高考物理动量守恒定律解析版汇编
一、高考物理精讲专题动量守恒定律
1.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速度v0从右端滑上B,一段时间后,以到达C的最高点.A、B、C的质量均为m.求: (1)A刚滑离木板B时,木板B的速度; (2)A与B的上表面间的动摩擦因数; (3)圆弧槽C的半径R;
(4)从开始滑上B到最后滑离C的过程中A损失的机械能.
v0滑离B,并恰好能2
2225v0v0v015mv0【答案】(1) vB=;(2)(3)R(4)E
16gLg432【解析】 【详解】
(1)对A在木板B上的滑动过程,取A、B、C为一个系统,根据动量守恒定律有:
mv0=m
解得vB=
v0+2mvB 2v0 42mgL=mv0-m(0)2-2m(0)2
(2)对A在木板B上的滑动过程,A、B、C系统减少的动能全部转化为系统产生的热量
1212v212v425v0解得
16gL(3)对A滑上C直到最高点的作用过程,A、C系统水平方向上动量守恒,则有:
mv0+mvB=2mv 2A、C系统机械能守恒:
1v1v1mgR=m(0)2m(0)22mv2
222422v0 解得Rg(4)对A滑上C直到离开C的作用过程,A、C系统水平方向上动量守恒
mv0mv0mvAmvC 24A、C系统初、末状态机械能守恒,
1v021v021212m()m()mvAmvC 222422解得vA=
v0. 42121215mv0 E=mv0-mvA=2232所以从开始滑上B到最后滑离C的过程中A损失的机械能为:
【点睛】
该题是一个板块的问题,关键是要理清A、B、C运动的物理过程,灵活选择物理规律,能
够熟练运用动量守恒定律和能量守恒定律列出等式求解.
2.如图所示,在倾角30°的斜面上放置一个凹撸B,B与斜面间的动摩擦因数3;槽内6靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d0.1m,A、B的质量都为m=2kg,B与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A、B之间的摩擦,斜面足够长.现同时由静止释放A、B,经过一段时间,A与B的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g取10m/s2.求:
(1)释放后物块A和凹槽B的加速度分别是多大?
(2)物块A与凹槽B的左侧壁第一次碰撞后瞬间A、B的速度大小;
(3)从初始位置到物块A与凹糟B的左侧壁发生第三次碰撞时B的位移大小. 【答案】(1)(2)vAn=(n-1)m∙s-1,vBn=\"n\" m∙s-1(3)xn总=0.2n2m 【解析】 【分析】 【详解】
(1)设物块A的加速度为a1,则有mAgsinθ=ma1, 解得a1=5m/s2
凹槽B运动时受到的摩擦力f=μ×3mgcosθ=mg方向沿斜面向上; 凹槽B所受重力沿斜面的分力G1=2mgsinθ=mg方向沿斜面向下; 因为G1=f,则凹槽B受力平衡,保持静止,凹槽B的加速度为a2=0 (2)设A与B的左壁第一次碰撞前的速度为vA0,根据运动公式:v2A0=2a1d 解得vA0=3m/s;
AB发生弹性碰撞,设A与B第一次碰撞后瞬间A的速度大小为vA1,B的速度为vB1,则由动量守恒定律:mvA0mvA12mvB1 ;
121212mvA0mvA2mvB11 222解得vA1=-1m/s(负号表示方向),vB1=2m/s
由能量关系:
3.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为Ep=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:
①小球脱离弹簧时的速度大小;
②在整个过程中,小车移动的距离。 【答案】(1)3m/s (2)0.1m 【解析】
试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得 mv1-Mv2=0
EP1212mv1Mv2 22x1xM2,x1+x2=L tt代入数据解得:v1=3m/s v2=1m/s (2)根据动量守恒和各自位移关系得m代入数据联立解得:x2L=0.1m 4考点:动量守恒定律;能量守恒定律.
4.如图所示,光滑水平面上依次放置两个质量均为m的小物块A和C以及光滑曲面劈B,B的质量为M=3m,劈B的曲面下端与水平面相切,且劈B足够高,现让小物块C以水平速度v0向右运动,与A发生弹性碰撞,碰撞后小物块A又滑上劈B,求物块A在B上能够达到的最大高度.
23v0【答案】h
8g【解析】
试题分析:选取A、C系统碰撞过程动量守恒,机械能守恒,应用动量守恒定律与机械能守恒定律求出A的速度;A、B系统在水平方向动量守恒,由动量守恒定律与机械能守恒定律可以解题.
