运筹学(胡运权)第五版课后答案,运筹作业
47页1.1b
⽤图解法找不到满⾜所有约束条件的公共范围,所以该问题⽆可⾏解47页1.1d
⽆界解1.2(b)
约束⽅程的系数矩阵A= 1 2 3 4( )2 1 1 2P1 P2 P3 P4
最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题
设Xij为第i⽉租j个⽉的⾯积
minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x14s.t.
x11+x12+x13+x14≥15
x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0
⽤excel求解为:
⽤LINDO求解:
LP OPTIMUM FOUND A T STEP 3OBJECTIVE FUNCTION V ALUE1) 118400.0
VARIABLE V ALUE REDUCED COST Z 0.000000 1.000000X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.000000 1500.000000X14 12.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3
答若使所费租借费⽤最⼩,需第⼀个⽉租⼀个⽉租期300平⽅⽶,租四个⽉租期1200平⽅⽶,第三个⽉租⼀个⽉租期800平⽅⽶,50页14题
设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加⼯的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加⼯的Ⅱ产品数量,c1为在A2,B2上加⼯的Ⅲ产品数量。则⽬标函数为‘
maxz= (1.25-0.25)( a1+a2+a3)+( 2-0.35) b3+( 2.8-0.5)c1 -0.05 (a1+b1)-0.03 (a2+b2+c1)- 0.06 (a3+b3)-0.11(a4+c1)-0.05a5
=0. 95a1+0. 97a2+0. 94a3+1.5b3+2.1c1-0.05b1-0.11a4-0.05a5s.t.
5a1+10b1≤60007a2+b2+12c1≤100006a3+8a3≤40004a4+11c1≤70007a5≤4000a1+a2-a3-a4-a5=0b1+b2-b3=0
a1,a2,a3, a4, a5, b1,b2,b3, c1≥0⽤lindo求解得:
LP OPTIMUM FOUND AT STEP 6OBJECTIVE FUNCTION V ALUE1) 16342.29
V ARIABLE V ALUE REDUCED COST
A1 1200.000000 0.000000A2 0.000000 9.0000A3 285.714294 0.000000B3 10000.000000 0.000000C1 0.000000 15.900000B1 0.000000 0.230000A4 342.857147 0.000000A5 571.4285 0.000000B2 10000.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 0.1680003) 0.000000 1.5000004) 0.000000 0.0750005) 5628.5712 0.0000006) 0.000000 0.0085717) 0.000000 0.1100008) 0.000000 -1.500000NO. ITERATIONS= 6计算lindo截屏
2.1a:对偶问题为:maxz=2y1+3y2+5y3s.t.
y1+2y2+y3≤2
3y3+y2+4y3≤24y1+3y2+3y3=4y1≥0, y 2≤0,y3⽆约束
因为原问题的对偶问题的对偶问题仍是原问题,因此本问题的对偶问题的对偶问题为:minz=2x1+2x2+4x3s.t.
x1+3x2+4x3≥22x1+x2+3x3≤3x1+4x2+3x3=5x1,x2≥0,x3⽆约束81页2.12
a)设x1,x2,x3分别为A,B,C产品数量maxz=3x1+x2+4x3s.t.
6x1+3x2+5x3≤45
3x1+4x2+5x3≤30x1,x2,x3≥0⽤lomdo求解为
LP OPTIMUM FOUND AT STEP 2OBJECTIVE FUNCTION V ALUE1) 27.00000
V ARIABLE V ALUE REDUCED COST X1 5.000000 0.000000X2 0.000000 2.000000
X3 3.000000 0.000000 X1,X2,X3 0.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 0.2000003) 0.000000 0.6000004) 0.000000 0.000000NO. ITERATIONS= 2
最⼤⽣产计划为A⽣产5个单位,C⽣产3个单位b)
LP OPTIMUM FOUND AT STEP 2OBJECTIVE FUNCTION V ALUE1) 27.00000
V ARIABLE V ALUE REDUCED COSTX1 5.000000 0.000000X2 0.000000 2.000000X3 3.000000 0.000000X1,X2,X3 0.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 0.2000003) 0.000000 0.6000004) 0.000000 0.000000NO. ITERATIONS= 2
RANGES IN WHICH THE BASIS IS UNCHANGED:
OBJ COEFFICIENT RANGES V ARIABLE CURRENT ALLOWABLE ALLOWABLECOEF INCREASE DECREASEX1 3.000000 1.800000 0.600000X2 1.000000 2.000000 INFINITY
X3 4.000000 1.000000 1.500000 X1,X2,X3 0.000000 0.000000 INFINITYRIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLERHS INCREASE DECREASE
2 45.000000 15.000000 15.0000003 30.000000 15.000000 7.5000004 0.000000 0.000000 INFINITY
可知A产品的利润变化范围【6. 8,2.4】,上述计划不变。c)
设x4为产品D的数量maxz=3x1+x2+4x3+3x4s.t.
