您好,欢迎来到微智科技网。
搜索
您的当前位置:首页多目标决策课程论文

多目标决策课程论文

来源:微智科技网


沈阳农业大学

课程论文

课程论文题目:基于层次分析法的模糊综合评价法 课程名称:决策理论与方法

院系: 理学院 专业: 信息与计算科学 姓名: ** 学号: *********

完成日期:2015年11月23号

目录

概述 ..................................................... 3 原理和基本步骤 ........................................... 4 优缺点 ................................................... 8 应用实例 ................................................. 9 参考文献 ................................................ 15

1.1 基于层次分析法的模糊综合评价法概述

1.1.1 模糊综合评价法的基本原理以及起源

模糊综合评价法是一种基于模糊数学的综合评标方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。模糊理论能很好地反映水环境质量级别的模糊性与连续性,层次分析法能够将评价者对复杂系统的定性分析进行定量化处理,两者的结合很好地解决了隶属度与权重的问题。[2]

模糊集合理论(Fuzzy Sets)的概念于1965 年由美国自动控制专家查德(L.A. Zadeh)教授提出,用以表达事物的不确定性,并在此基础上发展成模糊数学。模糊集理论的本质是用隶属函数作为桥梁,将不确定性在形式上转为确定性,即将模糊性加以量化,从而为模糊不确定性问题的解决提供了数学工具。模糊集理论经过四十年的发展,目前己在综合评估与决策、模糊规划、模糊可靠性分析、模糊控制等领域得到了广泛的应用。模糊数学法的建立是由于大多数的风险因素是不确定的、模糊的,用经典数学难以计算, 而运用模糊数学知识,可以用数学语言去准确地描述风险因素对系统的影响程度,建立数学评价模型,得出其精确解。正是因为这一特点, 这一方法目前在工程风险领域中大量被采用[3]。

在实际运用中,评价对象往往受各种不确定因素的影响,其中模糊性是最重要的,所以就产生了模糊综合评价FCE(Fuzzy Comprehensive Evaluation,模糊综合评估法)能较好地用于涉及多个模糊因素的对象的综合评估方法。荷兰学者Van Loargoven在 1983 年首次在层次分析法的元素排序中运用基于三角模糊数表示的模糊比较判断、三角模糊数的运算和对数最小二乘法。1994 年,我国常大勇提出利用模糊数比较成对判断矩阵大小的新方法,还采用了统一的扩展值表示判断矩阵。[4]

1.1.2 层次分析法的基本原理及起源

在复杂的系统中,需要考虑的因素往往很多,因素还要分成若干层次,形成评判树状结构,对各层次的因素划分评判等级,各层次划分的评判等级数目应相同,上一层次与下一层次划分的评判等级要由单一的对应关系,以便数学处理运

算,并确定各因子的隶属函数,求得各层次的模糊矩阵。评判顺序为:首先进行最低层次的模糊综合评判,其次有最低层次的评判结果构成上一层次的模糊矩阵,在进行上一层次的模糊综合,循此自底而上逐层进行模糊综合评判,可得到系统总体的综合评判结果。在 1977 年举行的第一届国际数学建模会议上层次分析法第一次正式走入学术界的视野并引起了学者们的注意,Satty教授在那次会议上发表了“无结构决策问题的建模——层次分析理论”。1980 年他专门推出了一本专著用于详细介绍AHP(analytical hierarchy process,层次分析法)的理论、数学基础和应用。随后他又推出了几本侧重于应用方面的书籍。

随着Satty和多位学者的推动,“AHP应用已涉及到‘能源和资源分配’、‘企业管理与生产决策’、‘经济分析与计划’、‘社会学’、‘行为科学’等十个领域”。1982 年 11 月Saaty的学生H. Gholamnezahad在中美能源、资源、环境学术会将层次分析法第一次介绍给中国学者。随后,许树柏等发表了国内第一篇介绍层次分析法的文章。1988 年在我国召开了第一届层次分析法国际学术会议,并且称为了中国系统工程学会决策科学专业委员会每隔两年召开相关的学术年会[5]。

1.1.3模糊层次分析法

基于层次分析法的模糊综合判断又叫做模糊层次分析法(fuzzy analytic hierarchy process,简称F-AHP).该方法首先利用层次分析法进行分析确定指标体系中各个指标的相对权重,进一步结合模糊数学分析方法进行综合评价。

