DifferentiationofAlloreactiveVersusCD3/CD28StimulatedT-LymphocytesUsingRaman
Spectroscopy:AGreaterSpecificityforNoninvasiveAcuteRenalAllograftRejectionDetection
KristianL.Brown,1,2*OlenaY.Palyvoda,2JagdishS.Thakur,3SandraL.Nehlsen-Cannarella,4OmarR.Fagoaga,4ScottA.Gruber,1,2GregoryW.Auner2Abstract
Acuterejection(AR)remainsproblematicinrenaltransplantation.Asamarker,serumcreatinineislimited,warrantingamoreeffectivescreeningtool.Ramanspec-troscopy(RS)candetectT-cellactivationwithhighsensitivity.Inthisstudyweexploreitsspecificity.Seventy-fiveinactivated,40alloantigen-activated,and75CD3/CD28-activatedTcellswereanalyzedusingRS.CD3/CD28-activatedpeakmagnitudes(PM)were4.3%to23.9%lowerthaninactivatedPMatpositions:903,1031,1069,1093,1155,1326,and1449cm21,withadifferenceinpeakratio(PR)observedatthe1182:1195cm21position(0.91Æ0.06vs.1.2Æ0.01,respectively:P50.006).Differ-encesinCD3/CD28-andalloantigen-activatedPMwereobservedat:903,1031,1093,1155,1326,and1449cm21,withnoPRdifferencesatthe1182:1195cm21position(0.9160.06vs.0.8660.09:P50.8).SpectralsignatureseparationofCD3/CD28—andalloantigen-activatedgroupswas100%specificandsensitive.WeconcludethatRScandifferentiateTcellsactivatedbydifferentstimuliwithhighsensitivityandspecificity.'2009InternationalSocietyforAdvancementofCytometryKeyterms
Ramanspectroscopy;renaltransplantation;acuteallograftrejection;humanT-cellacti-vationanddetection;cellsurfacereceptors;CD3/CD28stimulation
1
DepartmentofSurgery,SectionofTransplantSurgery,WayneStateUniversity,Detroit,Michigan
DepartmentofBiomedicalEngineering,SmartSensorandIntegrated
Microsystems,WayneStateUniversity,Detroit,Michigan
DepartmentofPhysicsandAstronomy,WayneStateUniversity,Detroit,Michigan
DepartmentofPathology,WayneStateUniversitySchoolofMedicine,WayneStateUniversity,Detroit,Michigan
2
3
4
Received22June2009;Revision
Received19August2009;Accepted20August2009
Grantsponsor:NationalInstitutesofHealth;Grantnumbers:5R01EB000741-05,2T32GM008420-14;Grantsponsor:DavidFrommResearchAward(WayneStateUniversityDepartmentofSurgery).*Correspondenceto:KristianL.Brown,DepartmentofSurgery,Suite6-C,WayneStateUniversitySchoolofMedicine,4201St.AntoineBLVD,Detroit,MI48201Email:kbrown6@dmc.org
Publishedonline14September2009inWileyInterScience(www.interscience.wiley.com)
DOI:10.1002/cyto.a.20797©2009InternationalSocietyforAdvancementofCytometry
RENALtransplantationhasbecomethepreferredtreatmentforthevastmajorityof
patientswithend-stagerenaldisease(1,2).However,itsapplicabilitytoallinneedhasbeenlimitedbythecontinuedshortageofavailableorgans(3).Giventhescar-cityofdonorkidneys,itisimperativethatthefunctionalityandsurvivalofeachofthesegraftsbemaximizedintherecipient.Acuterejection(AR),whichispredomi-nantlyT-cellmediated,hascontinuedtonegativelyimpacttheoutcomeofrenalal-lografts(4–6).DiagnosisofARfollowingtransplantationbasedonserumcreati-nineelevation(SCE)hasprovenproblematic.DespitethewidespreaduseofSCEasamarkerbymostcenters,itrepresentsalatefindingthatbecomesapparentonlyaf-tersignificanthistologicdamagetothetransplantedorganhasalreadyoccurred.Moreover,SCEhasalowspecificity,reflectingthefactthatotherconditionssuchasurinarytractinfection(UTI),dehydration,obstruction,andevenimmunosuppres-sivemedicationscancausefalsepositivesleadingtounwarrantedreferralsforcostlyandpotentiallydangeroustransplantbiopsies(7),whichmayalsobesubjecttosamplingerror.Inadditiontobeingalatenonspecificmarker,SCEhasalowsensi-tivity,nottakingintoaccountsubclinicalAR(SCAR)whichoccurswithnochangeinserumcreatinine(8).SCARhaspromptedagreaterimplementationofprotocolrenaltransplantbiopsiesinresponsetoconcernsovertheaccelerateddevelopment
CytometryPartA75A:917À923,2009
ORIGINALARTICLE
Figure1.MeanRamanspectraofalloreactive,inactivated,rest-ing,andCD3/CD28-activatedTlymphocytesatthe514.5nmwave-length.[Colorfigurecanbeviewedintheonlineissue,whichisavailableatwww.interscience.wiley.com.]
