cESO2008
Outeredgesofdebrisdiscs
howsharpissharp?
P.Th´ebault1,2,Y.Wu3
1
arXiv:0801.3724v3 [astro-ph] 4 Feb 200823
StockholmObservatory,AlbanovaUniversitetcentrum,SE-10691Stockholm,Sweden
ObservatoiredeParis,SectiondeMeudon,F-92195MeudonPrincipalCedex,France
DepartmentofAstronomyandAstrophysics,UniversityofToronto,50St.GeorgeStreet,Toronto,ONM5S3H4,Canada
Received;accepted
ABSTRACT
Context.Ringsorannulus-likefeatureshavebeenobservedinmostimageddebrisdiscs.Outsidethemainring,whilesomesystems(e.g.,βPictorisandAUMic)exhibitsmoothsurfacebrightnessprofiles(SB)thatfalloffroughlyas∼r−3.5,others(e.g.HR4796AandHD1396)displaylargedropsinluminosityatthering’souteredgeandsteeperradialluminosityprofiles.
Aims.Weseektounderstandthisdiversityofouteredgeprofilesunderthe“natural”collisionalevolutionofthesystem,withoutinvokingexternalagentssuchasplanetsorgas.
Methods.Weuseamulti-annulusstatisticalcodetofollowtheevolutionofacollisionalpopulation,ranginginsizefromdustgrainstoplanetesimalsandinitiallyconfinedwithinabelt(the”birthring”).Thecrucialeffectofradiationpressureonthedynamicsandspatialdistributionofthesmallestgrainsistakenintoaccount.Weexplorethedependenceoftheresultingdiscsurfacebrightnessprofileonvariousparameters.
Results.Thedisctypicallyevolvestowarda“standard”steadystate,wheretheradialsurfacebrightnessprofilesmoothlydecreaseswithradiusasr−3.5outsidethebirthring.Thisconfirmsandextendsthesemi-analyticalstudyofStrubbe&Chiang(2006)andprovidesafirmbasisforinterpretingobserveddiscs.Deviationsfromthistypicalprofile,intheformofasharpouteredgeandasteeperfall-off,occurfortwo”extreme”cases:1)Whenthebirthringissomassivethatitbecomesradiallyopticallythickforthesmallestgrains.However,therequireddiscmassisprobablytoohighheretoberealistic.2)Whenthedynamicalexcitationofthedust-producingplanetesimalsissolow( Conclusions.Our“standard”profileprovidesasatisfactoryexplanationforalargegroupofdebrisdiscsthatshowsmoothouteredgesandSB∝r−3.5.Systemswithsharperouteredges,barringotherconfiningagents,couldstillbeexplainedby“natural”collisionalevolutioniftheirdynamicalexcitationisverylow.Weshowthatsuchadynamically-coldcaseprovidesasatisfactoryfittothespecificHR4796Aring. Keywords.stars:circumstellarmatter–stars:individual:βPictoris–stars:individual:HR4796A–planetarysystems:formation 1.Introduction 1.1.theubiquityofring-likefeaturesDustydebrisdiscshavebeendetectedbytheirinfraredex-cessaround∼15%ofnearbymainsequencestars(e.g.Backman&Paresce1993).Morethanadozenofthesediscshavealsobeenimaged,mainlyinscatteredlight,sincetheinitialobservationoftheβPictorissystembySmith&Terrile(1984).Oneunexpectedresultfromtheseimagesisthatalmostnosys-temdisplaysasmoothextendedradialprofile:theusualmor-phologyisthepresenceofrings(orannuli)wherethebulkofthedustpopulationislocated.ThisringmorphologyisinfactsocommonthatStrubbe&Chiang(2006)pointedoutthatthedebrisdiscphenomenoncouldmoreappropriatelyberenameddebris“ring”phenomenon.Evenforthearchetypaldebris“disc”βPictoris,whichhasbeenimagedfrom5toafewthousandAU,thebulkofthedustisprobablyconcentratedinarathernarrowregionbetween80and120AU(e.g.Augereauetal.2001).Oneofthefewsystemsactuallyresemblinganextended“smooth” 2Th´ebaultandWu:OuterEdgesofdebrisdiscs Table1.Geometryandsurfacebrightnessprofileforaselectionofdebrisdiscsystemsresolvedinscatteredlightimages. Systema Orientation DetectedRadialExtentb SurfaceBrightnessSB∝rα Reference Formanyofthesesystems,manyadditionalfeatures,i.e.,warps,clumps,etc.,havebeenobserved(itisespeciallytrueforβPictoris)butwe focushereonthemainissueofaverageradialprofilesb Theradialextentsandsurfacebrightnessprofilesaregivenforregionsbeyondthelikely“birthring”–theregionwherescatteringluminositypeaksandwheremostparentbodiesarebelievedtoreside(seeSec.2) a Thepresenceofringfeaturesiscommonlyattributedtosomesculptingmechanismsincluding,inparticular,thepresenceofamassiveplanet(see,forinstance,Quillen(2007a)forFomalhaut,Freistetteretal.(2007)forβPictoris,Wyattetal.