6x1+3x2+5x3+8x4≤453x1+4x2+5x3+2x4≤30x1,x2,x3 ,x4≥0⽤lomdo求解为
LP OPTIMUM FOUND AT STEP 0OBJECTIVE FUNCTION V ALUE1) 27.50000
V ARIABLE V ALUE REDUCED COSTX1 0.000000 0.100000X2 0.000000 1.966667X3 5.000000 0.000000X4 2.500000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 0.233333
3) 0.000000 0.566667NO. ITERATIONS= 0
安排⽣产D有利,新最有⽣产计划为x1=x2=0,x3=5,x4=2.5,利润为27.5 d)maxz=3x1+x2+4x3-0.4ys.t.
6x1+3x2+5x3≤453x1+4x2+5x3-y≤30x1,x2,x3,y≥0⽤lomdo求解为
LP OPTIMUM FOUND AT STEP 0OBJECTIVE FUNCTION V ALUE1) 30.00000
V ARIABLE V ALUE REDUCED COST X1 0.000000 0.600000X2 0.000000 1.800000X3 9.000000 0.000000Y 15.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 0.4000003) 0.000000 0.400000NO. ITERATIONS= 0
可知购进原材料15个单位为宜。4.1
a)设yi= 1 第i组条件起作⽤
0 第i组条件不起作⽤
x1+x2≤2-(1-y1)M M —充分⼤正数
2x1+3x2≥5+(1-y2)My1+y2=1y1,y2=0或1
b)设yi= 1 第i 组条件起作⽤0 第i 组条件不起作⽤x=0y1 x=3y2 x=5y2 x=7y4y1+y2+y3+y4=1 y1,y2,y3,y4=0或1c) 设yi= 1 为假定取值≥500 为假定取值x=0
x=0y1
x ≥50--(1-y2)M y1+y2=1 y1,y2=0或1d) 设yi= 1 第i 组条件起作⽤0 第i 组条件不起作⽤ i=1,2 则
x1≤2+(1-y1)M x2≥1-(1-y1)M x2≤4+(1-y2)M y1+y2=1 y1,y2=0或1e) 设yi= 1 第i 组条件起作⽤0 第i 组条件不起作⽤ i=1,2 则x1+x2≤5-(1-y1)M
x1≤2-(1-y2)M x3≥2+(1-y3)M x3+x4≥6+(1-y4)M y1+y2+y3+y4≥2 y1,y2,y3,y4=1或04.2
minz = cjxj 10j=1 xj 10j=1=5 x1+x8=1 x7+x8=1 s.t. x3+x5≤1x4+x5≤1x5+x6+x7+x8≤2
xj= 1 选择钻探第sj 井位 0 否4.5
设xij 为第i 种泳姿⽤第名运动员minz= ai 5j=1jxij 4i=1s.t.
x11+x12+x13+x14+x15=1
x21+x22+x23+x24+x25=1 x31+x32+x33+x34+x35=1 x41+x42+x43+x44+x45=1 x11+x21+x22+x23=1 x12+x22+x32+x42=1x13+x23+x33+x43=1 x14+x24+x34+x44=1 x15+x25+x35+x45=1xij=1或0(i=1,2,3,4 j=1,2,3,4,5)
由excel 计算得出;张游仰泳,王游蛙泳,赵游⾃由泳,预期总成绩为126.2s.
因为使mind1-,故在x1+x2=40的右侧,若使mind4+,则在x1+x2=50的左侧,即阴影区域,因为在阴影部分⽆法使2d2-+d3-最⼩,故⽐较E(20,30),F(24,26),E点:d2-=4,d3-=0 min2d2-+d3-=8,F点:d2-=0,d3-=4, min2d2-+d3-=4,故选F 点
程序法
6.4a
破圈法
避圈法
6
最⼩部分树166.4b
10 12
10 12 最⼩部分树32172页6.11
2.9
红⾊曲线为使⽤⼀年卖出蓝⾊曲线为使⽤两年卖出绿⾊曲线为使⽤三年卖出紫⾊曲线为使⽤四年卖出
最短路程为3.7万元,路径为v0-v1-v4或v0-v2-v4或v0-v1-v2-v4
三种⽅案分别为:第⼀年年初买新车,年末卖掉再买新车,⼀直⽤到第四年年末卖掉;第⼀年出买新车,⽤两年后于第⼆年末卖掉再买新车,⽤两年于第四年末卖掉;
第⼀年出买新车,年末卖掉后再买新车,第⼆年末卖掉再买新车,再⽤两年于第四年年末卖掉。
由图可知,若摩托车最多使⽤三年,答案仍然不变6.14bvsv2(vs,1)
v3(vs,1) v5(v4,1)vt (v5,1)v4(v3,1)
2.9v1(v2,1)