ofchronicallograftnephropathyiftheconditionremainsundetectedanduntreated(9,10).
Arecentsurgeinproposedmethodologiesforthenonin-vasivediagnosisofARhasincludedRamanspectroscopy(RS).RSisalaser-basedtechnologythatutilizesamonochromaticincidentphotontoinducedetectablemolecularvibrationsinagivenmaterial.Thesevibrationsyieldaunique‘‘signature’’,whichweandothershaveshowninpriorstudiestobehighlyaccurateinthedifferentiationofactivatedfromnonactivatedTlymphocytesbaseduponmoleculardifferencesincellsur-facereceptors(11,12).DespitetheestablishmentofRSasamethodologytoidentifyT-cellactivationstates,thecapabilityofthesystemtodistinguishsignaturesofTcellsthatareacti-vatedbydifferentstimulistillrequiresexamination.Therefore,thepurposeofthisstudyistocomparespectralsignaturesofalloantigen-activatedandCD3/CD28activatedTcells.WehypothesizethattheRSsignaturesofTcellsactivatedviathesetwomethodologieswilldiffersignificantly.
MATERIALSANDMETHODS
Alloantigen-ActivatedT-CellPreparation
PriorapprovalforthestudywasobtainedfromtheWayneStateUniversityHumanInvestigationCommittee.Mononuclearcellswereobtainedusingsodium-heparinizedvenousbloodcollectedfromhealthyparticipantsandsepa-ratedviadensitygradientasdescribedbyBoyum(13).There-sultantcellswerewashedwithHank’sbalancedsaltsolution(HBSS,Invitrogen,Carlsbad,CA)andsuspendedincompletemedium.Cellularviabilitywas[98%ascheckedbyvitaldyeexclusion.
ThreedistinctT-cellsamplegroupswerecreatedforthealloantigen-activatedTcells:1.activated;2.inactivated;and3.restingTlymphocytes.TheactivatedTlymphocytesampleswerecreatedviaatwo-waymixedlymphocyteculture(MLC)asdescribedbyDupontetal.(14),whichbringsintoproxim-ityTlymphocytesfromnonrelatedindividuals,antigenpre-sentingcells(APC;monocytesandmacrophages),andthenecessarycomponentstomodelallograftrejection.T-cellacti-vationwasconfirmedbyCD69directedflowcytometryasdescribedelsewhere(15,16)Theinactivatedgroupwascreated
918
byutilizingTlymphocyte/stimulatorsamplesfromtwononrelatedindividualswhichwerepretreatedfor20minwithMitomycinC(0.025mgMitomycinC[0.5mg/ml]addedtoeach1mlofcellsuspension)at378C.TheseinactivatedTlym-phocytesampleswerewashedtwicewithHBSSbeforethestartofMLCs.EfficacyofMitomycinCwasverifiedusingdoubleinactivationcontrolcultureswhichwereruninparallel.Finally,therestingTlymphocytegroupconsistedofTcellsthatwereneitherstimulatedviaMLCnorinhibitedbyMito-mycinCtreatment.ThesecellsweretheproductofCD69neg-ativesortingviaflowcytometry(15,16).FollowingMLCbutbeforeRSanalysis,BcellswereremovedbynegativeselectionusingFluoroBeads-Bimmunomagneticbeadsandmagneticsorter(OneLambda,CanogaPark,CA)whilemonocytes/macrophageswereremovedviasteelwoolcolumnstoensurethatthesesignatureswerenotobtainederroneously.Allcultureswereincubatedat378Cin5%CO2inparallelovera7-dayperiod,withRS,antibody,andviabilityanalysiscarriedoutdaily.