模糊综合评价在理论和应用中的关键问题是如何合理确定各评价指标的权重。为此, 提出了直接根据单指标相对隶属度的模糊评价矩阵, 构造层次分析法中的判断矩阵, 用以确定各评价指标权重。给出了用加速遗传算法检验和修正判断矩阵的一致性和计算判断矩阵各要素的权重的模糊综合评价模型 。实例表明,F-AHP方法简便和通用, 计算结果较为客观和稳定, 在系统工程理论和实践的各种综合评价中具有推广应用价值[6]。

1.2 基于层次分析法的模糊综合评价法的原理和基本步骤

1.2.1 模糊综合评判法原理

模糊综合评判法是一种运用模糊数学原理分析和评价具有\" 模糊性\" 事物

的系统分析方法,是以模糊推理为主的定性与定量相结合、精确与非精确相统一的分析评价方法。其数学模型为:A×R=B 式中:A =(a1,a2,a3…am)是由参加评价指标的权重归一化处理后构成的矩阵; R为评价指标隶属于各等级的隶属度所组成的模糊关系矩阵,B是以隶属度表示的水质级别模糊评价向量[7]。 1.2.2 模糊综合评价法的步骤 模糊综合评判的步骤如下: 1.建立评判目标集。

对评判对象可能作出各种评判集合的总体:

V={ v1,v2,...,vm} (1)

式中各元素vi ( i = 1, 2,...,m )代表各种可能的总评判结果。 2.建立因素集。

将评判目标看成是由多种因素组成的模糊集合

U={u1,u2,..,um } (2) 式中各元素ui(i=1,2,..,m)代表各影响因素。 3.建立权重集。

为了反应各因素的重要程度,对各因素应赋予相应的权数wi( i = 1, 2,..., m)由各权数所组成的集合W称为权重集:

W={w1,w2,..,wm } (3)

通常,各权数wi( i = 1, 2,..., m ) 应满足归一性和非负条件,即:

0≤wi≤1 且 wi=11m

(4)

各个权数一般由统计分析或专家评分等方法进行确定。本文利用层次分析法确定各因素权重。 4.确定隶属度。

设评判对象按因素集中第i个因素ui 进行评判, 对评价集中第j个元素vj 的隶属度为rij , 则按因素ui 评判的结果, 可简单地表示为模糊集合

r1mr11r12, 可得相应于每个因素的单因素R={r1,r2,...,rm}, R称为单因素评价集。由此r21r22r2mTR(R,R,,R)r评价集, 将各因素评判集的隶属度排列成行构成单因素评价矩阵R: 12nijnm:, ::: rn1rn2rnm

(5)

5.模糊综合评判。

将权重集W视为1行m列的模糊矩阵,则模糊综合评判可表示为:

r11r,wm21rm1r12r22rm2r1nr2nb1,b2,rmnBWRw1,w2,,bn

(6)

式中: B 称为模糊综合评判集; bj 称为模糊综合评判指标;特别注意为模糊合成算子,表示模糊矩阵的合成运算,本文例中采用加权平均型模糊合成算子,计算公式为biwjrij。

j1m6.评价指标处理。

得到评判指标bj (j=1,2,..,n)之后,可根据最大隶属度原则取最大的评判指标。

bjmax相对应的评价集元素vi 为评判的结果, 即V=Maxbj[7]。

1jn1.2.2 层次分析法的步骤

运用AHP方法解决问题, 可分为4个步骤: 1.构造递阶层次结构。

构造递阶层次结构是对事物的剖析过程, 递阶层次结构的最上层只包含1个元素, 是目标的焦点, 下面的层次可以包含多个元素。

相邻2层的对应元素是根据某种规则进行重要性比较排定的, 同一层中的所有元素具有同等级的量值。如果它们的差别太大, 就分属于不同的层次。一般层次分析结构模型分为3层, 包括目标层、准则层和方案层。

2.构造两两比较判断矩阵。

判断矩阵是表示针对上一层某要素而言, 该层内与它有关联的各个要素之间的相对优越程度。例如,方案层P1,P2,..,Pn 与上一层准则CK有关联。建立这几个方案关于准则CK 的判断矩阵为:

a11 A=am1a1n amn (7)

式中:aij 表示对于准则Ck 而言,方案Pi与Pj比较而得到的相对重要程度或优越性,aij的取值是根据资料、统计数据、征求专家意见以及系统分析员的经验而确定的。层次分析法采用1-9标度法, 使两要素的比较得以定量描述。其取值如表1所示。

3.由判断矩阵计算被比较元素的相对权重。

这一过程叫单层次排序, 是把本层内各要素按照对上一层次的优劣程度排出顺序。计算Pi关于CK 的权重时, 可先求出判断矩阵的特征向量W,然后经过归一化处理,即可求出Pi关于CK的相对重要度, 即权重。

