ContentslistsavailableatSciVerseScienceDirect
SensorsandActuatorsB:Chemical
journalhomepage:www.elsevier.com/locate/snb
Enhancedacetonegas-sensingperformanceofLa2O3-dopedflowerlikeZnOstructurecomposedofnanorods
Jian-QunHea,JingYinb,DongLiua,Le-XiZhanga,Feng-ShiCaia,Li-JianBiea,c,∗
a
SchoolofMaterialsScienceandEngineering,TianjinUniversityofTechnology,Tianjin300384,China
SchoolofEnvironmentalScienceandSafetyEngineering,TianjinUniversityofTechnology,Tianjin300384,Chinac
TianjinKeyLabforPhotoelectricMaterials&Devices,TianjinUniversityofTechnology,Tianjin300384,China
b
article
info
abstract
Articlehistory:
Received21February2012
Receivedinrevisedform20February2013Accepted21February2013Available online 1 March 2013
Keywords:Zincoxide
Co-precipitationFlowerlikeLa2O3-dopedGas-sensing
FlowerlikeZnOnanostructurescomposedofnanorodsweresynthesizedbyco-precipitationmethodusingZn(NO3)2·6H2Oand(CH2)6N4asreactants,polyethyleneglycol400assurfactant.La2O3wasdispersedontotheobtainedZnOwithacontentof0.5–2.0wt%toenhancethegas-sensingproperty.Gas-sensingresultsoftheLa2O3-dopedZnOtoethanol,acetone,ammoniaandformaldehyde,respectively,revealthatresponseofLa2O3-dopedZnOtoaspecifiedtestgasishigherthanthatofnoLa2O3-doped.Responseof1.0wt%La2O3-dopedZnOto200ppmacetonereaches54.1attheworkingtemperatureof350◦C,andtheresponsetimeisonly8s,implyingthepotentialfordetectionoflowgasconcentration.
© 2013 Elsevier B.V. All rights reserved.
1.Introduction
Asthemostimportantfunctionaloxideswithadirectwidebandgap(3.37eV)andlargeexcitationbindingenergy(60meV)[1],ZnOhasbeenwidelyusedingas-sensingapplicationduetoitsgoodresponsetoavarietyofreducingoroxidizinggases,lowcost,andbeingfriendlytotheenvironment[2–9].
ApplicationsofZnOorFe2O3semiconductingoxideinacetonegas-sensingwerereportedinliteratures[10,11],butneitherthegas-sensingresponse,northeresponseandrecoverytimeofthesensingdevicewasgoodenoughfordetectinglowgasconcen-tration.Reportsshowedthatthegas-sensingpropertycouldbeimprovedbymodificationofthesemiconductingoxideswithnoblemetals(Au,Pt,Pd,etc.)orrareearthoxide[12–16].
Althoughvarioustechniques,suchasmagnetronsputtering,plasmaenhancedchemicalvapourdeposition,spraypyrolysis,sol–gelprocess,vacuumevaporation,werereportedintheprepa-rationofZnOnanostructureswithanabundantvarietyofshapes[17–20],simpleco-precipitationmethodhasbeenattractingmuchattentioninthesynthesisofnovelZnOnanostructuresrecently.
Inthispaper,facilesynthesisofLa2O3dopedflowerlikeZnOhierarchicalstructurecomposedofnanorodsviaco-precipitationmethodisreported,andalsoarethegas-sensingpropertiesoftheobtainedZnOsamplestoethanol(C2H5OH),acetone(CH3COCH3),ammonia(NH3)andformaldehyde(HCHO).
2.Experimental
2.1.PreparationofLa2O3-dopedflowerlikeZnOnanostructures
Allthereagentsusedintheexperimentwereofanalyticalgradewithoutfurtherpurification.TheflowerlikeZnOnanostructureswerepreparedasfollows:
∗Correspondingauthorat:SchoolofMaterialsScienceandEngineering,TianjinUniversityofTechnology,Tianjin300384,China.Tel.:+862260215285;fax:+862260215285.
E-mailaddresses:ljbie@tjut.edu.cn,ljbie@pku.org.cn(L.-J.Bie).
(1)0.7ghexamethylenetetramine((CH2)6N4)weredissolvedin
100mldistilledwatertogetSolutionA,2.878gzincnitrate(Zn(NO3)2·6H2O)wasdissolvedin100mldistilledwatertogetSolutionB.ThenstoichiometricamountofSolutionAwasmixedwithSolutionBand0.004gpolyethyleneglycol400(PEG400)understirringfor10mintoformatransparentsolu-tion.