NonspecificAntigenModelofActivation
TlymphocyteswereisolateddirectlyfromperipheralbloodandurineusingaDynalT-cellnegativeisolationkit(Invitrogen,CanogaPark,CA).Tomodelanonspecificpro-cessofactivation,aCD3/CD28-coatedDynalbeadsystem(Invitrogen,CanogaPark,CA)wasutilizedtocross-linkcellmembranemolecules.ThisconsistedofTlymphocytesincu-batedwithbeads(beadvolumetitratedtocorrespondto3beadsforeveryT-cellataconcentrationof13107cellspervolume)incompletemediacontainingrecombinantinterleu-kin2(50U/ml).TheCD3/CD28beadswereremovedfromTcellsviamagneticsorterbeforeRamananalysis.
IndependentVerificationofActivation/Inactivation
IndependentofRSanalysis,theactivationstatusofallsam-pleswasverifiedbyantibodystainingandflowcytometry.ForthealloreactiveandCD3/CD28stimulatedsamples,activationstatuswasassessedusingamonoclonalantibody,CD69(FastImmune,BectonDickinson,SanJose,CA),asdescribedelsewhere(17).
Figure2.SuperimposedmeanRamanspectrafrominactivated(red)andCD3/CD28-activatedTlymphocytesannotatedwith(*)fociofsignificantdifferencesand(–)markersofcellularviability(18).[Colorfigurecanbeviewedintheonlineissue,whichisavailableatwww.interscience.wiley.com.]
RamanSpectroscopic-BasedT-CellAnalysis
ORIGINALARTICLE
-;eni1;;;;;;r0;;;1004;24r.....2.oe;)45287454.09.cg5E9...83241104n)768838029.63saF5(UL11241111snhO7v18ec(T.885.....1rMTVAsssss5sSv...vvv0.atPENACP;.pnRI39s8s9s25v909v7s8ec.DS38v8v0v67....94365011040n.....rV%..200502601.0508.208.06.0:.37v.o0.0ie5;.7;.;0;1;;9;8;i200.;dp6A0A9A2AA1A9A3At57;3Aet,1N8N18N55N81N01N11N91NaRp5A31N81NoDn%se;uedlausVtie;t3;;;;;;;;.nty3;;12880540c.ngo;202.9..3.ea)hE5560.2960...3..25198123)567951013.78mmpF07U(L10158119s51nkmO4(TAga.88.1..1v1.iesysplMSVLOEv..s.ssssvsv.62.ssPLRP;TA.SD2v949v8s80s2va,gV%56v9..908v03180v.0v1290........kM.n20210802.05.00430.:.0.03.09.0aPi0;.;.;0507.;5;40oe;ts6A8A4A9;0;1A4A2;iAt580;2;A3Apsle1N08N18N4A8A25N1N01N11N91NaRp61N81NdlerecidfiTncaee,pvesitv;it1tcc0;aa;;;;;;;;ea.sr;e)452810042;.29......eor5E9ll..874541.04o)70(U68833241.3pllF11248029s08l4Lma,aO(TVA.8851111v61sao,dMLONACPv.......61.sllss;lePLI22s5sv12ss9s87.s.01s8lAtA.DaS51v7v49v6v0v800v2v.......e;.csvV%202109802.05.71v...0490..0:o03...-lit0;.;.;0;50100.;4;i20Tlec6A8A4A9A0;A2;5A2At5800;A3;a1N0gc8N18N45N80A411N1N1N98A1NaRp61N1NnTnitisg,denritetdsanerv;ai;;;;,t,tc266;;84a3.;;57048;2.39es-ve;....i8)0290..51540..82tR20E)4Uc;;9.403242.DF6(L048001s0asCO4(.A11510.1149v3081ellsr/3MALOVALPvN8.80.s..013071.s..0ss...9.010.0s.oec;.lDPSNA;l.42v2s0v8s;v0sv0.;s0CSD2566.v;807v.%24v8v.;;%v0;ATV%:.2..,df32807%.08.8.3025%5.%o0.93..