4.计算各层元素的组合权重。

这一过程叫层次总排序。这一步是由上而下逐层进行的, 利用每一层元素对其上一层各元素的相对权重, 计算出层次分析模型中每一层中的所有元素对于总目标的组合权重。最终得出最低层元素相对于总体目标的组合权重[8]。

1.3 基于层次分析法的模糊综合评价法的优缺点

1.3.1 模糊综合评判法优缺点 1. 模糊综合评价法的优点

(1)模糊评价通过精确的数字手段处理模糊的评价对象,能对蕴藏信息呈现模糊性的资料作出比较科学、合理、贴近实际的量化评价。

(2)评价结果是一个矢量,而不是一个点值,包含的信息比较丰富,既可以比较准确的刻画被评价对象,又可以进一步加工,得到参考信息。

(3)在客观事物中,一些问题往往不是绝对肯定或否定,涉及到模糊因素,而模糊综合评判方法则很好的解决了判断的模糊性和不确定性问题。 2. 模糊综合评价法的缺点

(1)计算复杂,对指标权重矢量的确定主观性较强。

(2)当指标集U较大,即指标集个数凡较大时,在权矢量和为1的条件约束下,相对隶属度权系数往往偏小,权矢量与模糊矩阵R不匹配,结果会出现超模糊现象,分辨率很差,无法区分谁的隶属度更高,甚至造成评判失败,此时可用分层模糊评估法加以改进。

(3)在很多应用领域主观性强。模糊综合评判法虽然能够提高地质预报结果的准确性, 但是也存在一定的缺点: 确定各预报参数的相对权重没有统一的标准, 主观因素影响较大[9]。 1.3.2 层次分析法的优缺点 1.层次分析法优点

(1)提供了层次思维框架,便于整理思路,做到结构严谨,思路清晰。层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。 (2)简洁实用的决策方法。这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确

定同一层次元素相对上一层次元素的数量关系后, 通过对比进行标度,增加了判断的客观性;

(3) 把定性判断与定量推断结合,增强科学性和实用性。层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。这种思想能处理许多用传统的最优化技术无法着手的实际问题。 2.AHP不足之处

(1)和一般的评价过程,特别是模糊综合评价相比,AHP 客观性提高,但当因素多(超过9个) 时,标度工作量太大,宜引起标度专家反感和判断混乱。 (2)对标度可能取负值的情况考虑不够. 标度确实需要负数,因为有些措施的实施,会对某些特定目标造成危害,如实现机械化,就对解决就业不利. 虽然有关于- 1~1 标度的讨论,但对于这种标度下权重计算问题讨论不足。

(3)对判断矩阵的一致性讨论得较多 ,而对判断矩阵的合理性考虑得不够,这是因为对标度专家的数量和质量重视不够。

(4)没有充分利用已有定量信息。AHP都是研究专门的定性指标评价问题,对于既有定性指标也有定量指标的问题(这种问题更普遍)讨论得不够.事实上,为使评价客观,评价过程中应尽量使用定量指标,实在没有定量指标才用定性判断[9]。

1.4 基于层次分析法模糊综合评判法的应用实例

1.4.1 基于层次分析法的模糊综合评判法的应用

基于层次分析法的模糊综合评判法在各个领域应用广泛。通过查阅文献发现这一方法在工程项目评价、水质评定以及职员评价等方方面面有着广泛的应用。工程项目风险的评估是一个多因素、多指标的复杂的评估过程,不能单纯的用好或坏来区分,对这些因素进行综合,才能做出合理的评价[11]。 运用模糊综合评判法评价地下水质量是合理的, 其评价结果能全面反映水质的综合状况[12]。在水环境质量综合评价中,模糊评判法和层次分析法相结合的模糊层次分析法得到了广泛的应用[13]。模糊理论能很好地反映水环境质量级别的模糊性与连续性,层次分析法能够将评价者对复杂系统的定性分析进行定量化处理,两者的结合很好地

解决了隶属度与权重的问题[14]。河流综合水质评价是水环境治理中的重要基础 性工作,只有对水质监测数据进行合理评价,才能制定科学的整治规划方案,采取有效的防治措施,可以说河流综合水质评价的合理性会直接影响决策[15]。模糊综合评价方法解决了水质评价中污染程度界线的模糊性问题,从而使得评价结果更具合理性和可信度[16]。按照桥梁设计的基本生命周期进行设计风险划分, 提出桥梁的设计风险评价指标, 并且基于层次分析法结合专家打分建立各指标的权重,再利用模糊综合评价法建立模糊评价集,并利用zadeh算子对设计风险概率和设计风险损失进行计算, 进而根据风险评估矩阵得到桥梁的设计风险水平[17]。模糊理论能很好地反映水环境质量级别的模糊性与连续性,层次分析法能够将评价者对复杂系统的定性分析进行定量化处理,两者的结合很好地解决了隶属度与权重的问题[3]。

