您好,欢迎来到微智科技网。
搜索
您的当前位置:首页一次函数图像应用题(带解析版答案)

一次函数图像应用题(带解析版答案)

来源:微智科技网


一次函数中考专题

一.选择题

1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( ) A.0.4元 B.0.45 元 C.约0.47元 D.0.5元

2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为( ) A.x>3

B.x<3 C.x>2 D.x<2

3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是( ) A.x>﹣5

B.x>﹣2 C.x>﹣3 D.x<﹣2

4.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为(t小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为( )

A.0个 B.1个 C.2个 D.3个

第1页(共15页)

【解答】①由函数图象,得a=120÷3=40故①正确,

②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1. ∴甲车维修的时间为1小时;故②正确,

③如图:∵甲车维修的时间是1小时,∴B(4,120). ∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达. ∴E(5,240).∴乙行驶的速度为:240÷3=80, ∴乙返回的时间为:240÷80=3,∴F(8,0).

设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得

∴y1=80t﹣200,y2=﹣80t+0,

当y1=y2时,80t﹣200=﹣80t+0,t=5.25.

∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确, ④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km, ∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.

5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶 2h,

解得,,

并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h) 的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或正确的个数是( ) A.1 B.2

C.3

小时,两车恰好相距50km.

D.4

第2页(共15页)

【解答】(1)由题意,得m=1.5﹣0.5=1.

120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;

(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;

(3)设甲车休息之后行驶路程(ykm)与时间(xh)的函数关系式为y=kx+b,

由题意,得

解得:

∴y=40x﹣20,

根据图形得知:甲、乙两车中先到达B地的是乙车, 把y=260代入y=40x﹣20得,x=7,

∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h, ∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确; (4)当1.5<x≤7时,y=40x﹣20.

设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得

解得:

∴y=80x﹣160.

当40x﹣20﹣50=80x﹣160时,解得:x=. 当40x﹣20+50=80x﹣160时,解得:x=所以乙车行驶或二.填空题(共3小题)

6.如图,已知A1,A2,A3,…,An是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1,A2,A3,…,An+1作x轴的垂线交一次函数

的图象于点B1,

.∴﹣2=,

﹣2=

小时,两车恰好相距50km,故(4)错误.故选(C)

B2,B3,…,Bn+1,连接A1B2,B1A2,A2B3,B2A3,…,AnBn+1,BnAn+1依次产生交点P1,P2,P3,…,Pn,则Pn的坐标是 (n+

) .

第3页(共15页)

【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,

又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….

由此可推出An,Bn,An+1,Bn+1四点的坐标为(n,0),(n,), (n+1,0),(n+1,

).

所以得直线AnBn+1和An+1Bn的直线方程分别为

解得

7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为 ℃.

故答案为:(n+

).

8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆 km.

第4页(共15页)

【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A

地停留20分钟后,以zkm/h的速度返回重庆,

则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①

根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,② 根据甲列车往返两地的路程相等,可得(由①②③,可得x=120,y=200,z=180, ∴重庆到A地的路程为3×200=600(km), ∴乙列车到达A地的时间为600÷120=5(h),

∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km), 故答案为:300. 三.解答题(共10小题)

9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算); 骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算). 根据此收费标准,解决下列问题: (1)连续骑行5h,应付费多少元?

(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为 ; (3)若某人连续骑行后付费24元,求其连续骑行时长的范围. 【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;

(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;

(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.

第5页(共15页)

﹣3﹣)z=3y,③

10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.

根据以上信息,解答下列问题:

(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的

车所需费用为y2元,分别求出y1,y2关于x的函数表达式; (2)当租车时间为多少小时时,两种方案所需费用相同;

(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算. 【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,

∴y1=15x+80(x≥0);

设y2=k2x,把(1,30)代入,可得30=k2,即k2=30, ∴y2=30x(x≥0);

(2)当y1=y2时,15x+80=30x,解得x=

答:当租车时间为

小时时,两种方案所需费用相同;

;当y1>y2时,15x+80>30x,

(3)由(2)知:当y1=y2时,x=

解得x<

当y1<y2时,15x+80<30x,解得x>∴当租车时间为当租车时间小于当租车时间大于

小时,任意选择其中的一个方案; 小时,选择方案二合算; 小时,选择方案一合算.