%..9..o605;607;00;7131i1detett660A312A9928A433a5022924tafavi118N7:5N31:9N9:1:Rp3511:1:hvitistccanananimI,t,a;;8cR3;;;22at3;12;5;4;50DnIn..C;a;20.;988003...6.3/).vSD5520.2529.1.2338e%E676.198.78D2lFV;109758513512eO)5)U5L.81051001514.CDr7s01099s110v.2s0fC.tfM7((v.80.s.0..0.01s.s.ss.9s0v0.o/oPATVA3n.aSSP4v2.0vv0v0.s.0;vv09.0v.030syNE29.67s.v;88;3;enDcrR..9a30807%0..08.%2%2;5;000:.;.uoCif..2.ls(im6;5;619;013.35%..73%o02.%48ainrnm6A0A173062i8374243ta5101251vaegi.1N8N32A97:5N31:9:9:1:Rp31:1:kpgssuasemittkeponoacanepvdhceiitecfg5agaicn9r;a1;;;;;;aeea1p0;88;84;69rh1..enpcom45;810042.2......4vist.oS;E2.37454103adneC.434.08FV)5U7L118058222615s61meod2tu8.O)5(.820..10021090v13100oant1u,in11M7TVAss(CPv.80.0.s.rflAsv.010..01.01s..s.s.s.fagoePA;v0v0lS41.;820s;dvSabNNADI27v9s8vv0;v0v096.0.6.v%.;2;33eeNmoita%...%vs;tT3080750..082;;00.%23%%5.%:.o01%ilka6;.;.;0.35329rln6A5629A920..231i362451eear1N0A31728N7:5N33847443ta501:9:9:1:Rp31:1:dceeopt1Tmn,seflogAdibNnrsoaes;Tbaepar5omkdsuer9fuatri)11anepno21tM:aogc,tC21935269DAaadPmta(88303695824nkD28000001134oaaPA67911111111pespCytometryPartA75A:917À923,2009
919
ORIGINALARTICLE
Figure3.Ramanspectraofinactivated(red)andCD3/CD28-activatedTlymphocytesdemonstratingdifferencesinpeakmagnitudes(insetsA—E).Annotationswithininsets:InsetA-(*)903cm21;InsetB-(^)788cm21;InsetC-(*)1002cm21;InsetD-(*)1031cm21,(^)1069cm21,({)1093cm21,(l)1155cm21;InsetE-(*)1326cm21,(^)1449cm21.ThefocusedspectralregionsarefromTlymphocytesrepresentedinFigure1.[Colorfigurecanbeviewedintheonlineissue,whichisavailableatwww.interscience.wiley.com.]
StainedcellswereviewedusingaNikonEclipseTE2000-Uinvertedmicroscope,withimagescapturedandprocessedwithMetavue6.2r5software(Downingtown,PA).
RamanSpectroscopy
BeforecollectionofRamanspectraldata,allsampleswerewashedwithPBS(Invitrogen,Carlsbad,CA).Tcellswereallowedtosettlewithinananalysisreservoirplacedonaleveledmicroscopestage.Onlynonapoptotic,rounded,non-adhered,isolatedandindividualizedTcellswereselectedforstudy.EachsamplewasanalyzedusingidenticalRamanspec-troscopicparameters.ToassurethatTcellswerealignedinthelasertargetareaandthatthelaserfocuspointwascenteredonthelymphocyte,anenhancedvideoimagingsystemwasemployed.Imageswerecapturedbeforeandaftereachmea-surementtoconfirmthatnocellshiftingordestructionoccurred.Toprovideforreference/controlspectralpeaks,bothpureCD3/CD28beadsandTcellsthatwerenotsubjectedtomagneticsorter(Tcellsstillboundwithbeads),were
920
analyzed.Wire2software(Renishaw,OldTown,UnitedKing-dom)wasutilizedinconjunctionwiththeRSsystemforquantitativemeasurement.
