1; (II)是否存在实数a,b(a明理由.(III)若存在实数a,b(a参及评分标准
一、填空题
1.{x|x1} 2.(2,) 3.8 4.4 5.9 6.4 7. 9. 48 10.42
二、选择题
11.D 12.C 13.B 14.D 15. D 16. A 三、解答题 17. 解:(1) a+b+c=
5213 8. 2447; „„„„„„„„„„2分 2133当x=-1时x2+=2x2+2x+=,„„„„„„„„„„4分
222
3 „„„„„„„„„„„„„6分 235(2)由(1)知a-b+c= ∴c=-a,b=1 „„„„„„„„„„„„„„„8分
22所以f(-1)= ∴x2+
153≤ax2+x+-a≤2x2+2x+恒成立, 即(a1)x2x2a0恒成立„„10分
2222(2a)xx1a0a10从而有14(a1)(2a)0,„„„„„„„„„12分
2a0∴a=
33 ∴存在f(x)= x2+x+1满足条件. „„„„„„„„„14分 2218. 解:设AN的长为x米(x >2), ∵
|DN||DC|3x,∴|AM|=„„2分 x2|AN||AM|3x2∴SAMPN=|AN|•|AM|=
x23x2(I)由SAMPN > 32 得 > 32 ,„„„„„„„„„„„4分
x2
2∵x >2,∴3x32x0,即(3x-8)(x-8)> 0
∴2x88 或 x8,即AN长的取值范围是(2,)(8,+)„„„6分 333x23(x2)212(x2)12123(x2)12 (II)yx2x2x223(x2)121224x2 „„„„„„„„„„„8分
123x2,即x=4时,y=当且仅当3(x2)取得最小值. x2x2即SAMPN取得最小值24(平方米)„„„„„„„„„„„„„10分
3x26x(x2)3x23(xx4)(Ⅲ)令y=,则y′= „„„„12分 22x2(x2)(x2)3x2∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,
x23x2∴函数y=在[6,+∞]上也单调递增„„„„„„„„„„„14分
x23x2∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).„„„16分
x2注:对于第(Ⅲ)问学生直接利用对勾函数单调性,而没有加以证明的,得2分. 19. 解:(Ⅰ)当a4时,f(x)x|x4|2x3
(1)2x4时,f(x)x(4x)2x3(x3)26„„„2分
当x2时,f(x)min5;当x3时,f(x)max6 „„„„4分 (2)当4x5时,f(x)x(x4)2x3(x1)24
当x4时,f(x)min5;当x5时,f(x)max12 „„„„6分 综上所述,当x2或4时,f(x)min5;当x5时,f(x)max12„„8分
a22(a2)2(x)3,xax2(2a)x3,xa24(Ⅱ)f(x)2„12分 2x(2a)x3,xa(xa2)2(a2)3,xa24a2a2f(x)在R上恒为增函数的充要条件是,„„„„„„„„14分
a2a2解得2a2
即当2a2时,f(x)在R上恒为增函数„„„„„„„„„„„16分 20. 解(1)由f(2)=1得2a+b=2,又x=0一定是方程所以
x=x的解,
axb1=1无解或有解为0,„„„„„„„„„„„„4分
axb若无解,则ax+b=1无解,得a=0,矛盾; 若有解为0,则b=1,所以a=(2)f(x)=
1. „„„„„„„„„„8分 22x,设存在常数m,使得对定义域中任意的x,f(x)+f(m–x)=4恒成立, x22m取x=0,则f(0)+f(m–0)=4,即=4,m= –4(必要性),„„„„„„12分
m22x2(4x)又m= –4时,f(x)+f(–4–x)==„„=4成立(充分性) , x24x2所以存在常数m= –4,使得对定义域中任意的x,f(x)+f(m–x)=4恒成立,„„„16分
11,x1,x21.解:(I) ∵x>0,∴f(x)
11,0x1.x∴f(x)在(0,1)上为减函数,在(1,)上是增函数.
11由0ab11即2.∴2ab=a+b>2ab.„„„„„„„„„„„„„„3分 ab故ab1,即ab>1.„„„„„„„„„„„„„„4分(II)不存在满足条件的实数a,b.
若存在满足条件的实数a,b,使得函数y=f(x)11的定义域、值域都是[a,b], x
11,x1,x则a>0. 而f(x)
11,0x1.x1①当a,b(0,1)时,f(x)1在(0,1)上为减函数.
x11b,f(a)b,a故 即 解得 a=b. f(b)a.11a.b故此时不存在适合条件的实数a,b.„„„„„„„„„„„„6分 ②当a,b[1,)时,f(x)11在(1,)上是增函数. x11a,f(a)a,a故 即
1f(b)b.1b.b2此时a,b是方程xx10的根,此方程无实根.
故此时不存在适合条件的实数a,b.„„„„„„„„„„„„8分 ③当a(0,1),b[1,)时,由于1[a,b],而f(1)0[a,b],
故此时不存在适合条件的实数a,b.
综上可知,不存在适合条件的实数a,b.„„„„„„„„„„„„10分 (III)若存在实数a,b(a0,m>0.
11mb,a① 当a,b(0,1)时,由于f(x)在(0,1)上是减函数,故.此时刻得a,b异号,不符合题意,所以a,
11ma.bb不存在. „„„„„„„„„„„„12分
② 当a(0,1),b[1,)时,由(II)知0在值域内,值域不可能是[ma,mb],所以a,b不存在. 故只有a,b[1,).„„„„„„„„„„„„14分
1在[1,)上是增函数, x11ma,f(a)ma,a2 ∴ 即 所以b是方程mxx10的两个根.
f(b)mb.11mb.b2即关于x的方程mxx10有两个大于1的实根.„„„„„„„„16分
11设这两个根为x1,x2.则x1+x2=,x1·x2=.
mm0,14m0,1∴(x11)(x21)0, 即 1 解得 0m.
420.(x1)(x1)0.m211 故m的取值范围是0m.„„„„„„„„„„„„„„„„18分
4∵f(x)1