(2)Theobtainedsolutionwaskeptat95◦Cfor7h,resultinginthe
formationofwhitepowders.
(3)Thewhitepowderswerecollectedandwashedseveraltimes
withdistilledwaterandethanol,driedat80◦Cfor2h,thencalcinedat400◦Cfor2h,toformtheZnOnanostructures.
0925-4005/$–seefrontmatter© 2013 Elsevier B.V. All rights reserved.http://dx.doi.org/10.1016/j.snb.2013.02.085
J.-Q.Heetal./SensorsandActuatorsB182 (2013) 170–175
171
Fig.1.Schematicillustrationof(a)agassensorand(b)themeasuringelectriccircuitofgas-sensingcharacteristics.
(4)StoichiometricamountofLa2O3wasdispersedontotheas-preparedZnOsamplewithadequateamountofethanolundervigorousstirringinanultrasonicbathfor10min,thenthemix-turewasdriedinairat80◦C,annealedat400◦Cfor2htoobtaintheLa2O3-dopedsample.La2O3contentinZnOsamplewascal-culatedbytheweightratioofLa2O3toZnOintheexperiment.
2.2.Sensorfabricationandgas-sensingpropertymeasurement
Theas-preparedZnOsamplewasgrindedwithseveraldropsofterpineolinanagatemortar,andthentheformedslurrywascoatedontoanaluminatubewithadiameterof1mmandlengthof4mm,positionedwithapairofAuelectrodesandfourPtwiresonbothendsofthetube(Fig.1a).ANi–Cralloycoilinsidethetubewasemployedasaheatertoadjusttheworkingtemperaturebytuningtheheatingvoltage,asalinearcorrelationexistsbetweentheheatingvoltageandtheworkingtemperature.
Astationarystategasdistributionmethodwasusedforthetestofgas-sensingproperties.Gas-sensingtestswereperformedusingaWS-60Asystem(ZhengzhouWinsenElectronicsTechnologyCo.Ltd.,China).Aschematicillustrationofthegas-sensingmeasure-mentisshowninFig.1b.Inthemeasuringelectriccircuitofgassensor,aloadresistorisconnectedinserieswithagassensor.ThecircuitvoltageVcis10V,andtheoutputvoltage(Vout)istheter-minalvoltageoftheloadresistorRl.TheworkingtemperatureofsensorcanbeadjustedbyvaryingtheheatingvoltageVh.Theresis-tanceofasensorinairortestgasismeasuredbymonitoringVout.Inordertoimprovethestabilityandrepeatability,thegas-sensingunitwasagedataheatingvoltageof5Vfor48hinairbeforethemeasurement.
Thesensorresponsetoatestgas,Sr,isdefinedas:
Sr=
RaR(1)
g
whereRaistheresistanceofasensorinair,andRgisthatinatestgas.
Theresponseandrecoverytimearedefinedasthetimeof90%totalresistancechangerequiredataspecifiedworkingtempera-ture.
2.3.Characterizationofthesamples
ThecrystalstructureofsampleswascharacterizedbyX-raydiffractmeter(XRD)(RigakuD/Max2500PC)withmonochroma-tizedCuK␣(=1.5418A)
˚incidentradiationusingatubevoltageandcurrentof40kVand150mA,respectively.XRDdatawascol-lectedatascanspeedof1◦/minwithastepof0.02◦.
Themorphologyofthesynthesizedsamplewasexaminedusingafield-emissionscanningelectronmicroscope(SEM)(JEOLJSM-6700F).
Thephotoluminescence(PL)measurementswerecarriedoutonaShimadzuRF-5301PCfluorescencespectrophotometerequippedwitha150Wxenonlampastheexcitationsource.
ThespecificsurfaceareasweremeasuredviatheBrunauer–Enmet–Teller(BET)methodusingaN2adsorption
at77Kaftertreatingthesamplesat200◦Cand10−4Pafor2husingaTristar-3000apparatus.
3.Resultsanddiscussion
3.1.XRDcharacterization
Fig.2showstheXRDpatternoftheLa2O3-dopedflowerlikeZnOsample.ThemaindiffractionpeakscanbeindexedasthewurtzitestructureZnOwitha=b=0.3253nm,c=0.5213nm,whichisingoodagreementwiththeJCPDSNo.36-1451.Fourdiffrac-tionpeaksofLa2O3canbeobserved,whichcanbeindexedasahexagonalstructurewitha=b=0.4039nm,c=0.03nm(JCPDSNo.83-1345).