第6页(共15页)

11.如表给出A、B、C三种上网的收费方式:

收费方式 A B C

月使用费/元

30 50 120

包时上网时间/小时

25 50 不限时

超时费/(元/分钟)

0.05 0.05

(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);

(2)给出的坐标系中画出这三个函数的图象简图; (3)结合函数图象,直接写出选择哪种上网方式更合算.

【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.

【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25); 收费方式B:y=50 (0≤x≤50),y=50+3x (x>50); 收费方式C:y=120 (0≤x); (2)函数图象如图:

(3)由图象可知,上网方式C更合算。

12.某化工厂生产一种产品,每件产品的售价50元,成本价为25元.在生产过程中,平均每生产一件产品有0.5m3的污水排出,为净化环境,工厂设计了如下两种方案对污水进行处理,并准确实施:

为案A:工厂将污水先进行处理后再排出,每处理1m3污水所用原料费为2元,每月排污设备的损耗费为3000元.

方案B:工厂将污水排到污水处理厂统一处理,每处理1m3污水需付14元排污费.

第7页(共15页)

(1)设工厂每月生产x件产品,每月利润为y元,分别求出A、B两中方案处理污水时,y与x的函数关系式.

(2)当工厂每月生产量为6000件时,作为厂长在不污染环境又节约资金的前提下,应选用哪种污水的处理方案?请通过计算说明理由. (3)求:一般的,每月产量在什么范围内,适合选用方案A.

【分析】(1)每件产品的售价50元,共x件,则总收入为50x,成本费为25x,产生的污水总量为0.5x,根据利润=总收入﹣总支出即可得到y与x的关系; (2)根据(1)中得到的x与y的关系,将x=6000代入,比较y的大小即可得采用哪种方案工厂利润高;

(3)当两种方案所得利润相等时,所得的x值即为临界点,如此可根据产量选择适合的方案.

【解答】(1)采用方案A时的总利润为:y1=50x﹣25x﹣(0.5x×2+3000)=24x﹣3000; 采用方案B是的总利润为:y2=50x﹣25x﹣0.5x×14=18x; (2)x=6000,当采用第一种方案是工厂利润为: y1=24×6000﹣3000=114000﹣3000=111000;

当采用方案B时工厂利润为:y2=18×6000=108000; y1>y2所以工厂采用方案A. (3)假设y1=y2,即方案A和方案B所产生的利润一样多。 则有:24x﹣3000=18x,解得x=500

所以当 x>500时,y1>y2 ; 即每月产量在500件以上时,适合选用方案A. 13.甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲比乙先出发1小时.设甲出发x小时后,甲、乙两人离A地的距离分别为y甲、y乙,并且y甲、y乙与x之间的函数图象如图所示.

(1)A、B两地之间的距离是 km,甲的速度是 km/h; (2)当1≤x≤5时,求y乙关于x的函数解析式;

(3)求甲、乙两人之间的距离不超过20km时,x的取值范围.

第8页(共15页)

【分析】(1)可由函数图象直接解得;

(2)可设一次函数的一般关系式,代入两个点(1,0)和(5,360)从而解得; (3)有图象可知,甲乙不超过20km的情况有三种,起点、终点、相遇点,然后分别列出不等式求解.

【解答】(1)依函数图象可知,y甲、y乙的最大值均为:360km,所以AB两地的距离为360km.

甲行驶了6小时,所以甲的行驶速度是:360÷6=60(km/h);故而答案为:360 60.