(1999)forHR4796A,orthemoregeneralstudyofMoro-Martin&Malhotra(2005)).Thegravitationaleffectofsuchaplanetcantruncateorcreategapsinthedisc,eitherdi-rectlyonthedustparticlesorindirectlyontheplanetesimalsthatproducetheseparticles.1.2.outeredgesNevertheless,whileplanetsmaybeanaturalandeasyexpla-nationforsculptingtheinneredges,outeredgesareadifferentproblem.Theyaredifficulttoexplaininthelightofonewellestablishedfactaboutdebrisdiscs,i.e.thattheobserveddustisnotprimordialbutsteadilyproducedbycollisions,throughacol-lisionalcascadestartingatmuchlargerparentbodies,maybeintheplanetesimalsizerange(e.g.Lagrangeetal.2000).Inthisre-spect,evenifthereisasharpouteredgefortheparentbodypop-ulation,collisionswouldconstantlyproduceverysmallgrainsthatwouldbelaunchedbyradiationpressureontoeccentricorevenunboundorbits,thuspopulatingtheregionbeyondtheouteredgeanderasingtheappearanceofanarrowringovertimescaleswhichmightbeshorterthanthoseforgravitationalsculptingbyaplanet.Thisissueisacriticalone,sincethesesmallgrainsdom-inatethetotalgeometriccrosssectionandthusthefluxinscat-teredlight(seethediscussioninTh´ebault&Augereau2007).Onepossibleconfiningmechanismforthesharpouteredgeisgas.Fordiscstransitingbetweengas-dominatedphase(proto-planetarydiscs)todust-dominatedphase(debrisdiscs),narrowdustringsmayarise(Klahr&Lin2005).Besla&Wu(2007)furtherdemonstratethatthereexistsaninstabilitywithwhichtheresidualgascollectsgrainsofvarioussizes(eventhosesubjecttoradiationpressure)intoanarrowbelt.However,thismechanismrequiresatleastcomparableamountofgasanddust.Thismaybedifficulttojustifyformostdebrisdiscs,whichareevolvedsys-temswheretheamountofgasisprobablytoolowtopreventthesmallestgrainstobelaunchedontoveryeccentricorbitssmooth-ingoutanysharpouteredge. “Razorsharp”outeredgesarethusverydifficulttoexplaininthepresenceofthisunavoidableoutwardlaunchingofsmallgrains.However,althoughnoperfectabruptouteredgehasin- deedbeenobserved1(unlikeinneredges,whichareinsomecases,likeFomalhaut,almostrazorsharp),agreatvarietyofouteredgeprofilesdoesexist,fromrelativelysmoothtoverysteep(seeTab.1). Inthisstudy,weaddresstheissueofhowthesedifferentprofilescanbephysicallyachieved:canthisdiversitybeex-plainedbythesole“natural”evolutionofacollisionalactivediscsteadilyproducingsmall,radiation-pressureaffectedgrains,oris(are)additionalmechanism(s)needed?Weconsiderinitialcon-ditionswhichareapriorithemostfavourableforcreatingsharpedges,byassumingapopulationoflargeparentbodiesconfinedwithinanannuluswithanabruptcutoffatitsouteredge.Howthisinitialconfinementmayhavecomeaboutisitselfanin-terestingquestionbutisnotthefocusofthecurrentpaper(seehoweverthediscussioninSec.5.2).Theoutcomeweconsiderasareferenceforourinvestigationistheradialsurfacebrightness(SB)profileinscatteredlight,sincethisisanobservablewhichisreasonablywellconstrainedformostimageddebrisdiscs(eitherdirectlyobservedorobtainedbyde-projection).Weconsiderthenominalcaseofadiscseenedge-on,butresultscaneasilybeextrapolatedtoface-onsystems,sinceSBprofilesforbothori-entationstendtowardsthesameradialdependencefarfromthebirthring(giventhesameradialdustdistribution). Inseveralpreviousstudies,alladdressingthespecificβPiccase(Lecavelieretal.1996;Augereauetal.2001;Th´ebault&Augereau2005),ithasbeenarguedthatthe“nat-ural”SBprofileoutsidethecollisionalyactiveparentbodiesbelt,or“birthring”,fallsoffas∼r−5.ThisisbasedontheassumptionthatallparticlesproducedinthebirthringhaveasizedistributionwhichscalesasdN/ds∝s−3.5,(asexpectedforanidealizedinfinitecollisionalcascadeatequilibrium,seeDohnanyi1969),downtotheradiationblow–outlimits=s0.5(wheretheratioofradiationpressuretogravityβ=0.5).Thesmallestradiationpressure-affectedgrains,whichdominatethelightreceivingarea,arethendilutedalongtheireccentricor-bit.ThisgeometricalspreadresultsinSB∝r−5.However,Strubbe&Chiang(2006)arguedthat,sincehigh-βgrainsspendalongtimeinthecollisionalyinactiveregionbeyondthebirthring,thedN/ds∝s−3.5collisionalequilibriumlawshouldonlyapplytothesmallfractionfofthesegrainswhicharepresent Th´ebaultandWu:OuterEdgesofdebrisdiscs3 inthecollisionalyactivebirthring.Thisresultsina1/fexcess ofthedisc-integratednumberofsmall.5grains,whichinturnre-sultsinaflatterSBprofileinr−3.TheyappliedtheirtheorytotheAUMicdisc2andreproducedtheobservedSBprofile,spectralenergydistributionanddisccolour.Strubbe&Chiang(2006)furtherarguedthattheobservedSBprofiledependsonlyweaklyontheradialandsizedistributionsofgrainswithinthebirthring.Thediscswhichexhibitafall-offsharperthanr−3.5arethuspuzzlinginthefaceofthistheory. TheinnovativemodelofStrubbe&Chiang(2006)isbuildonanalyticalderivationsandMonte-Carlomodelingwhichdidnotactuallytreatthecollisionalevolutionofthesystemandre-liesonseveralsimplifyingassumptions.ThemainoneisthatthesizedistributionisfixedandisassumedtofollowtheidealizeddN/ds∝s−3.5scaling(correctedbythefraction1/f),whereasseveralstudieshaveshownthatthislawcannotholdinrealsys-tems(seeTh´ebault&Augereau2007,andreferencestherein)3.Anotherissueisthatwhenevaluatingcollisionallife-times,onlytheverticalvelocityofthegrainswastakenintoaccount,thusne-glectingtheirradialmovementwhichcanbeappreciable,ifnotdominantforthesmallestgrains.Finally,thespecificdynamicsofthesmallradiation-pressure-affectedgrains,inparticularthefactthattheysuffermuchmorefrequentcollisionsandatmuchhighervelocities,isnottakenintoaccount. 