3.2.Structureandmorphology
Fig.3showsthetypicalSEMimagesoftheas-preparedZnOhierarchicalstructuresandthefocusofoneflowerlikeZnOcluster,respectively.Ascanbeseen,themorphologyoftheZnOstruc-turesissimilaronlargescale.ThepreparedZnOstructuresusuallyexhibitsflowerlikeshape,composedofZnOnanorodswithadiam-eterof90nm,whichmightbesuitableforgas-sensingapplicationduetothesterichindrancetoaggregationandeasydiffusionforgasmolecules.
Fig.4showstheSEMimagesofLa2O3-dopedZnOstructureswithvariousLa2O3concentrations.ThemorphologyoftheLa2O3-dopedZnOnanostructuresisflowerlike,similarwithpureZnO,astheLa2O3dopingcontentis0.5wt%and1.0wt%,butagglomerationappearswhentheLa2O3contentreaches2.0wt%.
TheformationofflowerlikeZnOhierarchicalstructurecanbeattributedtoboththeactionofPEG400andthereactionkinetics.PEG400surfactantmoleculeisachainstructurewithhydropho-bicandhydrophilicgroup,whichmightformsphericalcoresinwater[21–23].OxygenatomsonthesurfaceofthesesphericalcoresmayattractZn2+cationstoformtheZnOcrystalseeds.Astheseedcrystalsgrow,ZnOnanorodswillbeformedintheco-precipitationprocess,resultingintheflowerlikenanostructures.AschematicillustrationofthesynthesisprocedureisshowninFig.5.
3.3.Gassensingproperties
Thegas-sensingresponsesofthepureandLa2O3-dopedflower-likeZnOstructuresto100ppmacetoneasafunctionoftheworkingtemperatureareshowninFig.6.ResponseofLa2O3-dopedZnO
Fig.2.TypicalXRDpatternsoftheLa2O3-dopedZnOsamples.
172J.-Q.Heetal./SensorsandActuatorsB182 (2013) 170–175
Fig.3.TypicalSEMimagesof(a)pureZnOhierarchicalstructuresand(b)focusofsingleflowerlikeZnOcluster.
sampleexhibitsarapidincrease,andreachesthemaximumattheworkingtemperatureof350◦C,sotheworkingtemperatureoftheLa2O3-dopedZnOnanostructuresischosenas350◦Cinthefollow-ingmeasurements.AscanbeseenfromFig.5,theresponseofZnOsamplewithLa2O3dopingconcentrationof1.0wt%La2O3hasamuchbiggerresponsethanothersamples,sosamplewith1.0wt%La2O3concentration(La2O3/ZnO)wasfocusedinthefollowingdis-cussion.
Fig.7showsthegas-sensingresponsesofthepureandLa2O3-dopedflowerlikeZnOnanostructuresat350◦Casafunctionofacetoneconcentration.TheresponseoftheLa2O3-dopedZnOsen-sorincreaseswiththeincreaseofacetoneconcentration,andresponseofLa2O3-dopedZnOstructureto200ppmacetoneat350◦Creaches54.1,whichisabout3timesthatofpureZnOsample.Fig.8(a)representsthedynamicvariationofresponsetoace-tonewithconcentrationsvaryingfrom10ppmto200ppm,theresponsetimeandrecoverytimeareabout9sand13swith10ppmacetone,11sand17swith200ppmacetone,respectively,revea-lingthathighandfastgasresponsecanbeachievedindetectinglowconcentrationacetoneusingtheflowerlikeLa2O3-dopedZnOnanostructuresassensingmaterial.
Thegas-sensingselectivityofZnOgassensorhasbeenmea-suredusingethanol(C2H5OH),ammonia(NH3)andformaldehyde(HCHO)withconcentrationof10,100and200ppm,respectively(Fig.9),showingthatLa2O3-dopedflowerlikeZnOstructureshasgoodselectivityforacetone.