Figure4.Ramanspectraofinactivated(red)andCD3/CD28-acti-vatedTlymphocytesdemonstratingdifferencesin(*)1182cm21and(^)1195cm21peaks.[Colorfigurecanbeviewedintheonlineissue,whichisavailableatwww.interscience.wiley.com.]
RamanSpectroscopic-BasedT-CellAnalysis
Figure5.SuperimposedmeanRamanspectrafromCD3/CD28-activated(red)andalloreactive(blue)Tlymphocytesannotatedwith(*)fociofsignificantdifferencesand(^)markersofcellularviability(18).
RSmeasurementswereconductedusingaRenishawInVia2000microscope-spectrometerwithaLeica63Xwaterimmersionobjective(NA51.20).T1lymphocyteswereana-lyzedusingthe514.5nm(green)Arexcitationwavelength.Laserpowerwassetat50%(8–12mW)fora2–4lmlaserspotsize.Spectrawerecollectedinthebackscatteringgeome-trywitha10secondintegrationtimeoverarangeof500to1500cm21withspectralresolutionof4cm21.
StatisticalAnalysis
Beforestatisticalanalysis,alldatawerecheckedforvari-oustypesofnoise.SpectraldatademonstrateduniformlyincreasingfluorescenceovertheentirerangeofRamanshift.Thiswassubtractedoutusingamodifiedcubic-splinealgo-rithmrequiringnoaprioriknowledgeofthespectra.Inaddi-tion,amedianfilterwasappliedtotherawdatawhichelimi-natedcosmicrayandspikes.Principalcomponentanalysiswasusedtoreducedimensionalityinthedata.ChisquareorStudent’sttestwasutilizedasappropriatetofurtherquantifydifferencesinpeakratiosandpeakmagnitudeswithadditionalquantitativedifferencesdeterminedbydiscriminantfunctionanalysis(DFA).GraphicalandquantitativeanalysisofdatawereaccomplishedusingSPSSversion15software(StatisticalSoftware,Chicago,IL).
RESULTS
Figure1summarizesRamanspectraforinactivated,rest-ing,alloreactive,andCD3/CD28-activatedT-cellgroups.CD3/CD28-ActivatedVersusInactivatedTLymphocytes
Atotalof75CD3/CD28-activatedand75inactivatedTcellswereanalyzedusingthe514.5nmexcitationwavelength.Systematicreviewofsamplesrevealednocellulardisruptionfollowinglaserexposure.Qualitativecomparisonsofactivatedandinactivatedspectrademonstrated2differences1at903,1031,1069,1093,1155,1326,and1449cmRamanshifts(Fig.2).Quantitativeanalysisoftheseshiftsdemonstrateddifferencesinpeakmagnitudesatallpositionsexceptfor628,788,and
CytometryPartA75A:917À923,2009
ORIGINALARTICLE
1002cm21(Table1,Fig.3A–E),whichhavebeenshowninpreviousstudiestocorrelatewithcellularviability(18).More-over,theCD3/CD28-activatedandinactivatedgroupsshowedsignificantdifferencesinpeakratiosatthe1182:1195cm21position(Table1,Fig.4).
CD3/CD28-ActivatedVersusAlloantigen-ActivatedTLymphocytes
Atotalof46CD3/CD28-activatedand40alloantigen-activatedTcellswereanalyzedwithsummarycomparisonspectrashowninFigure5.Whencomparingthesegroups,theydifferedsignificantlyatthe903cm21,1031cm21,1093cm21,1155cm21,1326cm21,and1449cm21positions.However,therewasnodifferencewhenanalyzingthepeakra-tioatthe1182:1195cm21position(Table1).DiscriminantfunctionanalysisoftheRamanspectraldataforCD3/CD28-activatedandalloantigen-activatedT-cellgroupsissummar-izedinFigure6.Therewas100%accuracywhenusingtheactivationsignaturetoseparatethesegroups.