1.4.2 基于层次分析法模糊综合评判法的应用实例

在建的某高速公路隧道位于湘南典型的喀斯特地貌区域, 地表岩溶洼地、岩溶漏斗、落水洞较发育,且多以垂直发育为主。据详勘资料和水文工程地质调查成果表明: 该隧道地下水丰水期潜水面高于隧道开挖工作面;隧道上部,特别是隧道K128+730--+830区段左侧上部山地中发育一系列岩溶洼地及落水洞。为地下水补给提供了有利的活动空间,大气降水汇集于岩溶洼地,经落水洞或岩溶管道垂直渗透于可溶性灰岩裂隙中,并形成溶洞。本次超前预报的掌子面桩号里程为K128+745,掌子面为中风化灰岩,岩层产状为135bN42b,节理裂隙较发育, 以垂直裂隙为主。掌子面大面积淋雨状出水。同时根据高密度电法、TSP和地质雷达探测结果,得到掌子面前方30m范围内岩体含水性的模糊综合评判因素值, 如表2所示。

1.确定评判目标集

根据预测段岩体含水程度的不同, 将预测段的岩体划分为4个级别:用v1 表示含大量地下水,v2 表示中等含量地下水,v3 表示含少量地下水,v4 表示干燥不含水,因此评价集V =( v1, v2,v3,v4)。 2 .建立评价因素集

前文提到的4种超前预报方法的参数有很多,本文选择最重要的几个参数进行解释。建立两层模糊综合评判模型,如图1所示。

图1 评价因素两层分析模型

根据上图建立的二级因素集为U={u1,u2,u3,u4},其中u1 为地质分析结果, u2 为高密度电法预报结果,u3为TSP预报结果,u4为地质雷达预报结果;一级因素集为u1 ={v1,v2,v3},其中v1 为掌子面出水情况,v2为隧道所处地区的地质构造特征,v3为岩体结构;u3=(v5,v6,v7),其中v5 为岩石纵横波速比的变化情况,v6为泊松比变化情况,v7为深度偏移图像的变化情况。 3.给定权重向量

权重系数是分项评分综合合成时的重要参数, 它表明了各指标与评价结果之间的确定关系,说明各指标在测评中的重要程度。在确定指标权重系数时, 要慎重分析各指标在目标中的地位,合理分配权数,这样才能使综合评价结果客观、科学。本例利用调查问卷征求了多位从事超前地质预报的专家的意见,综合考虑各位专家的意见,创建层次分析法一级和二级评判矩阵, 结果如下:二级因素集权重评判矩阵为:

13A=25

131235312321521535 251

经计算该矩阵的最大特征值Kmax = 4,对应的特征向量W1 =[0.1601,0.4804,0.3203,0.8006],归一化处理后为W1 =[0.091,0.273,0.182,0.454]。该特征向量即为各二级因素的权重。类似的对于一级因素集也分别建立其权重评判矩阵,通过求解特征值及其对应的特征向量, 从而获得各因素的权重。 地质分析方法3个子因素的权重评判矩阵为:

1A1=213

13214

114 该矩阵的最大特征值Kmax =3,对应的特征向量经归一化处理为X2 =[0.320,0.558, 0.122]。该特征向量即为地质分析法各一级因素的权重。 TSP方法3个子因素的权重评判矩阵为:

11 A3=22

214121 41该矩阵的最大特征值Kmax=3,对应的特征向量经归一化处理为X3=[0.286,0.143,0.571]。该特征向量即为TSP法各一级因素的权重。经检验以上矩阵均满足一致性要求。

4.建立模糊评判矩阵

由于地下水的预测工作在定量解释方面还存在很多不足,难以确地下水量的多少,或者只能半定量的确定;因此,根据表2中提供的实际探测结果,国内专家的研究成果以及实际工作经验, 初步确定各因素的隶属度如表3所示。

通过以上步骤就建立了隧道岩体含水情况的模糊综合评判模型。

5.模糊评价

由上面计算的各一级因素的相对权重及隶属度,得到相应的一级综合模糊评判结果:

1000=0.878,0.122,0,0 B1=W2R1=0.320,0.558,0.12210000100 B1为地质分析的3个子因素综合评判的结果: 岩体含大量地下水的可能性最大, 为0. 878。

同理按照TSP方法各一级因素的相对权重及给出的隶属度, 可以得到一级综合模糊评判结果:

1000=0.878,0.122,0,0B1=W2R1=0.320,0.558,0.12210000100

B3为TSP方法的3个子因素综合评判的结果:岩体含少量地下水的可能性最大。

由于高密度电法和地质雷达法没有一级评判因素; 因此, 它们的一级综合模糊评判结果是给出的隶属度B2 =R2 =(0,1,0,0),B4 =R4 =(0,1,0,0)。 根据式B2,B4的结果可以确定前方岩体中等含量地下水的可能性最大。 以上4种方法获得的隧道前方30m 范围内岩体含水情况均不同,而且差异较大;因此,必须结合二级评判因素,确定最终结果。根据各一级、二级因素的权重及评判结果可以得到二级总的模糊评判集:

B10.8780.122200B01002=0.08,0.74,0.18,0 B=W1=0.091,0.273,0.182,1.454B30010B01004 根据最大隶属度原则评判, 第2种情况发生的概率最大。即掌子面前方30 m 范围内地下水含量较丰富,存在线状涌水,局部可能存在股状涌水。经开挖验证,K128+745--+775范围内围岩为中厚层状灰岩,中风化,局部为强风化,节理裂隙较发育,以垂直裂隙为主,掌子面大面积呈线状出水,局部地段地下水呈淋雨状涌出。与模糊综合评判结果吻合很好。 6. 结论

(1)实践证明: 利用模糊综合评判法进行超前地质预报能够在一定程度上提高预报的准确性。

(2)通过统计分析多位专家的意见, 可以得到一个较为合理的权重。 (3)文中仅介绍了模糊综合评判法在岩体含水性预报中的应用,该方法也可以应用于岩体破碎带及其他地质灾害的预报工作中, 只是预报方法的选择与相对权重不同而已[18]。

参考文献

[1]方国华,黄显峰.多目标决策理论、方法及其应用[M].北京:科学出版社,2011. [2]符学葳.基于层次分析法的模糊综合评价研究和应用[D].哈尔滨:哈尔滨工业大学航天学院,2011.

[3]金菊良 ,魏一鸣 ,丁晶.基于改进层次分析法的模糊综合评价模型[J].水利学报:2004,3:65-70.

[4]张婉璐,魏占民,徐睿智等.基于模糊综合评判法的天津蓟运河水环境质量评价[J].内蒙古农业大学学报:2012,33(2):124-128.

[5]杜飞翔.模糊综合评判法在拱坝坝肩岩体稳定性分析中的应用.科技资讯:2009,03(b):46-47.

[6]彭凌星,朱自强,密士文.模糊综合评判法在隧道岩体含水性预报中的应用[J].隧道建设:2010,30(3):257-261.

[7]高茂花,初建荣.模糊综合评判法在工程项目风险管理中的应用[J].科技信息,2002,38(4):576-577.

[8]吴殿廷,李东方.层次分析法的不足及其改进的途径[J].北京师范大学学报:自然科学版,2004,40(2):2-268.

[9]邵慧芳,何秉宇.基于模糊综合评判法评价地下水环境质量的探讨-- 以某市为例.环境保护2010,32(1): 20-23.

[10]徐兵兵,张妙仙,王肖肖. 2011. 改进的模糊层次分析法在南苕溪临安段水质评价中的应用[J]. 环境科学学报,31( 9) : 2066-2072.

[11]郭海峰.用模糊综合评判法分析长江引水对大运河镇江段水质的改善作用.水资源与水工程学报:2011,22(4):157-160.

[12]翁月娇,唐德善,王银银.基于F-AHP法的水利加固改造工程效果

后评价[J].水电能源科学.2009,27(5):145-148.

沁园春·雪

北国风光, 千里冰封, 万里雪飘。 望长城内外, 惟余莽莽; 大河上下, 顿失滔滔。

山舞银蛇, 原驰蜡象, 欲与天公试比高。

须晴日, 看红装素裹, 分外妖娆。 江山如此多娇, 引无数英雄竞折腰。 惜秦皇汉武, 略输文采; 唐宗宋祖, 稍逊风骚。

一代天骄, 成吉思汗, 只识弯弓射大雕。

俱往矣, 数风流人物, 还看今朝。

出师表

两汉:诸葛亮

先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。

宫中府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。

侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。

将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。

亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也

臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。

先帝知臣谨慎,故临崩寄臣以大事也。受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。此臣所以报先帝而忠陛下之职分也。至于斟酌损益,进尽忠言,则攸之、祎、允之任也。

愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。臣不胜受恩感激。

今当远离,临表涕零,不知所言。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务