3.4.Gas-sensingmechanism
seenfromFig.10,bothweakUVemissionpeak(∼390nm)andstrongvisibleemissionpeak(∼610nm)existinallthesamples.Theformerreferstotheintrinsictransitionbetweenthevalenceband(VB)andtheconductionband(CB),whilethelaterisusuallycausedbysurfacedefects.SupposethattheareaofUVpeak(SB)andvisiblepeak(SD)representpristineZnOandthequantityofsurfacedefects,respectively,thusthecontentsofstructuredefectcouldbecalculatedviatheratiooftheSD/SB.Throughcurvedecon-volution,eachPLspectrumcanbewell-fittedtothesuperpositionoftwoGaussiansub-peaksandareassignedtobandgapandsur-facedefectemission.Interestingly,ZnOdopedwith1.0wt%La2O3showsthehighestratiointhe4samplesasshownintheinsetofFig.10.Thisphenomenonisingoodaccordancewiththegas-sensingresultthat1.0wt%La2O3-dopedZnOexhibitsthelargestresponsevaluetoacetone.Therefore,itisreasonabletoexplaintheeffectofLa2O3dopingongas-sensingenhancementfromtheaspectofsurfacedefects.
Ontheotherhand,oxygensorptionalsoplaysanimportantroleinelectricaltransportpropertiesofZnOintheacetonesensingpro-cess.Theoxygenionosorptionremovesconductionelectrons,andlowerstheconductanceofZnO.
First,reactiveoxygenspeciessuchasO2−,O2−andO−areadsorbedontheZnOsurfaceathightemperatures.Itshouldbenotedthatthechemisorbedoxygenspeciesdependstronglyontemperature.Atlowtemperatures,O2−iscommonlychemisorbed;Athightemperatures,whileO2−disappearrapidly,O−andO2−arecommonlychemisorbed[25].Thereactioncanbedescribedasfollow[26]:
Itiswell-knownthatthegas-sensingresponseofmetaloxidesemiconductorsoriginatesfromthefluctuationsofelectronconcentrationinthecharge-depletionlayerinducedbythecon-sumptionofoxygenadsorbatesbythereactionwithtargetgasesinthetargetgasatmosphereandthenre-formationofchemisorbedoxygeninair.Accordingly,thevariationofacetonevaporresponsecanbeattributedtothedefectformationandchangeinspecificsurfaceareasresultedfromtheLa2O3dopingonZnOsurface.
Ontheonehand,theresponsevalueisnotdirectlyproportionaltotheLa2O3contentloaded,thustheZnOsurfaceregioninfluencedbyLa2O3shouldplayakeyroleinthegas-sensingimprovement.AfterLa2O3doping,someZn2+mightbesubstitutedbyLa3+cations,resultingintheincreaseofelectronsconcentrationinthedopedZnOsamples:
O2(gas)↔O2(adsorbed)
(3)(4)(5)
O2(adsorbed)+e−↔O2−
O2−+e−↔2O−
Asthereducingacetonevaporisintroducedintothetestcham-ber,theconductanceoftheZnOnanorodswillincreaseduetoexchangeofelectronsbetweentheionosorbedspeciesandZnO[27].Thereactionbetweenacetoneandionicoxygenspeciescanbedescribedas[26,28]:
CH3COCH3(gas)+O−→CH3CO+CH2+OH−+e−
(6)(7)
CH3COCH3(gas)+O−→CH3C+O+CH3O−+e−
CH3COCH3+O−(bulk)→CH3COOH+O(vacancies)
(8)(9)(10)
La2O3(s)−→2LaZn+2Ox0
ZnO•
+
1
O(g)+2e22
(2)
CH3C+O→C+H3+CO
Namely,incrementaloxygenmoleculescanbechemisorbedandthenionizedonZnOsurface,resultinginhigherresponse[24].Asausefultoolforcharacterizingsurfacedefects,roomtemperaturephotoluminescence(PL)measurementwascarriedout.Ascanbe
CO+O−→CO2+e−
ComparedwithZnOsample(b)inFig.8,theoveralldecreaseinsen-sorresistancecanbeobservedintheLa2O3-dopedsample(a).Asthedecreaseinsensorresistancebythebalancecontrolmayresult
J.-Q.Heetal./SensorsandActuatorsB182 (2013) 170–175
173
Fig.4.SEMimagesofLa2O3-dopedflowerlikeZnOhierarchicalstructureswithLa2O3dopingconcentrationof(a)0.5wt%,(b)1.0wt%and(c)2.0wt%.
Fig.5.SchematicillustrationofZnOsynthesisprocedure.