DISCUSSION
Theimmunesystemreflectsadualityofrequirementsdictatedbytheneedtoremainrelativelyconservedinmanyofitsactivationpathways,whilemaintainingahighlevelofspec-ificityforaparticularantigen.Thisnotionhasbeenthor-oughlydemonstratedthroughstudiesinvolvingthemajorhis-tocompatibilitycomplex,theT-cellreceptor,andothercellsurfacereceptorsinvolvedintheactivationprocess(19).OurdatasuggestthatwhenexaminingthearrayofreceptorsexpressedduringactivationbytwodifferentmethodologiesusingtheRSsystem,thisdualityofconservationandspecific-ityisarticulatedviauniquepeakdifferences.Whenanalyzingtheratiosofthe1182:1195peaks,wefoundsimilarpatternsin
Figure6.DiscriminatefunctionanalysisofalloreactiveversusCD3/28-activatedTlymphocytes.[Colorfigurecanbeviewedintheonlineissue,whichisavailableatwww.intersciece.wiley.com.]
921
ORIGINALARTICLE
boththealloreactiveandtheCD3/CD28-activatedsamplesthatwerenotpresentintheinactivatedorrestingT-cellsam-ples.ThisRamanshiftlikelyrepresentsaconservedchangeincellsurfacemoleculessharedbyactivatedTcellsregardlessofmethodologyofactivation.Whenapplyingestablishedpeakassignmentdata(20–23),thesepeaksarerepresentativeofty-rosine/phenylalanineandadenine/thyminechanges.Theseconservedpeakchangescanbecontrastedwiththoseshiftsoccurringat903,1031,1093,1155,1326,and1449cm21whichwereobservedintheCD3/CD28-activatedbutnotinthealloantigen-activatedT-cellsamples.ThesefociofshiftslikelyrepresentaspecificchangeincellsurfacemoleculesreflectingaresponsetotheparticularCD3/CD28stimulus.Whencrossreferencingthesefociwithestablishedpeakassignmentdata(20–23),theyrepresentchangesinnucleicacids(903,1093,and1449cm21),aminoacids(1031and1155cm21),orboth(1326cm21)-changeswhichareconsist-entwithmolecularprocessesresponsibleforthetranscription,translation,andexpressionofcellsurfacereceptors.Whenfur-theranalyzingthesepeakdifferencesthatwereuniquetotheCD3/CD28-activatedTcells,therewasareductioninpeakmagnitudesobservedinallsixoftheaforementionedpeakpositions.Althoughtheprimaryetiologyofthispatternremainscryptic,itmostlikelyrepresentsareshufflingratherthanadown-regulationofcellsurfacebio-molecularmaterial.
Basedupontheaforementionedobservations,itispossi-bletodetectT-cellactivationandcharacterizetheparticularmodeofthisactivationusingRS.Thisrepresentsafounda-tionalsteptowardthedevelopmentofaRS-basedsystemforthenoninvasivedetectionofAR.Otherproposednoninvasivedetectiontechniqueswhichhaveshownefficacy,suchasmetabolomics(24),proteomics(25,26),andDNAmicroarrayprofiling(27,28),arecostly,timeintensive,computationallyexpensive,andrequireextensiveinfrastructuretocarryoutanalysis.ARS-basedsystemoffersadecidedadvantagebyfocusingondeterminedfociofspectraldifferencesthuspro-vidingalow-cost,rapidanalysiswhichcanbeoutfittedforportableuseintheclinicalsetting.TheRSsystemcandetectT-cellactivationwithinbothbloodandurinebiologicmatri-ces.ThisflexibilityisaffordedbythecomponentsubtractionofRamanspectralcontributionsmadebyothercells,fluids,andfreefloatingmacromolecules.Thesystemcanuse‘‘learned’’T-cellactivationsignaturestoselectTcellsthatmatchthestoredcellularprofilesevenfromwithinamulti-cellularfluid.Moreover,theabilityofRStodifferentiatebetweenthesignaturesofTcellsactivatedbydifferentmeansaffordsapotentialforhighspecificity.Thevalueofthishighspecificityisthreefold.First,itprovidesanavenuetomoveawayfromtheparadigmofneedinganinvasivebiopsytoconfirmthediagnosisofARandalsoprovidesanalternativetoprotocolbiopsiestodetectSCAR.Second,RSdetectionofARoffersamodalitythatcouldsignificantlyreducethedelayinARdiagnosis.Underthecurrentalgorithm,delaysintreat-mentarecreatedduetotheneedtoeliminateotherpotentialcausesofSCE,thuspotentiallyallowingfurtherhistologicdamagetothenephronsoftransplantedgraft.Third,acom-922
prehensivepanelofclinicallyrelevantsignaturesbaseduponviral(CMV),fungal(Candida),andbacterial(E.coli)stimulicouldbeinvestigatedwhichwillfurtherimprovetherapiddiagnosisandmanagementofinfectionsinthepost-trans-plantperiod.