2.OurApproach Were-addresstheseissuesusinganumericalapproachquantita-tivelyfollowingthecollisionalevolutionofthefullsystem.Westartwithabirthringofparentbodiesinaperfectlyconfinedannulusandletitcollisionallyevolve.Thetemporalaswellasspatialevolutionofthesizedistributionarefollowed,takingintoaccounttheradialexcursionsofhigh–βparticles.Aspreviouslymentioned,wederiveforeachsimulationthesurfacebrightnessprofileinscatteredlight.2.1.numericalmodelWeuseastatisticalparticle–in–a–boxmodeltofollowtheevolu-tioninsizeandspatialdistributionofapopulationofcollision-allyinteractingbodies.Thiscodehasinitiallybeendeveloped,initssingle–annulusversion,forthestudyoftheinnerβPicdisc(Th´ebaultetal.2003),andlaterupgradedtoamulti–annulusversion(i.e.,with1-Dradialresolution)forthestudyofcolli-sionalprocessesinextendeddebrisdiscs(Th´ebault&Augereau2007).Thedetaileddescriptionofthecodecanbefoundinthesetwopapers,andherewerecallsomeofitsmaincharacteristics.Theentiresystemisspatiallydividedintondialannuli.Withineachannulusofindexia,theaconcentricra-solidbodypop-ulationisdividedbysizeintonrangespanningfromkilometretosbinsthatcoverabroadsizemicron.Withastandardlog(2)sizeincrement,thisrequiresns∼100.Evolutionoftheparticlenumberwithinone(ia,i)bin(ibeingthesizedistributionindex)iscontributedbyalldestructiveimpactsbetween(ia,i)objectsandbodiesfromother(ia′,i′)binsaswellasallimpactsbetweenothersizebinsproducingnew(ia,i)objects.Collisionratesareestimatedstatistically.Theserates,aswellascollisionoutcomes, 1/2 4 e2+i2vkep(ia) (1) wherevForkepthe(ia)istheKeplerianvelocityatradialdistancersmallestparticles,theeffectofradiationpressure,ia. whichplacesobjectsonhighlyeccentricorbits,istakenintoac-count.Interannuliinteractions,inducedbythesignificantradialexcursionofthesebodiesareconsidered,and∆vN–bodyruns. (ia,i,ia′,i′)arede-rivedthroughseparatedeterministicCollisionoutcomesaredividedinto2types,crateringandfragmentation,dependingontheratiobetweenthespecificim-pactingkineticenergyEcolandthespecificshaterringenergyQ∗,whichdependsonobjectsizesandcomposition.Inbothregimes,thesizedistributionsofthenewlyproducedfrag-mentsarederivedthroughdetailedenergyscalingprescrip-tions,whicharepresentedatlengthinTh´ebaultetal.(2003)andTh´ebault&Augereau(2007).Possiblereaccumulationontotheimpactingobjectsisalsoaccountedfor.2.2.SetUpOurnumericalmodelrequiresthefollowinginputs:thering’sav-eragedistancefromthestar,rBR,itsradialwidth∆reandinclinationsioftheparentBR,theaver-agefreeeccentricitiesbodies(nonaffectedbyradiationpressure)andtheinitialparticles’sizedistributionandtotalmass.WechosetoparameterizethelatterbyMdust,thetotalmassofobjectswithsizess Forthesakeofclarity,weconsideranominalcase(Tab.2)withset-upmatchingascloselyaspossibletheβPictorissystem,i.e.Mdust=0.1M⊕ande=0.1(e.g.Augereauetal.2001).Fortheradiationpressureblowoutsize,wetakes0.5=5µm,thevaluederivedforcompactsilicatesaroundaβPiclikeA5Vstar.Thesystemisdividedintotworadialzones: –Theparentbodyzone,or“birthring”,locatedbetweenrandrthecenteratrinwhereoutwithwefollowthecollisionalBRanddividedinto6annuli,evolutionofthewholesolid 4Th´ebaultandWu:OuterEdgesofdebrisdiscs Table2.Nominalcasesetup.Thefieldsmarkedbya∗areex-ploredasfreeparametersinthesimulations. bodypopulation,fromamaximumsizesmax=10kmthat sitsintheplanetesimalsizerangetoaminimumsizes2µmbelowtheradiationblow-outlimit.Theinitialsizemin=dis-tributionintheentirerangeisassumedtofollowtheideal-izedcollisional“equilibrium”distribution,dN(s)0∝s−3.5ds(Dohnanyi1969).Ourrunsshowthatthischoiceisnotcru-cial:intherelevantdust–sizerange,thesizedistributionisquicklyrelaxedtowardanewsteadystatewithaprofilethatisindependentoftheinitialchoiceandthatdeviatessignif-icantlyfromaDohnanyi-likepowerlaw(seesection4andFig.9). –Theouterzone,whichisdevoidofparticlesatthebeginningoftherunsandgetsprogressivelypopulatedbysmallgrainscomingfromthebirthring.Consequently,weonlyheregrainswiths≤s∗max,wheres∗ follow tothebiggestgrainsabletoleavemaxroughlycorrespondstheparentbodyregionandistakenconservativelytohavearadiation–to–gravity– ratioofβ=0.1.Spatially,thisregionisdividedinto3annulijust(s∗ max) outsidethemainringplusoneadditional,in-finitelyextended“buffer”annulus.Withinthelatterzone,nocollisionalevolutionismodeled,andonlytheorbitalevolu-tionofthegrainsisconsidered:eitherescapeofthesystemforunboundgrainsorprogressiontotheapoastronandre-turntotheinnerannulifortheboundones.Theradialex-tentoftheouterzone(notincludingthe“buffer”annulus)issetto∼4rBR,whichistypicallytheextentofthe“outer”re-gionconsideredforthe2mostfamousbirth-ring/outer-zonesystems,i.e.,βPicandAUMic(e.g.Augereauetal.2001;Strubbe&Chiang2006). Theradialsurfacebrightnessprofileinscatteredlightisthensyntheticallycomputedusingthedustsizeandradialdistribu-tions,assuminganr−2dilutionofthestellarfluxandisotropicscattering(althoughdifferentscatteringpropertiesarealsoex-plored). Weexplorearoundthenominalset-up(seeTab.2),especiallyforthetwofundamentalparameterswhichareMdustandthedy-namicalexcitationofthesystem(asparameterizedbye). 