Fig.6.ResponseofthepureandLa2O3-dopedZnOstructuresto100ppmacetoneatdifferentworkingtemperatures.
Fig.7.ResponseofthepureandLa2O3-dopedZnOnanostructurestovariousace-toneconcentrations.
Fig.8.Dynamicresponsesofsamplestodifferentacetoneconcentrations(a)1.0wt%La2O3-dopedZnOand(b)pureZnO.
174J.-Q.Heetal./SensorsandActuatorsB182 (2013) 170–175
Fig.9.ResponseofLa2O3-dopedZnOnanostructuressensorstodifferentgases.
inadecreaseinresponsetoinflammablegasesinn-typesemicon-ductorgassensors,theobservedacetoneresponseenhancementshouldbeattributedtotheincreasedreactivityofacetonebytheLa2O3doping.
Accordingtothesurface-reaction-relatedgas-sensingmecha-nismmentionedabove,theresponsevaluesaredirectlyaffectedbythespecificsurfaceareasofsensingmaterials.Usually,largerspecificsurfaceareasleadtomuchhigherresponsevalues[29].ItisfoundthatthespecificsurfaceareasoftheZnOsampleschangedafterLa2O3doping,althoughtheirnanorodprofileandflowerlikestructurekeptalmostthesameasthatofpureZnO(Figs.3and4).ComparingwiththeBETsurfaceareaofpureZnO(6.40m2/g),thesurfaceareasofLa2O3-dopedZnOsamplesincrease,whichare10.07m2/g(0.5wt%La2O3),9.82m2/g(1.0wt%La2O3)and7.63m2/g(2.0wt%La2O3),respectively.ThemeasuredBETsur-faceareadecreasesasthedopingcontentofLa2O3increases.ItisclearthatallLa2O3-dopedZnOshowenhancedacetoneresponsesthanthatofpureZnOsample,whichisinaccordancewiththeirlargersurfaceareas,althoughanexactlinearrelationshipisnotobservedbetweenthesurfaceareasandtheirresponsevalues.ThisphenomenonrevealsthattheenhancedacetoneresponsecanbebenefitedfromtheincreasedsurfaceareasbyLa2O3-doping,whereas1.0wt%La2O3-dopedZnOdisplaysthehighestresponse
Fig.10.PLspectraofZnOloadedwithdifferentLa2O3contents,theinsetshowsrelationshipbetweenthedefectcontentsandLa2O3dopingcontents.
valueand0.5wt%La2O3-dopedZnOholdthelargestsurfaceareaimpliesthatthesurfaceareaplaysanimportantrolebutnotapreponderantoneontheresponseenhancement.
Inconclusion,theenhancedacetoneresponseofLa2O3-dopedZnOmightbeattributedtothecombinedactionsoftheaforemen-tionedfactors:formationofintrinsicdefectsandincreasedspecificsurfaceareasinducedbythedopingofLa2O3.Additionally,thecat-alyticactivityofrareearthoxide(La2O3inthiswork)mightalsodevotetotheincreasedacetoneresponse,sincetheycanacceleratethedehydrogenationandconsecutiveoxidationofhydrocarbons[30].
4.Conclusion
La2O3-dopedflowerlikeZnOnanostructurescomposedofnanorodscanbefabricatedviaco-precipitationmethodusingPEG400assurfactants.Gas-sensingpropertyoftheLa2O3-dopedZnOtotestgasisgreatlyenhancedcomparedwiththenoLa2O3-doped.Theresponseof1.0wt%La2O3-dopedZnOgassensorto10ppmacetonereaches7.6,andaresponseof54.1to200ppmacetoneisobtainedattheworkingtemperatureof350◦C,witharesponsetimeof8sonly,implyingthepotentialfordetectinglowgasconcentration.
Acknowledgments
ThisworkisfinanciallysupportedbyNationalNaturalSci-enceFoundationofChina(No.21271139),TianjinNaturalScienceFoundation(No.08JCZDJC18700).TheauthorswouldliketothankProfessorWei-PingHuangofNankaiUniversity(China)forhishelp-fuldiscussionregardingthegas-sensingmechanism.
References
[1]R.N.Viswanath,S.Ramasamy,R.Ramamoorthy,P.Jayavel,T.Nagarajan,Prepa-rationandcharacterizationofnanocrystallineZnObasedmaterialsforvaristorapplications,NanostructuredMaterials6(1995)993–996.