小物块C与A发生弹性碰撞, 由动量守恒得:mv0=mvC+mvA
121212mv0mvCmvA 222联立以上解得:vC=0,vA=v0
由机械能守恒定律得:
设小物块A在劈B上达到的最大高度为h,此时小物块A和B的共同速度大小为
v,对小物块A与B组成的系统,
由机械能守恒得:
121mvAmghmMv2 22水平方向动量守恒mvAmMv
23v0联立以上解得: h
8g点睛:本题主要考查了物块的碰撞问题,首先要分析清楚物体运动过程是正确解题的关键,应用动量守恒定律与机械能守恒定律可以解题.要注意A、B系统水平方向动量守恒,系统整体动量不守恒.
5.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:
(1)碰后A球的速度大小;
(2)碰撞过程中A、B系统损失的机械能. 【答案】vA1.0m/s,E损0.25J 【解析】
试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度. (2)由能量守恒定律可以求出损失的机械能.
解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得: mAvA+mBvB=mAv′A+mBv′B 代入数据解:v′A=1.0m/s
②碰撞过程中A、B系统损失的机械能量为:
代入数据解得:E损=0.25J
答:①碰后A球的速度为1.0m/s;
②碰撞过程中A、B系统损失的机械能为0.25J.
【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.
6.如图所示,木块m2静止在高h=0.45 m的水平桌面的最右端,木块m1静止在距m2 左侧s0=6.25 m处.现木块m1在水平拉力F作用下由静止开始沿水平桌面向右运动,与 m2碰前瞬间撤去F,m1和m2发生弹性正碰.碰后m2落在水平地面上,落点距桌面右端水平 距离s=l.2 m.已知m1=0.2 kg,m2 =0.3 kg,m1与桌面的动摩擦因素为0.2.(两个木块都可以视为质点,g=10 m/s)求:
2
(1)碰后瞬间m2的速度是多少? (2)m1碰撞前后的速度分别是多少? (3)水平拉力F的大小?
【答案】(1)4m/s(2)5m/s ;-1m/s (3)0.8N 【解析】
试题分析:(1)m2做平抛运动,则:h=s=v2t; 解得v2=4m/s
(2)碰撞过程动量和能量守恒:m1v=m1v1+m2v2
12
gt; 2121212
m1v=m1v1+m2v2 222代入数据解得:v=5m/s v1=-1m/s (3)m1碰前:v=2as
2
Fm1gm1a
代入数据解得:F=0.8N
考点:动量守恒定律;能量守恒定律;牛顿第二定律的应用
【名师点睛】此题关键是搞清两个物体的运动特征,分清物理过程;用动量守恒定律和能量守恒定律结合牛顿定律列出方程求解.
7.在光滑的水平面上,质量m1=1kg的物体与另一质量为m2物体相碰,碰撞前后它们的位移随时间变化的情况如图所示。
求:(1)碰撞前m1的速度v1和m2的速度v2; (2)另一物体的质量m2。
【答案】(1)v14ms,v20;(2)m23kg。 【解析】
试题分析:(1)由s—t图象知:碰前,m1的速度v1状态,速度v20
(2)由s—t图象知:碰后两物体由共同速度,即发生完全非弹性碰撞 碰后的共同速度vs16-04ms,m2处于静止t4-0s24161ms t124根据动量守恒定律,有:m1v1(m1m2)v
v1v3m13kg v考点:s—t图象,动量守恒定律
另一物体的质量m2m1
8.如图所示,带有
1光滑圆弧的小车A的半径为R,静止在光滑水平面上.滑块C置于4木板B的右端,A、B、C的质量均为m,A、B底面厚度相同.现B、C以相同的速度向右匀速运动,B与A碰后即粘连在一起,C恰好能沿A的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g) (1)B、C一起匀速运动的速度为多少?
(2)滑块C返回到A的底端时AB整体和C的速度为多少?
53gR23gR,v2 33【答案】(1)v023gR (2)v1【解析】
本题考查动量守恒与机械能相结合的问题.