3.NumericalResults 3.1.nominalcase:smoothedgeandr−3.5profileFig.1presentsresultsobtainedforourβPic–likenominalcase.Ascanbeclearlyseen,thesystemrapidly(∼105yrs)reachesasteadystateafterwhichtheSBprofilenolongerevolvessignifi-cantly.Westoptheintegrationat107yrs.This∼105yrstimescaleisthetimeittakesforthesmallgrainsthatfilltheouterradialzonetoreachanequilibriumbetweencollisionalproductionanddestruction.Adirectconsequenceofthisfastevolutionisthattheinitialsharpouteredgeoftheparentbodyregionisquickly Fig.1.Evolutionofthemidplaneluminosityprofileinscatteredlight.Nominalcase:parentbodyring[80,120]AU,M0.1M,e=0.1.Eachmidplaneluminosityhasbeenrenormal-dust=⊕izedtoitsvalueat50AU.Thedarkgreyarearepresentsthepar-entbodyregionwhereallmass−3.5isinitiallylocated.Thenarrowlightgreyarearepresentsarslopereconstructedbackwardsfromthefinalluminosityvalueat400AUwitha±15%width. Fig.2.Nominalcaseatt=107yrs.Respectivecontributionsofdifferentgrainpopulations(parameterizedbytheirβvalue)tothetotalscatteredflux,asfunctionsoftheradialdistance. smoothedout.Oncethesteadystateisreached,theprofileinther>routregionliesveryclosetoSB(r)∝r−3.5. Whenlookingattherespectivecontributionsfromdifferentdustpopulationstothetotalprofile,itappearsthatthescatteredfluxis,inthe120–400AUregion,dominatedbyhigh–βgrainsinthe0.25<β<0.4range(Fig.2).Thesegrainshaveor-bitaleccentricitiesinthe0.33–0.75rangeandapoastroninthe240–700AUregionandthusspendalargefractionoftheirorbitsinthedomainlocatedbetweenrhigherβ(closeto0.5)onlyweaklyoutand4rcontributeBR.Grainswitheventothefluxintheroftenoutto4ratseveralBRregionbecausetheyhaveorbitswhoseapoastronis1000AUandwillthusspendmostoftheirtimeoutsidethe≤400AUregionconsideredhere. Th´ebaultandWu:OuterEdgesofdebrisdiscs5 Fig.3.SameasFig.1,butwithMdust=0.001M⊕,allotherpa-rameters8beingthesame.Notethatthefinaltimescaleishere t=10yrs. Table3.Resultsobtainedfordifferentvaluesofthesystem’sdynamicalexcitatione(=2i)andwidthofthebirthring∆rBRa.AlsoshownareresultsforthenominalrunbutwiththeSBcomputedusingadifferentscatteringphasefunction(seetextfordetails) Run OuteredgesharpnessbSBprofilecSB(rout)/SB(rout+10) slopeα scatteringanisotropyg=0.52.22-3.68scatteringanisotropyg=0.82.22-3.98 2πrH (2) wheredNia/ds(r)isthedifferentialnumberofs–sizedparticlesinaradialannulusofindexiacenteredatradialdistancer,Histheverticalheightofthediscatthatdistanceandi0istheannulusindexcorrespondingtotheradialdistancersimplytheopticalthicknessofthedisctostellar0.τphotons.radisofcourseSinceparticleorbitsareneverstraightradiallines,thisquantityisonlyafirstapproximationoftheirrealin-plane(orhorizontal)collisionalprobability.However,forthesmallestgrainsthisisarelativelygoodfirst-orderapproximation(seethemorethoroughdiscussiononhorizontalandverticalcollisionprobabilitiesinSec.5.1). Fig.5showsthatτrad≥1overmostofthesourcering4intheearlyepoch,sothatfewgrainscanescapethebirthringwithout 6Th´ebaultandWu:OuterEdgesofdebrisdiscs Fig.5.Evolutionwithtimeoftheradialopticaldepth(definedas ineq.[2])fortheveryhighdust–masscaseMdust=10M⊕. Fig.6.SameasFig.1,butforadynamically“verycold”systemwithe=0.001. collidingwithanothergrain,hencethedensity(andluminosity)depletioninther>routregions.However,thisradialopticaldepthsteadilydecreasesovertime,duetorapidmasserosionbyenergeticcollisionswithinthebirthring.Itdropsbelowunityaf-ter∼105yrs,andis∼0.6bythetime(∼106yrs)thesharpouteredgeissmoothedout(seeFig.4).Afterthat,thesystembehaveslikethenominalcase.Were-examinethisradiallyopticallythickcaseinmoredetailinSec.5.1.3.2.2.dynamicallycoldsystem AnotherwayofobtainingadeparturefromthestandardSBpro-fileistodecreasethedynamicalexcitationofthesystemtoaverylowvalue,typicallye≤0.01.Fig.6showstheresultsforthecasee=0.001(=2i),whereasharpouteredgeismaintainedoutsidethebirthringfortheentiredurationofthesimulation(107yrs). Theabruptluminosityfall-offattheouteredgeishereduetoaglobaldepletionofsmallgrainsdirectlyresultingfromanim- Fig.7.Geometricalcrosssectionperlogarithmicsizerange,in-tegratedonlyforgrainsinsidethebirthring,forsystemswithdifferentdynamicalexcitation.Thesecurvesatobtainedattheendoftheintegration(107yrs)andarenormalizedtohavethesamevalueatthelargegrainsize. balancebetweenthecollisionalproductionanddestructionratesofsmallandlargeparticlesinsuchadynamicallycolddisc.Thiscanbeunderstoodinthefollowingway: Foragivendustmass,alowerdynamicalexcitationdoesnotchangethecollisionratebetweenlargeobjectsnotaffectedbyradiationpressure.Indeed,becauseoftheequipartitione=2ithedecreasein∆visexactlycompensatedbytheincreaseoftheparticlenumberdensityduetothereducedthickness.However,thelower∆vvaluesmeanthatcollisionswillbelessdestructiveandproducelesssmallerfragments.Thismeansthattherateatwhichsmallgrains(theonessignificantlyaffectedbyradiationpressure)areproducedissignificantlyreduced.Onthecontrary,therateatwhichthesesmallgrainsaredestroyedishigher.Indeed,collisionsvelocitiesforimpactsinvolvingthemarenotsignificantlyreducedbythesmalleforparentbodies,sincesmallgraindynamicsispredominantlyimposedbyradia-tionpressure.Furthermore,therateatwhichsuchimpactsoccurisincreased,comparedtothenominalcase,becauseofthein-creasedradialopticaldepth(seeSec.5.1.2foramoredetailedanalysis). Asedecreases,thisimbalancebecomesmoresevereandthedepletionofthesmallestgrainsismoreacute.Thisisillus-tratedinFig.7displaying,fordifferentvaluesofthesystem’sdy-namicalexcitation,therespectivecontributionsofdifferentgrainsizestothetotalgeometricalcrosssectionσ.Forthenominalcase(e=0.1),weobtainthestandardresultthatσisdom-inatedbythesmallestgrainsclosetothecut–offsize.Asegetssmaller,however,thecontributionofthesesmallergrainsprogressivelydecreases.Belowthelimitingvaluee∼0.01,thiseffectissopronouncedthatthesystem’sopticaldepthisnolongerdominatedbythesmallestgrains,butbymuchbiggerparticlesinthe100-1000s0.5range.Theseparticleshavetheiror-bitslargelyconfinedwithinthebirthring.Thisexplainswhyasharpluminositydecreaseisobservedattheouteredgeofthebirthring. Notethatcontrarytotheveryhighmasscase,thesharpouteredgedoesnotsmoothoutwithtimebutpersistthroughoutthe107yrsofthesimulation. Th´ebaultandWu:OuterEdgesofdebrisdiscs7 4.Analyticalderivation:The’universal’r−3.5profile Ournumericalexplorationhasshownthatther−3.5surface brightnessprofilebeyondtheouteredgeseemstobethemostgenericoutcomeforacollisionalringsystemundertheactionofstellarradiationpressure.Wereinvestigatethisissuefromananalyticalpointofviewandderivesimplifiedformulaeconfirm-ingthisresult.WetakehereasabasistheanalyticalapproachofStrubbe&Chiang(2006)andextendittomoregeneralcasesregardinggrainsizeandspatialdistributions. Wefirstlyassumethat,withinthebirthring,particlesfollowapower-lawsizedistributionofindexq(insteadoffixingq=−3.5foraDohnanyiequilibrium):dNBR∝sqds. (3) Sincethesegrainsspendmostoftheirorbitsintheemptyre-gionoutsidethebirthring,theirtotalnumberintegratedoverthewholesystem(Ntot)willbeboostedbyafactor1/f(e),wheref(e)isthefractionofanorbitalperiodabodyofeccentricitye∼β/(1−β)spendswithinthebirthring(Strubbe&Chiang2006),sothatdNtot= 1 f(e) sqds. (4) WealsofollowStrubbe&Chiang(2006)inmakingthesim-plifyingbutreasonableassumptionthatallhigh-βgrainsareonaveragemostlyseenneartheirapoastron.Thus,ateachgivendistancerfromthestar,theopticaldepthisdominatedbyparti-clesofsize s1 dom(r)= s0.5.(5)r Sinceweareinterestedintheregionr≤4rtheirapoastron BR,onlygrainswitha(1+e)=1−β rBR 1−β rBR= e 1− rBR+∆rBR dNtot(sdom)r 1f(e) dr s2dom(r). (9) Usingtheradialdependenceofsdomgivenbyeq.5,weobtaindNBR (sdom ) −q−2rBR r 1− rBR f(e) r3 (11) wheref(e)isgivenbysolvingEqu.7. Asatest,wefirstconsiderthesamefiducialcaseasStrubbe&Chiang(2006),i.e.theDohnanyiq=−3.5value.Theradialprofileofτ⊥(r)obtainedthiswayscalesasr−1.5(Fig.8).Departuresfromthisslopearerelativelylimited,eveninthe1-1.5rBRregion,whereτ⊥(r)hasa∼r−1.75dependence.Ifweapplytheusualruleofthumbthatforanopticaldepthprofileτ⊥(r)∝rα,themidplaneSBscalesasrα−2(e.g.Nakano1990)5,weobtainSB(r)∝r−3.5inmostoftheouterregion,confirm-ingtheresultofStrubbe&Chiang(2006).Forcomparison,wealsoplotonthegraphtheτ⊥(r)profilederivedwhen(incor-rectly)assumingthattheDohnanyilawappliestotheentiresys-tem,i.e.,dNtot∝s−3.5ds(aswasdoneinLecavelieretal.1996;Augereauetal.2001;Th´ebault&Augereau2005).Notsurpris-ingly,werecovertheasymptoticdependenceτ⊥(r)∝r−3,corre-spondingtotheSB(r)∝r−5slopederivedinthesepaststudies. However,ashasbeenoftenpointedout(e.g.Th´ebaultetal.2003),sizedistributionsfollowapowerlawwithindexq=−3.5onlyinunrealisticallyidealizedsystems,withaninfinitesizerangeandnosizedependenceforcollisionalprocesses.Inoursimulations,thesteadystatesizedistributionwithinthebirthringsignificantlydepartsfromthisvalue(seeFig.9).Thisde-parturefromtheDohnanyilaw,especiallyinthecrucialsizedo-mainofthesmallestgrains,isawellknowresultswhichhasbeenobtainedanddiscussedinseveralpreviousstudies(e.g.CampoBagatinetal.1994;Th´ebaultetal.2003;Krivovetal.2006;Th´ebault&Augereau2007;L¨ohneetal.2007).Themainreasonforthisbehaviouristhatradiationpressureintroducesanaturalminimumcut-offs0.5inthesizedistribution,sothatbodiesofsizes1justaboves0.5areoverabundantbecauseofthelackofsmalls