[2]A.R.Raju,C.N.R.Rao,Gas-sensingcharacteristicsofZnOandcopper-impregnatedZnO,SensorsandActuatorsB-Chemical3(1991)305–310.
[3]A.Jones,T.A.Jones,B.Mann,J.G.Firth,Theeffectofthephysicalformoftheoxide
ontheconductivitychangesproducedbyCH4,COandH2OonZnO,SensorsandActuatorsB-Chemical5(1984)75–78.
[4]D.F.Paraguay,M.Miki-Yoshida,J.Morales,J.Solis,L.W.Estrada,InfluenceofAl,
In,Cu,FeandSndopantsontheresponseofthinfilmZnOgassensortoethanolvapour,ThinSolidFilms373(2000)137–140.
[5]J.D.Choi,G.M.Choi,Electrical,COgassensingpropertiesoflayeredZnO–CuO
sensor,SensorsandActuatorsB-Chemical69(2000)120–126.
[6]A.Nemeth,E.Horvath,Z.Labadi,L.Fedak,I.Barsony,Singlestepdepositionof
differentmorphologyZnOgassensingfilms,SensorsandActuatorsB-Chemical127(2007)157–160.
[7]G.Sberveglieri,P.Nelli,S.Groppelli,F.Quaranta,A.Valentini,L.Vasanelli,
Oxygengassensingcharacteristicsatambientpressureofundopedandlithium-dopedZnO-sputteredthinfilms,MaterialsScienceandEngineeringBB7(1990)63–68.
[8]C.Baratto,G.Sberveglieri,A.Onischuk,B.Caruso,S.diStasio,Lowtemperature
selectiveNO2sensorsbynanostructuredfibresofZnO,SensorsandActuatorsB-Chemical100(2004)261–265.
[9]G.Sberveglieri,S.Groppelli,P.Nelli,F.Quaranta,A.Valentini,L.Vasanelli,Oxy-gengas-sensingcharacteristicsforZnO(Li)sputteredthinfilms,SensorsandActuatorsB-Chemical7(1992)747–751.
[10]S.C.Navale,V.Ravi,I.S.Mulla,InvestigationsonRudopedZnO:straincalcu-lationsandgassensingstudy,SensorsandActuatorsB-Chemical139(2009)466–470.
[11]Z.H.Jing,Synthesis,characterizationandgassensingpropertiesofundopedand
Zn-dopedgamma-Fe2O3-basedgassensors,MaterialsScienceandEngineeringA441(2006)176–180.
[12]P.T.Moseley,Newtrendsandfutureprospectsofthick-andthin-filmgassen-sors,SensorsandActuatorsB-Chemical3(1991)167–174.
[13]C.D.Lokhande,V.R.Shinde,T.P.Gujar,EnhancedresponseofporousZnO
nanobeadstowardsLPG:effectofPdsensitization,SensorsandActuatorsB-Chemical123(2007)701–706.
[14]J.F.Chang,H.H.Kuo,I.C.Leu,M.H.Hon,Theeffectsofthicknessandopera-tiontemperatureonZnO:AlthinfilmCOgassensor,SensorsandActuatorsB-Chemical84(2002)258–2.
J.-Q.Heetal./SensorsandActuatorsB182 (2013) 170–175
175
[15]Y.Zeng,Z.Lou,L.L.Wang,B.Zou,T.Zhang,W.T.Zheng,G.T.Zou,Enhanced
ammoniasensingperformancesofPd-sensitizedflowerlikeZnOnanostructure,SensorsandActuatorsB-Chemical156(2011)395–400.
[16]K.V.Gurav,P.R.Deshmukh,C.D.Lokhande,LPGsensingpropertiesofPd-sensitizedverticallyalignedZnOnanorods,SensorsandActuatorsB-Chemical151(2011)365–369.
[17]N.Koshizaki,T.Oyama,SensingcharacteristicsofZnO-basedNOxsensor,Sen-sorsandActuatorsB-Chemical66(2000)119.
[18]S.Major,A.Banerjee,K.L.Chopra,Opticalandelectronicpropertiesofzincoxide
filmspreparedbyspraypyrolysis,ThinSolidFilms125(1985)179–185.
[19]J.N.Zeng,J.K.Low,Z.M.Ren,T.Liew,Y.F.Lu,Effectofdepositionconditionson
opticalandelectricalpropertiesofZnOfilmspreparedbypulsedlaserdeposi-tion,AppliedSurfaceScience197–198(2002)362–367.