(2)设y乙=kx+b则 解得

∴当1≤x≤5时,y乙关于x的函数解析式:y乙=90k﹣90 (3)当0≤x≤1时,60x≤20,解得X≤ 当1≤x≤5 时|60x﹣(90x﹣90)|≤20 解得 当5≤x≤6 时360﹣60x≤20 解得

≤x≤6

≤x≤

≤x≤

∴甲、乙两人之间的距离不超过20km时,x的取值范围是:0≤x 或 或

≤x≤6.

14.一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系. 根据图象进行以下探究:

(1)西宁到西安两地相距 千米,两车出发后 小时相遇;普通列车到达终点共需 小时,普通列车的速度是 千米/小时. (2)求动车的速度;

(3)普通列车行驶t小时后,动车的达终点西宁,求此时普通列车还需行驶多少千米到达西安?

第9页(共15页)

【分析】(1)由x=0时y=1000及x=3时y=0的实际意义可得答案;根据x=12时的实际意义可得,由速度=路程÷时间,可得答案;

(2)设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列出3小时行驶的路程=1000”列方程求解可得;

(3)先求出t小时普通列车行驶的路程,继而可得答案.

【解答】(1)由x=0时,y=1000知,西宁到西安两地相距1000千米, 由x=3时,y=0知,两车出发后3小时相遇,

由图象知x=t时,动车到达西宁,∴x=12时,普通列车到达西安, 即普通列车到达终点共需12小时,∴普通列车的速度是故答案为:1000,3;12,

=

千米/小时,

(2)设动车的速度为x千米/小时, 根据题意,得:3x+3×

=1000,解得:x=250,

答:动车的速度为250千米/小时;

(3)∵t=

=4(小时),∴4×

=

(千米),∴1000﹣

=

(千米),

∴此时普通列车还需行驶千米到达西安.

15.如图所示,直线l1的解析式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A(4,0)、B(3,﹣1.5),直线l1、l2交于点C. (1)求点D的坐标和直线l2的解析式; (2)求△ADC的面积;

(3)在直线l2上存在异于点C的另一点P,使得S△ADP=2S△ADC,请直接写出点P的坐标.

第10页(共15页)

解答即可得到直线l2的解析式;

【分析】(1)把y=0代入y=﹣3x+3解答即可得到点D的坐标;利用待定系数法

(2)根据方程组解得点C的坐标,再根据三角形的面积公式,即可得到△ADC的面积;

(3)根据直线l1的解析式y=﹣3x+3求得D(1,0),解方程组得到C(2,﹣3),设P(m,m﹣6),根据S△ADP=2S△ACD列方程即可得到结论. 【解答】(1)把y=0代入y=﹣3x+3,可得:0=﹣3x+3,解得:x=1, 所以D点坐标为(1,0),

设直线l2的解析式为y=kx+b,把A(4,0)、B(3,﹣)代入得

解得

.所以直线l2的解析式为y=x﹣6;

(2)解方程组得,所以C点坐标为(2,﹣3),

所以△ADC的面积=×(4﹣1)×3=4.5;

(3)设P(m,m﹣6),∵S△ADP=2S△ACD,∴×3×|m﹣6|=2×4.5, 解得m=8或0,∴点P的坐标(8,6)或(0,﹣6).

16.如图,图中的曲线表示小华星期天骑自行车外出离家的距离与时间的关系,小华八点离开家,十四点回到家,根据这个曲线图,请回答下列问题: (1)到达离家最远的地方是几点?离家多远? (2)何时开始第一次休息?休息多长时间?

(3)小华在往返全程中,在什么时间范围内平均速度最快?最快速度是多少?

第11页(共15页)

(4)小华何时离家21千米?(写出计算过程)

【分析】(1)图中的点的横坐标表示时间,所以点E点距离家最远,横坐标表示距家最远的时间,纵坐标表示离家的距离; (2)休息是路程不在随时间的增加而增加; (3)往返全程中回来时候平均速度最快;

(4)求得线段DE所在直线的解析式,令y=21解得x的值就是离家21千米的相应的时间.

