获胜?

解题思路:

b是a的倍数时是必胜态。
下面分两种情况:①b<2a;②b>2a。
第一种情况无法断定是P/N状态,所以依次减去1倍来判断;
第二种情况是必胜态,说明如下:
设x是使得b-ax<的整数;
假设b-a(x-1)所得为必胜态,该状态的下一状态只能是b-ax。因为假设了b-a(x-1)所得为必胜态,则b-ax只能是必败态(这是正确的)。
即,第二种情况是必胜态得证成立。


#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int a,b;
void solve()
{
    bool f=true;
    while(1)
    {
        if(a>b) swap(a,b);//使a<b恒成立
        if(b%a==0) break;//必胜态1:b是a的倍数时必胜
        if(b-a>a) break;//必胜态2
        b-=a;//b<2a的情况
        f=!f;//必胜态与必败态轮流出现
    }
    if(f)puts("Stan wins");
    else puts("Ollie wins");
}

int main()
{
    while(cin>>a>>b&&(a||b))
    solve();
    return 0;
}


因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务