您好,欢迎来到微智科技网。
搜索
您的当前位置:首页抛物线学案

抛物线学案

来源:微智科技网


高二数学学案 编号:62

2.4.1抛物线及其标准方程

【学习目标】

1.会叙述抛物线的定义及标准方程的推导过程;

2.能由抛物线的标准方程写出抛物线的焦点坐标及准线方程; 3.能根据已知条件求抛物线的标准方程.

【自主学习】(阅读课本—67页内容,完成如下问题)

1.抛物线的定义:平面内 的点的轨迹叫做抛物线。定点F叫做抛物线的 ,定直线l叫做抛物线的 。 2.抛物线的标准方程的推导

我们把 叫做抛物线的标准方程,它所表示的抛物线的焦点坐标是 ,准线方程是 . 【课内探究】 一、 抛物线的定义与标准方程 1.实验:把一根直尺固定在纸板上面,把一块三角板的一条直角边紧靠在直尺的边缘,取一根细线,它的长度与另一直角边相等,细绳的一端固定在顶点A处,另一端固定在纸板上点F处。用笔尖扣紧绳子,靠住三角板,然后将三角板沿着直尺上下滑动,画出抛物线。

2.抛物线的定义:平面内与一个定点F和一条定直线

l(l不经过点F)的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.

关键词:

思考1:如果F点在直线上,得到的轨迹还是抛物线吗?若不是的话,会是什么?

3.抛物线的标准方程:

类比于椭圆求标准方程,推导抛物线的标准方程

抛物线的标准方程为: ,其中焦点坐标为 , 准线方程为 ,p的几何意义是 . 探究: 抛物线的四种形式和标准方程、焦点、准线 图 形 标准方程 焦点坐标 准线方程 y22px p0 p2,0 xp 2 观察总结:

二、尝试应用:

例1.(1)已知抛物线的标准方程是y26x,求它的焦点坐标和准线方程;

(2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程.

练习1.求下列抛物线的焦点坐标和准线方程: (1)y220x (2)x21y 2(3)2y25x0 (4)x28y0

练习2.根究下列条件写出抛物线的标准方程:

(1)焦点是F(3,0) (2)准线方程是x1 4(3)焦点到准线的距离为2

例2.一种卫星接收天线的轴截面如图所示.卫星波束近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处.已知接收天线的口径(直径)为4.8m,深度为0.5m.试建立适当的坐标系,求抛物线的标准方程和焦点坐标.

练习3.求过点A(-3,2)的抛物线的标准方程.

基础达标

1.求下列抛物线的焦点坐标和准线方程 (1)y28x (2)x24y (3)2y23x0 (4)yax2a0

2.根据下列条件写出抛物线的标准方程 (1)焦点是F(-2,0).

(2)焦点到准线的距离是4,焦点在y轴上.

(3)准线方程是y

(4)经过点A(6,-2).

小结反思:

学完本课,在以下各项的后面的“( )”内,用“V”或“?”标注你是否掌握 1、抛物线的定义 ( ) 2、抛物线标准方程的四种形式 ( ) 3、求抛物线的焦点坐标及准线方程 ( ) 4、根据已知条件求抛物线的标准方程 ( ) 5、P的几何意义 ( )

1

. 3

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务