(1)设B、C的初速度为v0,AB相碰过程中动量守恒,设碰后AB总体速度u,由
mv02mu,解得uv0 2C滑到最高点的过程: mv02mu3mu
1211mv02mu23mu2mgR 222解得v023gR
(2)C从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有mv02mumv12mv2
121112mv02mu2mv122mv2 2222解得:v153gR23gR,v2 33
9.(20分)如下图所示,光滑水平面MN左端挡板处有一弹射装置P,右端N与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ的长度L=8m,皮带轮逆时针转动带动传送带以v = 2m/s的速度匀速转动。MN上放置两个质量都为m = 1 kg的小物块A、B,它们与传送带间的动摩擦因数μ = 0.4。开始时A、B静止,A、B间压缩一轻质弹簧,其弹性势能Ep = 16 J。现解除锁定,弹开A、B,并迅速移走弹簧。取g=10m/s。
2
(1)求物块B被弹开时速度的大小;
(2)求物块B在传送带上向右滑行的最远距离及返回水平面MN时的速度vB′; (3)A与P相碰后静止。当物块B返回水平面MN后,A被P弹出,A、B相碰后粘接在一起向右滑动,要使A、B连接体恰好能到达Q端,求P对A做的功。 【答案】(1)vB4.0m/s(2)vB'2m/s(3)W=162 J 【解析】
试题分析:(1)(6分)解除锁定弹开AB过程中,系统机械能守恒:
Ep1212mvAmvB ……2分 22设向右为正方向,由动量守恒mvB mvA0 ……2分 解得vBvA4.0m/s ①……2分
(2)(6分)B滑上传送带做匀减速运动,当速度减为零时,滑动的距离最远。 由动能定理得 mgsM012mvB ……2分 2vB22m ……1分 ② 解得SM2g物块B在传送带上速度减为零后,受传送带给它的摩擦力,向左加速,若一直加速,则受
力和位移相同时,物块B滑回水平面MN时的速度vB'4m/s ,高于传送带速度,说明B滑回过程先加速到与传送带共速,后以2m/s的速度做匀速直线运动。……1分 物块B滑回水平面MN的速度vB'v2m/s ……2分
③
,碰撞后A、B共同(3)(8分)弹射装置将A弹出后与B碰撞,设碰撞前A的速度为vAmvB2mV 的速度为V,根据动量守恒定律,mvA
A、B恰好滑出平台Q端,由能量关系有
……2分
④
12mV22mgL ……2分⑤ 2 ……2分 ⑥ 设弹射装置对A做功为W,W=mvA由④⑤⑥ 解得W=162 J ……2分 考点:相对运动 动能定理 动量守恒
122
10.在竖直平面内有一个半圆形轨道ABC,半径为R,如图所示,A、C两点的连线水平,B点为轨道最低点.其中AB部分是光滑的,BC部分是粗糙的.有一个质量为m的乙物体静止在B处,另一个质量为2m的甲物体从A点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC轨
o道,最高运动到D点,OD与OB连线的夹角θ60.甲、乙两物体可以看作质点,重力加
速度为g,求:
(1)甲物与乙物体碰撞过程中,甲物体受到的冲量.
(2)甲物体与乙物体碰撞后的瞬间,甲乙构成的整体对轨道最低点的压力. (3)甲乙构成的整体从B运动到D的过程中,摩擦力对其做的功. 【答案】(1) m2gR,方向水平向右.(2)压力大小为:
2317mg,方向竖直向3mgR. 下.(3)Wf= 【解析】 【分析】
(1)先研究甲物体从A点下滑到B点的过程,根据机械能守恒定律求出A刚下滑到B点时的速度,再由动量守恒定律求出碰撞后甲乙的共同速度,即可对甲,运用动量定理求甲物与乙物体碰撞过程中,甲物体受到的冲量.
(2)甲物体与乙物体碰撞后的瞬间,对于甲乙构成的整体,由牛顿第二定律求出轨道对整体的支持力,再由牛顿第三定律求得整体对轨道最低点的压力.
(3)甲乙构成的整体从B运动到D的过程中,运用动量定理求摩擦力对其做的功.
16【详解】
1甲物体从A点下滑到B点的过程,
根据机械能守恒定律得:2mgR解得:v02gR,
甲乙碰撞过程系统动量守恒,取向左方向为正,根据动量守恒定律得:
122mv0, 22mv0m2mmv,
解得:v22gR, 32m2gR,方3甲物与乙物体碰撞过程,对甲,由动量定理得:I甲2mv2mv0向:水平向右;
2甲物体与乙物体碰撞后的瞬间,对甲乙构成的整体,
v2, 由牛顿第二定律得:Fm2mgm2mR解得:F17mg, 317mg,方向:竖直向下; 32根据牛顿第三定律,对轨道的压力F'F3对整体,从B到D过程,由动能定理得:3mgR1cos60oWf013mv2
解得,摩擦力对整体做的功为:Wf【点睛】
解决本题的关键按时间顺序分析清楚物体的运动情况,把握每个过程的物理规律,知道碰撞的基本规律是动量守恒定律.摩擦力是阻力,运用动能定理是求变力做功常用的方法.