CONCLUSION
BaseduponRSanalysisofthecellsurfacesofalloreactiveandCD3/CD28-activatedTlymphocytes,weconcludethatthereceptorexpressionandresultingspectralsignaturesofthesetwoactivatedT-cellpopulationsdiffersignificantly.TheseuniqueRSsignatureswillallowforamorerefinedapproachtowardthedevelopmentofanoninvasiveARdetec-tionsystemthathasahighspecificityandsensitivity.
LITERATURECITED
1.FlechnerS,GoldfarbD,SolezK,ModlinC,MastroianniB,SavasK,BabineauD,
KurianS,SalomonD,NovickA,CookD.Kidneytransplantationwithkidneytrans-plantationwithsirolimusandmycophenolatemofetil-basedimmunosuppression:5-yearresultsofarandomizedprospectivetrialcomparedtocalcineurininhibitordrugs.Transplantation2007;83:883–2.
2.FosterC,PhilosopheB,SchweitzerE,ColonnaJ,FarneyA,JarrellB,AndersonL,
BartlettS.AdecadeofexperiencewithrenaltransplantationinAfrican-Americans.AnnSurgery2002;236:794–805.
3.Spring2007RegionalMeetingDataoftheU.S.OrganProcurementandTransplanta-tionNetworkandtheScientificRegistryofTransplantRecipients.Availableathttp://www.optn.org/latestData.
4.Meier-KriescheH,OjoA,MageeJ,CibrikD,HansonJ,LeichtmanA,BruceKaplan.
African-Americanrenaltransplantexperiencedecreasedriskofdeathduetoinfec-tion:possibleimplicationsforimmunosuppressivestrategies.Transplantation2000;70:375–379.
5.CampbellS,HothersallE,PrestonJ,BrownA,HawleyC,WallD,GriffinA,IsbelN,
NicolD,JohnsonD.Frequencyandseverityofacuterejectioninlive-versuscadave-ric-donorrenaltransplants.Transplantation2003;76:1452–1457.
6.NettP,HeiseyD,ShamesB,FernandezL,PirschJ,SollingerH.Influenceofkidney
functiontotheimpactofacuterejectiononlong-termkidneytransplantsurvival.TransplInt2005;18:385–3.
7.MatasA,SimmonsR,KjellstrandC,NajarianJ.Pseudorejection:Factorsmimicking
rejectioninrenalallograftrecipients.AnnSurg1977;186:51–59.
8.NankivellBJ,BorrowsRJ,FungCLS,O’ConnellPJ,AllenRD,ChapmanJR.
Naturalhistory,riskfactorsandimpactofsubclinicalrejectioninkidneytrans-plantation.Transplantation2004;78:242–249.
9.NankivellBJ,Fenton-LeeCA,KuypersDRJ,CheungE,AllenRD,O’ConnellPJ,
ChapmanJR.Effectofhistologicaldamageonlongtermkidneytransplantoutcome.Transplantation2001;71:515–523.
10.NankivellBJ,BorrowsRJ,FungCLS,etal.Thenaturalhistoryofchronicallograftne-phropathy.NEngJMed2003;349:2326–2333.
11.BrownKL,PalyvodaOY,ThakurJS,Nehlsen-CannarellaSL,FagoagaOR,GruberSA,
AunerGW.Ramanspectroscopicdifferentiationofactivatedversusnon-activatedTlymphocytes:Aninvitrostudyofanacuteallograftrejectionmodel.JImmunolMethods2009;340:48–54.