Fig.9.Grainsizedistributioninsidethebirthring(dNSec3.ThesizerangeherecoversBR/ds),for allcasespresentedinthatofgrainsdominatingtheopticaldepthintheouterregion.Inordertofacilitatecomparison,allcurveshavebeenrenormalizedtotheirpeakvalueats=1.2sDohnanyiprofiledN0.5.ThethickgreylineshowsthetheoreticalBR∝s−3.5ds. Fig.10.SameasFig.8butfordifferentsizedistributionsindexq.Allsizedistributionsleadtoτ⊥∝r−1.5atlargedistances,butsteepersizedistributionsapproachingthisasymptoteearlier. byimpactswiths1ones,areunderabundant,whichinturnleadstoanoverabundanceofobjectsofsizesdistributiondisplaysapronounced3>swavy-pattern2,etc.TheresultingsizeobservablealsoinFig.9.Forthesizerangewhichishereofspecialinterest,i.e.grainsinthe0.15<β<0.4(1.25sthedistributionissteeperthanaDohnanyi0.5 5.Discussion 5.1.Howtoescapetheuniversalr−3.5profileOurnumericalexplorationsshowthatthereareonly2waysnottoend5upwiththestandardresultwithnosharpedgeandSB∝r−3.:averymassive,radiallyopticallythickdiscorady-namicallycoldsystem.Forthese2“extreme”cases,theanalyti-calderivationoftheprevioussectionbecomesinvalid.Althoughthereasonswhytheanalyticalstudynolongerholdsaredifferentforeachcase,theyareneverthelessforbothcasesdistinctcon-sequencesofthesamecrucialcharacteristicsofthesystem’sdy-namicswhenpushedtoitslimits:thestrongimbalancebetweenthecollisionratesandvelocitiesoflargeandsmallparticles.Therefore,beforediscussingthese2casesinmoredetail,letuspresentthemechanismsatplaybehindthislarge/smallparticledichotomy. Forlargebodies,wehaveseenthatcollisionvelocitiescanbederivedusingthestandardexpressionfortheirdynamicalrmsexcitation(Eq.1).Sincefortheseobjectsequipartitionbetweenin-planeandoff-planemotionsresultsinafixede/iratio,itfollowsthatcollisionvelocitiesaredirectlyproportionaltothesystem’sinclinationwhereascollisionratesareindependentofi.Thatistosaythatthecollisionalopticaldepthisdirectlyproportionaltotheverticalopticaldepthτ⊥(whichdoesnotvarywithi).Thisisnolongerthecaseforsmallgrainspushedoneccentricorbitsbyradiationpressure,whichcansamplethe Th´ebaultandWu:OuterEdgesofdebrisdiscs9 wholeradialextentofthebirthring.Radiationpressureinduced eccentricitiesareequalto e (1−2aβ/r)(1−e2) β=1− 1rBR 6 TheanalyticalderivationofSec.4isinvalidhere,sinceitimplicitlyassumesthatsmallhigh-βgrainsdominatethetotalopticaldepth 10Th´ebaultandWu:OuterEdgesofdebrisdiscs tor10uncertaintyintheirratio(seeforexampletheattemptat connectingthesetwoquantifiesforthespecificcaseofAUMicperformedbyAugereau&Beust2006),sothatourresultishereprobablynotveryconstraining. Thesecondandprobablycrucialissueishowlikelyitistofindsuchdynamicallycolddiscs,witheandilowerthan≃0.01.AsnotedbyTh´ebault&Augereau(2007):“theonlyob-servationalconstraint[onthedisc’sdynamicalexcitation]comesfrommeasuringthedisc’sverticalthicknessandderivingesti-matesoforbitalinclinations,butsuchconstraintsarescarce”.Edge-ondiscsrepresentthemostfavourablecasessinceH/rcanbedirectlymeasured.However,evenforthetwomoststudieddiscs,onlypartialinformationisavailable.Kristetal.(2005)findH/r≤0.04forAUMic(andH/r≤0.02closetothepo-sitionofmaximumsurfacedensity).TheβPictorisdiscappearsthickerwithH/rratiosaslargeas≃0.1(Golimowskietal.2006).7 .Themodellingandinversionofscatteredlightbrightnesspro-filesofinclined,ring-shapeddiscsdonotprovidemanymoreconstraints.TheHD181327ringsforexample,mighthaveH/rratioaslargeasabout0.1atthepositionsofmaximumsur-facedensity,buttheactualratioscouldbetwotimessmaller(Schneideretal.2006). Therearethuslargeuncertainties,butitseemshoweverthatthe0.01to0.1rangeisthemostrealisticonefori(andthuseifassumingequipartition).This0.01-0.1rangedoesalsomakesensewhenconsideringsimpletheoreticalargumentsregardingthesizesofthebiggestobjectswithinthedisc.Considerindeedabeltofplanetesimalssittingat∼100AUfromthecentralstar.Ifthemaximumsizeislimitedto,say,∼10km,thenexcitationbymutualviscousstirringleadstovaluesoftheorderoftheirsurfaceescapevelocity(∼10m/s),andcollisionsamongthemgenerateparticleswithdispersionvelocitythatdoesnotexceedthesamevelocity.TheresultingH/R∼vesc/vkep∼0.003andisdynamicallycold.Ontheotherhand,ifthemaximumsizeis∼500km,thenH/R∼0.15andtheresultingdebrisdiscisdy-namicallyhot.Thisdynamicallyhotcaseprobablymakesmoresensewithintheframeofthestandardplanetformationscenario,inwhichdebrisdiscscorrespondtosystemsinwhichthebulkofplanetesimalaccretionprocessisalreadyoverandlargeplane-taryembryosarepresent(e.g.Kenyon&Bromley2005).5.2.ApplicationtorealsystemsAsaconsequence,weexpectournominalresult,validinthee≥0.01range,tocorrespondtothe“natural”collisionalevolutionofmostdiscswhenlefttothemselves.Thisnominalmodel,withnosharpedgeandluminosityfallingasr−3.5com-pareswellagainsttheouterregionSBprofiles(beyond≃40AUand≃120AUrespectively,seeTable1)forthetwoperhapsmostemblematicdebrisdiscs:βPicandAUMic.Forthesetwosys-tems,whichareamongstthefewonesforwhich(partial)discthicknessestimatesareavailable,thisresultisingoodagreementwiththeobservedi,whichisforbothdiscsinthe≥0.01range,andthusinthedynamically”hot”regimedisplayedinFig.1.8ForAUMic,thisconclusionconfirmstheinitialresultsobtainedbyStrubbe&Chiang(2006)withamoresimplifiedapproach. Th´ebaultandWu:OuterEdgesofdebrisdiscs11 5.3.fittingasharpedgering:HR4796AAsformostdebrisdiscs,thereexistsnofullyreliableobserva-tionalconstraintsontheverticalheightandthereforedynamical excitationoftheHR4796Adisc.FrommodelfittingofscatteredlightandIRimages,Augereauetal.(1999)arguethatthescaleheightat70AU(thelocationofthemainring)hastobelessthan7-8AU,or2i∼e≤0.1.However,fromimagefittingandtheoreticalconstraints,Kenyonetal.(1999)findthatthemostlikelyvalueisH∼0.5AU,i.e.2i∼e≤0.007.Itisthusplausiblethatthissystemfallsintothedynamicallycoldcate-gory. WenumericallyexploreaseriesofdynamicallycoldHR4796-likesystems,fixingthering’scenterat70AUandtak-ingtheradialextentofthebirthring∆rBRaswellaseasfreeparameters.TheobservedprofilecomesfromHST/NICMOS(Schneideretal.1999)andisdisplayedinFig.6ofWahhajetal.(2005).Fig.12showsthebestfitobtainedinourparameterexploration.Itcorrespondstoadynamicallycoldcasewithe=0.0035andaradialwidthofthebirthring∆r17AUderivedfromobservationsBR=16AU,whichisclosetothe≃13−(Schneideretal.1999;Schneider2001)10.Asacomparison,wealsodisplaya“nominal”profileobtainedfore=0.1.Thelat-terisfullyincompatiblewiththeobservedprofileoverthe80-120AUdomainbyalmost2magnitudesinbrightness.Thebestfit(dynamicallycoldcase)compareswellwiththedatainthe70-110AUregionanddepartsfromtheobservedSB(r)profileonlybetween110and120AU,wherethenumericalprofilebecomestooflat.Itisdifficulttosayhowsignificantthisdiscrepancyintheseoutermost10AUis,astherearenoerrorbarsgivenintheWahhajetal.(2005)plot.Itispossiblethatconfusionfromtheskybackgroundentersatthesedistances. Wemustthusremaincarefulbutitseemsthatthereisatleastapossibilityforourdynamicallycoldmodeltoprovideanexpla-nationforsharpouteredgediscslikeHR4796A.Thequestionofhowrealisticthisexplanationcanbeisanotherissue.WehaveseeninSec.5.1.2thatthei<0.01condition,althoughprobablynotgenericwithrespecttoplanet-formationscenarios,cannot,inmostcases,beexplicitlyruledoutbyobservations. Theremayhoweverbeapredictionmadebythecold-discscenariowhichcouldbeobservationallychecked,i.e.,theun-derabundanceofgrainsintheµmtosub-millimetrerange11.ForHR4796,forinstance,Augereauetal.(1999)haveper-formeddetailedfitsoftheSEDaswellasofthermalandscat-teredlightimages.Theirbestfitimpliedthatmostofthegeomet-ricalcrosssectionwascontainedingrainsclosetotheminimumvaluefortheirsizedistribution,i.e.smin∼10µm.However,thisfitwasobtainedassuminganimposedsizedistributionins−3.5,sothattheseresultscannotbeusedtoruleoutthepossibilityofhighersminvaluesforalternatesizedistributions.Wahhajetal.(2005)performedsimilarfitswithpartlymorerecentdataandfoundthattheeffectivesizeforgrainswithintheringis∼50µm.Thiswouldbeinrelativelygoodagreementwithourdynami-callycoldcase.However,thisvaluewasobtainedassuminga 12 ThisseemstobearecurrentissuewhichisnotlimitedtoHR4796A:vastpopulationsofunboundparticlescouldalsodominatethescatteredluminosityofHD141569A(Augereau&Papaloizou2004),andmightbepresentintheouterβPictorisdisc(Augereauetal.2001) 12Th´ebaultandWu:OuterEdgesofdebrisdiscs withtypicallye=2i≤0.01.Inthiscase,smallgrains