您好,欢迎来到微智科技网。
搜索
您的当前位置:首页上海市松江区2013-2014学年七年级数学下学期期末考试试题

上海市松江区2013-2014学年七年级数学下学期期末考试试题

来源:微智科技网
„„„„„„密○„„„„„„„„„„„„„„„封○„„„„„„„„„„„„„„„○线„„„„„„„„„„„ 松江区2013-2014学年度第二学期期末考试

七年级数学

题号 得分 一、填空题(本大题共14题,每小题2分,满分28分)

一 二 三 四 总分 学校:_________________________ 班级 姓名:_______________ 学号:____________ (完卷时间90分钟,满分100分)

1.的平方根是 .

2.38= . 3.计算:16= .

4.比较大小:5 2(填“>”、“<”或“=”).

5.地球半径约为00000米,用科学记数法保留三个有效数字可表示为 米. 6.在数轴上,如果点A、点B所对应的数分别为3、2,那么A、B两点的距离

12AB= .

7.点P(a,b)在第四象限,则点P到x轴的距离是 .

8.三角形的两边长分别为4和5,那么第三边a的取值范围是 . 9.如图所示,AB∥CD,AD、BC相交于O,若∠A=∠COD=66°,则∠C= 度. 10.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为 . 11.如图,在△ABC中,要使DE∥CB,你认为应该添加的一个条件是 .

12.在平面直角坐标系中,将点A(a,b)向左平移2个单位长度,再向上平移5个单位长度,得到

对应点A1的坐标是 .

13.已知锐角三角形ABC是一个等腰三角形,其中两个内角度数之比为1:4,则这个等腰三角形顶

角的度数为 .

14.如图,△ABC 中,AB=AC,AD是∠BAC的平分线,若△ABD的周长为12,△ABC的周长为16,则

AD的长为__________.

C

第9题图

A O

B D B A A E C B

D

第14题图

D

C

第11题图

二、选择题(本大题共4题,每小题3分,满分12分)(每题只有一个选项正确)

1

15.在3.14,6,31,2,(A)1;

1这五个数中,无理数的个数是„„„„„„„„„( ) 6(C)3; (D)4.

(B)2;

16.下列四个算式正确的是„„„„„„„„„„„„„„„„„„„„„„„„„( ) (A)(C)33=6; (B)233=2;

49 49;

(D)4333=1.

17.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN( ) (A)∠M=∠N; (B)AB=CD;

(C)AM=CN; (D)AM∥CN.

18.如图,在三角形ABC中,BC>BA,在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连

结PC,若△ABC的面积为4cm2,则△BPC的面积为„„„„„„( ) (A)0.5cm2; (B) 1cm2;

M

A

C B

D

第17题图

(C)1.5cm2; (D)2cm2.

A N P B

第18题图

D C

三、简答题(本大题共5题,每小题6分,满分30分) 19.计算:(2)(1)()3279. 解:

20.利用幂的性质进行计算:616862 解:

2

2013121.如图,点P在CD上,已知∠BAP+∠APD=180°,∠1=∠2,请填写AE∥PF的理由. 解:因为∠BAP+∠APD=180°( )

∠APC+∠APD=180°( )

所以∠BAP=∠APC ( ) 又∠1=∠2 ( )

所以∠BAP-∠1=∠APC-∠2 ( ) 即∠EAP=∠APF

所以AE∥PF ( )

A 1 E F 2 C

P

(第21题图)

B D

22.已知:如图,直线AB与直线DE相交于点C,CF平分∠BCD,∠ACD=26°,求∠BCE和∠BCF的度数. 解:

23.已知:如图,E、F为BC上的点,BF=CE,点A、D分别在BC的两侧,且AE∥DF,AE=DF. 说明AB=DC的理由. 解:

A

C

E

(第22题图)

F

DB

AEF(第23题图) B

CD3

四、解答题(本大题共4小题,24—26题每题7分,27题9分,满分30分) 24.在直角坐标平面内,已知点A(3,0)、B(2,3),点B关于原点对称点为C. (1)写出C点的坐标: (2)求△ABC的面积. 解:

25.如图,在△ABC中,∠ABC与∠ACB的角平分线相交于点O. (1)若∠A = 80°,求∠BOC的度数;

(2)过点O作DE∥BC交AB于D,交AC于E,若AB =4,AC=3,求△ADE周长. 解: A

DO E B

(第25题图)

C

4

26.如图,△ABC是等边三角形,P是AB上一点,Q是BC延长线上一点,AP=CQ. 联结PQ交AC于D点.过P作PE∥BC,交AC于E点. (1)说明DE=DC的理由;

A (2)过点P作PF⊥AC于F,说明DF1AC的理由F 2. P E 解: D B

(第26题图)

C Q

27.在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于点D. (1)如图1,过点C作 CF⊥AD于F,延长CF交AB于点E.联结DE. ① 说明AE=AC的理由; ② 说明BE=DE的理由;

(2)如图2,过点B作直线BM⊥AD交AD延长线于M,交AC延长线于点N.说明CD=CN的理由. A

A

E F B

B

DC

D

C

(第27题图1)

M

(第27题图2)

N 解:

5

2013-2014学年第二学期期末考试七年级数学参及评分标准

1.8; 2.-2; 3.4; 4.>; 5.6.4010; 6.32; 7.-b; 8.1<a<9; 9.48; 10.(2,0) ; 11.∠DEB=∠EBC等(不唯一); 12.(a-2,b+5); 13.20°; 14.4. 二、选择题(本大题共4题,每题3分,满分共12分) 15.B; 16.B; 17.C; 18.D

三、简答题(本大题共5题,每小题6分,满分30分) 19.计算(写出计算过程): 20.利用幂的性质进行计算(写出计算过程): 661(2)(1)()132793 20解:原式=2-133-3 „„„„„4分 =4. „„„„„„„„„„„2分 16862 233216解:原式=222 „„„„„3分 =2231-326 „„„„„„„1分 =2 „„„„„„„„„1分 =4. „„„„„„„„„1分 22.解:∵∠ACD=∠BCE ,∠ACD=26°, ∴∠BCE=26°..„„„„„„„„„2分 ∵∠ACD+∠BCD=180°, ∴∠BCD=180°-26°=154°. „„„2分 ∵CF平分∠BCD, ∴∠BCF= 23. 解:∵AE∥DF, ∴∠AEB=∠DFC. „„„„„1分 ∵BF=CE, ∴BF+EF=CE+EF. 即BE=CF.„„„„„„„„„„1分 在△ABE和△DCF中, 21∠BCD=77°.„„„„„2分 2AEDFAEBDFC „„„„„„„2分 BECF∴△ABE≌△DCF .„„„„„„„1分 ∴AB=DC.„„„„„„„„„„1分 24.解:(1)C(-2,-3) „„„„„„„„„„„„„„„„„„„„„„„„„2分

6

(2)S1△AOB=23392,„„„„„„„„„„„„„„„„„„„2分 S=12339△AOC2,„„„„„„„„„„„„„„„„„„„„2分

∴S△ABC= S△AOB +S△AOC = 9.„„„„„„„„„„„„„„„„„„„1分 25. 解:(1) (2)∵BO平分∠ABC, ∵∠ABC+∠ACB+∠A=180°,∠A = 80°, ∴∠DBO=∠OBC. ∴∠ABC+∠ACB=100°. „„„„„„„„1分 ∵DE∥BC, ∵∠ABC与∠ACB的角平分线相交于点O, ∴∠DOB=∠OBC. ∴∠OBC =1∴∠DBO =∠DOB. 2∠ABC,∠OCB=12∠ACB. ∴BD=OD.„„„„„„„„2分 ∴∠OBC+∠OCB=112(∠ABC+2∠ACB) 同理CE=OE. „„„„„„„„„1分 =50°. „„„„„„„1分 ∴△AED的周长=AD+DE+AE ∵∠OBC +∠OCB +∠BOC =180°, = AD+OD+OE+AE ∴∠BOC=180°-50°=130°. „„„„„„1 = AD+BD+CE+AE 分 =AB+AC =4+3=7.„„„1分 26.(1)解:∵PE∥BC, (2)∵AP=PE,PF⊥AC, ∴∠AEP=∠ACB,∠EPD=∠Q. „„„1分 1∵△ABC为等边三角形, ∴EF=2AE. „„„„„„„„1分 ∴∠A=∠ACB=60°. „„„„„„„„1分 ∵DE=DC,且DE+DC=CE, ∴∠A=∠AEP. ∴DE=1∴AP=PE. 2CE. „„„„„„„1分 又∵AP=CQ, ∴DF=EF+DE ∴PE=CQ. „„„„„„„„„„„„„1分 =11在△EDP和△CDQ中, 2AE +2CE 1EDPCDQ=EPDQ 2(AE+CE) PECQ= 1∴△EDP≌△CDQ.(A.A.S) 2AC. „„„„„„„„1分 ∴DE=DC.„„„„„„„„„„„„„1分 7

27. 解:(1) ②在△AED和△ACD中, ①∵AD平分∠BAC, ∴∠EAD=∠CAD. AEACEADCAD ∵CF⊥AD, ADAD∴∠AFE=∠AFC=90°. ∴△AED≌△ACD.(S.A.S) 在△AEF和△ACF中, ∴∠AED=∠ACB. EADCAD∵∠ACB=2∠B ADAD ∴∠AED=2∠B. AFEAFC又∵∠AED=∠B+∠EDB ∴△AEF≌△ACF.(A.S.A) ∴∠B=∠EDB. ∴AE=AC.„„„„„„„„„„3分 ∴BE=DE.„„„„„„„„„3分 (2)联结DN 易证△AMB≌△AMN.(A.S.A) „„„„„„„„„„„„„„„„„„„„„„1分 得AB=AN. 再证△ABD≌△AND.(S.A.S),

得∠ABD=∠AND.„„„„„„„„„„„„„„„„„„„„„„„„„„„„1分 ∵∠ACB=2∠B , 即∠ACB=2∠ABD ∴∠ACB=2∠AND. 又∵∠ACB =∠CDN+∠AND ∴∠CDN=∠AND. ∴CD=CN.„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1分

8

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务