[20]J.H.Lee,K.H.Ko,B.O.Park,ElectricalandopticalpropertiesofZnOtransparent
conductingfilmsbythesol–gelmethod,JournalofCrystalGrowth247(2003)119–125.
[21]N.Naderi,N.Sharifi-Sanjani,B.Khayyat-Naderi,R.Faridi-Majidi,Preparation
oforganic–inorganicnanocompositeswithcore–shellstructurebyinorganicpowders,JournalofAppliedPolymerScience99(2006)2943–2950.
[22]A.Imhof,Preparationandcharacterizationoftitania-coatedpolystyrene
spheresandhollowtitaniashells,Langmuir17(2001)3579–3585.
[23]H.Zhang,D.Yang,Y.J.Ji,X.Y.Ma,J.Xu,D.L.Que,Lowtemperaturesynthesis
offlowerlikeZnOnanostructuresbycetyltrimethylammoniumbromide-assistedhydrothermalprocess,JournalofPhysicalChemistryB108(2004)3955–3958.
[24]N.Han,P.Hu,A.Zuo,D.Zhang,Y.Tian,Y.Chen,Photoluminescence
investigationonthegassensingpropertyofZnOnanorodspreparedbyplasma-enhancedCVDmethod,SensorsandActuatorsB-Chemical145(2010)114–119.[25]D.Kohl,Theroleofnoblemetalsinthechemistryofsolid-stategassensors,
SensorsandActuatorsB-Chemical1(1990)158–165.
[26]P.P.Sahay,Zincoxidethinfilmgassensorfordetectionofacetone,Journalof
MaterialsScience40(2005)4383–4385.
[27]B.L.Zhu,D.W.Zeng,J.Wu,W.L.Song,C.S.Xie,SynthesisandgassensitivityofIn-dopedZnOnanoparticles,JournalofMaterialsScience-MaterialsinElectronics14(2003)521–526.
[28]K.W.Kim,P.S.Cho,S.J.Kim,J.H.Lee,C.Y.Kang,J.S.Kim,S.J.Yoon,Theselec-tivedetectionofC2H5OHusingSnO2–ZnOthinfilmgassensorspreparedby
combinatorialsolutiondeposition,SensorsandActuatorsB-Chemical123(2007)318–324.
[29]G.J.Li,X.H.Zhang,S.Kawi,Relationshipsbetweensensitivity,catalyticactivity,
andsurfaceareasofSnO2gassensors,SensorsandActuatorsB-Chemical60(1990)–70.
[30]T.Jinkawa,G.Sakai,J.Tamaki,N.Miura,N.Yamazoe,Relationshipbetween
ethanolgassensitivityandsurfacecatalyticpropertyoftinoxidesensorsmod-ifiedwithacidicorbasicoxides,JournalofMolecularCatalysisA:Chemical155(2000)193–200.
Biographies
Jian-QunHeisapostgraduateworkingintheareaofgassensorsformasterdegreeatTianjinUniversityofTechnology.HeobtainedhisB.Sc.degreeinPhysicsfromLudongUniversityin2009.
JingYingraduatedfromLiaochengUniversityandreceivedherB.Sc.degreein19.Herresearchinterestsareinthegrowthoffunctionalcrystalmaterialsandthepreparationofnano-materials.
DongLiuisapostgraduateworkingintheareaofgassensorsformasterdegreeatTianjinUniversityofTechnology.HeobtainedhisB.Sc.degreeinEnvironmentalSciencefromNorthChinaUniversityin2010.
Le-XiZhangreceivedhisPh.D.degreeinmaterialogyin2011fromInstituteofCoalChemistry,ChineseAcademyofSciences.Hiscurrentresearchisfocusedonsynthesisofsemiconductornanostructuresandtheirgas-sensingapplications.
Feng-ShiCaireceivedhisPh.D.degreein2012fromNankaiUniversity.Hiscurrentinterestisgas-sensingmaterialsfabricationandproperties.
Li-JianBieobtainedhisMaster’sdegreeinInorganicChemistryfromUniversityofScienceandTechnologyofChinain1991,andPh.D.degreeinInorganicChemistryfromPekingUniversityin2002.HeisnowaprofessorinTianjinUniversityofTech-nology,leadingagroupinresearchforthesynthesisandpropertyofnano-materialsandperovskite-relatedmaterials,includingtheirapplicationinsensors.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务