aredestroyedmuchmoreefficientlythantheyarecreated,leadingtoadepletionofthispopulation.Thesystem’sopti-caldepthandluminosityarethendominatedbylargegrainswhichdonotleavethemainbirthring,leadingtoasharpouteredge.Evenifthiscasemightnotcorrespondtothemostgenericdebrisdiscconfiguration,itcannotberuledoutbyobservationsandisthusapossibleexplanationtosomeoftheobservedsystems. Tonumericallyinvestigatetheapplicabilityofthedynami-callycoldcasetorealsharp-edgesystems,weconsiderthespe-cificcaseofHR4796A.Wefindareasonablygoodfitofthissystem’souterregionluminosityprofilewithadynamicalex-citatione∼0.0035.Thereisthusthepossibilitythatsuchasharpouteredgecouldbeexplainedbythenaturalcollisionalevolutionofaconfineddiscoflargeparentbodies. Acknowledgements.PTwishestothankJean-CharlesAugereauandAlexanderKrivovforfruitfuldiscussions. References Ardila,D.R.;Golimowski,D.A.;Krist,J.E.;Clampin,M.;Williams,J.P.;Blakeslee,J.P.;Ford,H.C.;Hartig,G.F.;Illingworth,G.D,2004,ApJ,617,L147 ArtymowiczP.,1997,Ann.Rev.EarthPlanet.Sci.25,175 Augereau,J.C.;Lagrange,A.M.;Mouillet,D.;Papaloizou,J.C.B.;Grorod,P.A.,1999,A&A,348,557 Augereau,J.C.,Nelson,R.P.,Lagrange,A.M.,Papaloizou,J.C.B.,Mouillet,D.,2001,A&A370,447 Augereau,Papaloizou,J.C.B.,2004,A&A,414,1153Augereau,J.-C.,Beust,H.,2006,A&A,455,987 Backman,DanaE.;Paresce,Francesco,Main-sequencestarswithcircumstellarsolidmaterial-TheVEGAphenomenon,1993,inPProtostarsandplanetsIII,theUniv.ofArizonaPress,Tucson,1253Besla,G.,Wu,Y.,2007,ApJ,655,528 CampoBagatin,A.,Cellino,A.,Davis,D.,Farinella,P.,Paolicchi,1994,Planet.SpaceSci.,42,1079 DohnanyiJ.S.,1969,JGR74,2531Fitzgerald,M.,Kalas,P.,Duchˆene,G.,Pinte,C.,Graham,J.,2007,ApJ,670,536 Freistetter,F.;Krivov,A.V.;Lohne,T.,2007,A&A,466,3 Golimowski,D.A.;Ardila,D.R.;Krist,J.E.;and40coauthors,2006,AJ,131,3109 Greaves,J.L.,2005,Science,307,68 Henyey,L.G.,Greenstein,J.L.,1941,ApJ,93,70 Jayawardhana,R.,Fisher,S.,Hartmann,L.,Telesco,C.,Pina,R.,Fazio,G.1998,ApJ,503,79 Jonkheid,B.;Kamp,I.;Augereau,J.-C.;vanDishoeck,E.F.,2006,A&A,453,163 Kalas,P.,2005,in“proceedingsoftheMiniworkshoponNearbyResolvedDebrisDisks”,IngaKampEd.,p.13 Kalas,P.,Graham,J.,Clampin,M.,2005,Nature,435,1067 Kalas,P.,Graham,J.;Clampin,M.;Fitzgerald,M.,2006,ApJ,637,57 Kenyon,ScottJ.;Wood,Kenneth;Whitney,BarbaraA.;Wolff,MichaelJ.,1999,ApJ,524,119 Kenyon,ScottJ.;Bromley,B.,2005,AJ,130,269Klahr,H.,Lin,D.,2005,ApJ,632,1113 Koerner,D.W.,Ressler,M.E.,Werner,M.W.,Backman,D.E.,1998,ApJ,503,L83 Krivov,A.,Lohne,T.,Sremcevic,M.,2006,A&A,455,509 Lagrange,A.-M.,Backman,D.E.,&Artymowicz,P.2000,inProtostarsandPlanetsIV,theUniv.ofArizonaPress,Tucson,639 LecavelierdesEtangsA.,Vidal-MadjarA.,Ferlet,R.,1996,A&A,307,542Liseau,C.Risacher,A.Brandeker,C.Eiroa,M.Fridlund,R.Nilsson,G.Olofsson,G.L.Pilbratt,P.Thebault,2008,A&A,inpress LissauerJ.,StewartG.,1993,inProtostarsandPlanetsIII,theUniv.ofArizonaPress,Tucson,1061L¨ohne,T.,Krivov,A.,Rodmann,J.,2007,ApJ,inpress,arXiv:0710.4294Moro-Martin,A.;Malhotra,R.,2005,ApJ,633,1150Nakano,T.1990,ApJ,355,L43 Quillen,A.,2007,MNRAS,377,1287Quillen,A.,2007,MNRAS,380,12 Schneider,Glenn;Smith,BradfordA.;Becklin,E.E.;Koerner,DavidW.;Meier,Roland;Hines,DeanC.;Lowrance,PatrickJ.;Terrile,RichardJ.;Thompson,RodgerI.;Rieke,Marcia,1999,Ap.J,513,L127Schneider,Glenn;2001,BAAS,198,83.01 Schneider,Glenn;Silverstone,MurrayD.;Hines,DeanC.;Augereau,J.-C.;Pinte,Christophe;Mnard,Franois;Krist,John;Clampin,Mark;Grady,Carol;Golimowski,David;Ardila,David;Henning,Thomas;Wolf,Sebastian;Rodmann,Jens,2006,ApJ,650,414SmithB.,TerrileR.,1984,Sci226,1421 Strubbe,L.E.,Chiang,E.I.,2006,ApJ,8,652 Su,K.Y.L.;Rieke,G.H.;Misselt,K.A.;Stansberry,J.A.;Moro-Martin,A.;Stapelfeldt,K.R.;Werner,M.W.;Trilling,D.E.;Bendo,G.J.;Gordon,K.D.;Hines,D.C.;Wyatt,M.C.;Holland,W.S.;Marengo,M.;Megeath,S.T.;Fazio,G.G.2005,ApJ,628,487 Telesco,C.M.;Fisher,R.;Wyatt,M.;Dermott,S.;Kehoe,T.;Novotny,S.;Marinas,N.;Radomski,J;Packham,C.;DeBuizer,J.;Hayward,T.,2005,Nature,433,133Th´ebault,P.,Augereau,J.C.,2005,A&A,437,141Th´ebault,P.,Augereau,J.C.,2007,A&A,472,169Th´ebault,P.,Augereau,J.-C.,Beust,H.2003,A&A,408,775 Wahhaj,Z.;Koerner,D.W.;Backman,D.E.;Werner,M.W.;Serabyn,E.;Ressler,M.E.;Lis,D.C.,2005,ApJ,618,385. Wyatt,M.C.;Dermott,S.F.;Telesco,C.M.;Fisher,R.S.;Grogan,K.;Holmes,E.K.;Pina,R.K.,1999,ApJ,527,918 Wyatt,M.C.;Smith,R.;Su,K.Y.L.;Rieke,G.H.;Greaves,J.S.;Beichman,C.A.;Bryden,G.,2007,ApJ,633,365 Th´ebaultandWu:OuterEdgesofdebrisdiscs13 ListofObjects ‘βPictoris’onpage1 ‘βPictoris’onpage2‘βPictoris’onpage11‘βPictoris’onpage11 Fig.11.Ratiosbetweenthehorizontalandverticalopticaldepthplottedasafunctionofgrainsizefordifferentvaluesofdynami-calexcitation.Thestraightlinesassociatedwitheachcasemarkthevaluesofτrad/τ⊥(seeeq.2).ThegrainsareassumedtobelaunchedwithlocalKepleriancircularvelocityatthecentreofthering.Thefractionalringwidth∆r0.3.DecreasingthisvaluewillBR/rmoveBRtakesthenominalvalueofthepeakstowardstheright.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务