1mgR; 6
11.如图所示,装置的左边是足够长的光滑水平台面,一轻质弹簧左端固定,右端连接着质量M=1kg的小物块A.装置的中间是水平传送带,它与左、右两边的台面等高,并能平滑对接.传送带始终以v=1m/s的速率逆时针转动,装置的右边是一光滑曲面,质量m=0.5kg的小物块B从其上距水平台面高h=0.8m处由静止释放.已知物块B与传送带之间的动摩擦因数0.35,l=1.0m.设物块A、B间发生的是对心弹性碰撞,第一次碰撞前物块A处于静止状态.取g=10m/s2.
(1)求物块B与物块A第一次碰撞前的速度大小; (2)物块A、B间发生碰撞过程中,物块B受到的冲量;
(3)通过计算说明物块B与物块A第一次碰撞后能否运动到右边的曲面上?
(4)如果物块A、B每次碰撞后,弹簧恢复原长时都会立即被锁定,而当它们再次碰撞前锁定被解除,试求出物块B第n次碰撞后的运动速度大小.
11【答案】(1)3m/s;(2)2kgm/s;(3)l,所以不能;(4)73【解析】 【分析】
n1m
s物块B沿光滑曲面下滑到水平位置由机械能守恒列出等式,物块B在传送带上滑动根据牛顿第二定律和运动学公式求解;物块A、B第一次碰撞前后运用动量守恒,能量守恒列出等式求解;当物块B在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B运动到左边台面是的速度大小为v1,继而与物块A发生第二次碰撞.物块B与物块A第三次碰撞、第四次碰撞…,根据对于的规律求出n次碰撞后的运动速度大小. 【详解】
(1) 设物块B沿光滑曲面下滑到水平位置时的速度大小为v0,由机械能守恒定律可得:
mgh12mv0 2解得:v04m
s设物块B在传送带上滑动过程中因受摩擦力所产生的加速度大小为a,则有:μmg=ma, 设物块B通过传送带后运动速度大小为v,有:v12-v02=-2al,
解得:v1=3m/s>v=1m/s,则物块B与物块A第一次碰撞前的速度大小为3m/s; (2)设物体A、B第一次碰撞后的速度分别为vA、vB,取向右为正方向 由动量守恒定律得:mv1MvAmvB 由机械能守恒定律得:
121212mv1mvBMvA 222解得:vA=-2m/s,vB=1m/s,(vA=0m/s,vB=-3m/s不符合题意,舍去)
m ,方向水平向右; IPmvBmv12kg?s(3) 碰撞后物块B在水平台面向右匀速运动,设物块B在传送带上向右运动的最大位移为l',则有: 0-vB2=-2al′, 解得:l1l 7所以物块B不能通过传送带运动到右边的曲面上;
(4) 当物块B在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B运动到左边台面是的速度大小为vB,继而与物块A发生第二次碰撞
由(2)可知,vB=
1v1 313132同理可得:第二次碰撞后B的速度:vB1=vB()v1 第n次碰撞后B的速度为:vB(n-1)=()v1()【点睛】
本题是多过程问题,分析滑块经历的过程,运用动量守恒,能量守恒、牛顿第二定律和运动学公式结合按时间顺序分析和计算,难度较大.
13n13n1m s
12.如图所示,粗细均匀的圆木棒A下端离地面高H,上端套着一个细环B.A和B的质量均为m,A和B间的滑动摩擦力为f,且f<mg.用手控制A和B使它们从静止开始自由下落.当A与地面碰撞后,A以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时间极短,空气阻力不计,运动过程中A始终呈竖直状态.求:若A再次着地前B不脱离A,A的长度应满足什么条件?
【答案】【解析】
试题分析:设木棒着地时的速度为,因为木棒与环一起自由下落,则木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:解得:对环:解得
,方向竖直向下
方向竖直向下
可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变 木棒在空中运动的时间为在这段时间内,环运动的位移为
要使环不碰地面,则要求木棒长度不小于x,即
解得:
考点:考查了牛顿第二定律与运动学公式的综合应用
【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力