【解答】(1)到达离家最远的地方是11点,此时距离家30千米;

(2)到距家17千米的地方开始休息,休息了(10﹣9.5)=0.5小时;

(3)小华在返回的途中最快,平均速度为30÷(14﹣12)=15千米/小时;

(4)由图象可知点D、E的坐标分别为(10,17),(11,30),F、G的坐标分别为(12,30),(14,0),

∴设直线DE所在直线的解析式为y=kx+b,直线FG的解析式为y=ax+c, ∴

,解得:

∴解析式为y=13x﹣113,y=﹣15x+210, 令y=21,解得:x=

,∴第

时离家21千米.

17.如图①,A,D分别在x轴,y轴上,AB∥y轴,DC∥x轴.点P从点D出发,以1个单位长度/秒的速度,沿五边形OABCD的边匀速运动一周,若顺次连接P,O,D三点所围成的三角形的面积为S,点P运动的时间为t秒,已知S与t之间

第12页(共15页)

的函数关系如图②中折线OEFGHM所示.

(1)图①中点B的坐标为 ;点C的坐标为 ; (2)求图②中GH所在直线的解析式;

(3)是否存在点P,使△OCP的面积为五边形OABCD的面积的?若存在,请求出点P的坐标;若不存在,请说明理由.

【分析】(1)由于点P从点D出发,根据图②中S与t的图象可知,点P按顺时针方向沿五边形OABCD的边作匀速运动,又运动速度为1个单位长度/秒,所以DC=5,BC=5,AB=2,AO=8,OD=6,由此得到点C的坐标,由图②20﹣12=8,得出B的坐标;

(2)先求出点G坐标,再用待定系数法即可求出;

(3)先求出五边形OABCD的面积和△OCP的面积,再分类讨论三种情况: ①当P在CD上时,CP=5﹣t,由△OCP的面积得出t的值,即可得出P的坐标;

②当P在OA上时,设P(x,0),由△OCP的面积得出x的值,即可得出P的坐标;

③当P在BC上时,过点(点(

,0)作OC平行线l交BC于P,求出直线OC和过

,0)与OC平行的直线l以及直线BC的解析式,l与BC的交点即为P,

解方程组即可.

【解答】(1)由题意,可知点P的运动路线是:D→C→B→A→O→D, DC=5,BC=10﹣5=5,AB=12﹣10=2,AO=20﹣12=8,OD=26﹣20=6, ∴点C的坐标为(5,6);

由图②:20﹣12=8,∴点B的坐标为(8,2); (2)设GH的解析式为y=kx+b,

∵当点P运动到B时,S=×6×8=24,∴G(12,24),

第13页(共15页)

把点G(12,24),H(20,0)代入得:∴图②中GH所在直线的解析式为:y=﹣3x+60;

,解得:k=﹣3,b=60,

(3)存在点P,使△OCP的面积为五边形OABCD的面积的;分三种情况: 作CM⊥OA于M,如图①所示:

五边形OABCD的面积=矩形ODCM的面积+梯形ABCM的面积 =5×6+(2+6)(8﹣5)=42,△OCP的面积=×42=14, 分三种情况:

①由图象得:当P在CD上时,CP=5﹣t,△OCP的面积=(5﹣t)×6=14, 解得:t=,∴P(,6);

②由①得,当P在OA上时,设P(x,0),则△OCP的面积=x×6=14, 解得:x=

,∴P(

,0);

,0)作OC平行线l交BC于P;如图①所示:

③当P在BC上时,过点(

∵直线OC为y=x,设直线l的解析式为y=x+b, 把点(

,0)代入得:b=﹣

,∴l的解析式为:y=x﹣

设直线BC的解析式为y=ax+c,把B(8,2),C(5,6)代入得:解得:k=﹣,b=

,∴直线BC的解析式为:y=﹣x+

解方程组得:,

∴P(,);当P在OD上时,5OP=14×2,OP=5.6,∴P(0,5.6)

,0),或(

),或(0.5.6).

综上所述:点P的坐标为(,6),或(

第14页(共15页)

第15页(共15页)

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务