CNN
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('Mnist_data', one_hot = True)
def compute_accuracy(v_xs, v_ys):
global prediction
y_pre = sess.run(prediction, feed_dict = {xs : v_xs, keep_prob : 1})
correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
result = sess.run(accuracy, feed_dict = {xs : v_xs, ys : v_ys, keep_prob : 1})
return result
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape = shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides = [1, 1, 1, 1], padding = 'SAME')
def max_poo_2x2(x):
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME')
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_cov1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_poo_2x2(h_cov1)
W_conv2 = weight_variable([5, 5, 32, ])
b_conv2 = bias_variable([])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_poo_2x2(h_conv2)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*])
W_fc1 = weight_variable([7*7*, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = tf.reduce_mean( - tf.reduce_sum(ys * tf.log(prediction), reduction_indices = [1]) )
train_step = tf.train.AdamOptimizer( 1e-4 ).minimize( cross_entropy )
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict = {xs : batch_xs, ys : batch_ys, keep_prob : 0.5})
if i % 50 == 0:
print(compute_accuracy(mnist.test.images[:1000], mnist.test.labels[:1000]))
总结:
为什么使用池化:
为得到较小的图,采用步长为2的卷积提取,但信息丢失严重,可以采用步长为1的卷积提取,再池化,得到相同的结果
总体流程:
卷积->池化->卷积->池化->全连接