12.MannieMD,McconnellTJ,XieC,YoLi.Activation-dependentphasesofTcellsdis-tinguishedbyuseofopticaltweezersandnearinfraredRamanspectroscopy.JImmu-nolMethods2005;297:53–60.
13.BoyumA.Isolationofleukocytesfromhumanblood.Furtherobservationsmethyl,
cellulose,dextran,andficollaserythrocyteaggregatingagents.ScandJClinInvest1968;97(Suppl):31–50.
14.DupontB,HansenJA,YunisEJ.Humanmixed-lymphocyteculturereaction:Genetic,
specificityandbiologicalimplications.Advancesinimmunology.NewYork:Aca-demicPress;1976.p107.
15.MelamedMR,MullaneyPF,MendelsohnML.Flowcytometryandsorting,2nded.
NewYork:Wiley-Liss;1990.
16.FleisherTA,MartiGE,HagengruberC.Two-colorflowcytometricanalysisofmono-cytedepletedhumanbloodlymphocytesubsets.Cytometry1988;9:309–315.
17.SchwartingR,BiedobitekG,SteinH.Clusterreport:CD69.In:KnappW,Do
¨rkenB,GilksWR,etal.,editors.LeucocytetypingIV:Whitecelldifferentiationantigens.NewYork,NY:OxfordUniversityPress;19.pp428–432.
18.NotingherI,VerrierS,HaqueS,PolakJM,HenchLL.Spectroscopicstudyofhuman
lungepithelialcells(A549)inculture:Livingcellsversusdeadcells.Biopolymers2003;72:230–240.
19.JanewayC,TraversP,WalportM,CapraJ.Themajorhistocompatibilitycomplexof
genes:Organizationandpolymorphism.In:AustinP,LawrenceE,editors.Immuno-biology:Theimmunesysteminhealthanddisease,4thed.NY:GarlandPublishing;1999.p135.
20.DengH,BloomfieldV,BenevidesJ,ThomasG.DependenceoftheRamansignature
ofgenomicB-DNAonnucleotidebasesequence.Biopolymers1999;50:656–666.
RamanSpectroscopic-BasedT-CellAnalysis
ORIGINALARTICLE
21.ErfurthS,PeticolasW.MeltingandpremeltingphenomenoninDNAbylaser
Raman-scattering.Biopolymers1975;14:247–2.
22.BenevidesJ,ThomasG.CharacterizationofDNAstructuresbyRamanspectroscopy:
High-saltandlow-saltformsofdoublehelicalpoly(dG-dC)inH2OandD2Osolu-tionsandapplicationtoB,ZandA-DNA.NuclAcidsRes1983;11:5747–5761.
23.PuppelsG,DemulF,OttoC,GreveJ,RobertnicoudM,ArndtjovinD,JovinT.
StudyingsinglelivingcellsandchromosomesbyconfocalRamanmicrospectroscopy.Nature1990;347:301–303.
24.WishartD.Metabolomics:Theprinciplesandpotentialapplicationstotransplanta-25.ClarkeW,SilvermanC.Characterizationofrenalallograftrejectionbyurinarypro-teomicanalysis.AnnSurgery2003;237:660–665.
26.MannM,KelleherN.Precisionproteomics:Thecaseforhighresolutionandhigh
massaccuracy.PNAS2008;105:18132–18138.
27.SarwalM,ChuaM,KambhamN,HsiehS,SatterwhiteT,MasekM,SalvatierraO.
MolecularheterogeneityinacuterenalallograftrejectionidentifiedbyDNAmicroar-rayprofiling.NEnglJMed2003;349:125–138.
28.AkalinE,HendrixR,PolavarapuR,PearsonT,NeylanJ,LarsenC,LakkisF.Gene
expressionanalysisinhumanrenalallograftbiopsysamplesusinghigh-densityoli-tion.AmJTransplant2005;5:2814–2820.
goarraytechnology.Transplantation2001;72:948–953.
CytometryPartA75A:917À923,2009923
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务