第六章
习题 一、单项选择题
1.下面的函数关系是( )
A现代化水平与劳动生产率 B圆周的长度决定于它的半径 C家庭的收入和消费的关系 D亩产量与施肥量 2.相关系数r的取值范围( )
A -∞< r <+∞ B -1≤r≤+1 C -1< r < +1 D 0≤r≤+1
3.年劳动生产率x(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )
A增加70元 B减少70元 C增加80元 D减少80元
4.若要证明两变量之间线性相关程度高,则计算出的相关系数应接近于( ) A +1 B -1 C 0.5 D 1
5.回归系数和相关系数的符号是一致的,其符号都可用来判断现象( ) A线性相关仍是非线性相关 B正相关仍是负相关 C完全相关仍是不完全相关 D单相关仍是复相关
6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间成立线性回归方程
ŷ =a+bx。经计算,方程为ŷ =200—0.8x,该方程参数的计算( )
A a值是明显不对的 B b值是明显不对的 C a值和b值都是不对的 D a值和b值都是正确的
7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )
A 8 B 0.32 C 2 D 12.5
8.进行相关分析,要求相关的两个变量( )
A都是随机的 B都不是随机的 C一个是随机的,一个不是随机的 D随机或不随机都可以 9.下列关系中,属于正相关关系的有( ) A合理限度内,施肥量和平均单产量之间的关系 B产品产量与单位产品本钱之间的关系 C商品的流通费用与销售利润之间的关系 D流通费用率与商品销售量之间的关系 10.相关分析是研究( )
A变量之间的数量关系 B变量之间的变更关系 C变量之间的彼此关系的密切程度 D变量之间的因果关系
11.在回归直线yc=a+bx,b<0,则x与y之间的相关系数 A r=0 B r=l C 0< r<1 D -1< r <0 12.当相关系数r=0时,表明( ) A现象之间完全无关 B相关程度较小 C现象之间完全相关 D无直线相关关系 13.下列现象的相关密切程度最高的是( )
A某商店的职工人数与商品销售额之间的相关系数0.87 B流通费用水平与利润率之间的相关系数为-0.94 C商品销售额与利润率之间的相关系数为0.51 D商品销售额与流通费用水平的相关系数为-0.81 14.估量标准误差是反映( )
A平均数代表性的指标 B相关关系的指标 C回归直线方程的代表性指标 D序时平均数代表性指标 二、多项选择题
( ) 1.下列哪些现象之间的关系为相关关系( )
A家庭收入与消费支出关系 B圆的面积与它的半径关系 C广告支出与商品销售额关系
D商品价钱必然,商品销售与额商品销售量关系 2.相关系数表明两个变量之间的( )
A因果关系 C变异程度 D相关方向 E相关的密切程度 3.对于一元线性回归分析来讲( )
A两变量之间必需明确哪个是自变量,哪个是因变量
B回归方程是据以利用自变量的给定值来估量和预测因变量的平都可能值 C可能存在着y依x和x依y的两个回归方程 D回归系数只有正号
4.可用来判断现象线性相关方向的指标有( )
A相关系数 B回归系数 C回归方程参数a D估量标准误 5.单位本钱(元)依产量(千件)转变的回归方程为yc=78- 2x,这表示( ) A产量为1000件时,单位本钱76元 B产量为1000件时,单位本钱78元 C产量每增加1000件时,单位本钱下降2元 D产量每增加1000件时,单位本钱下降78元 6.估量标准误的作用是表明( )
A样本的变异程度 B回归方程的代表性 C估量值与实际值的平均误差 D样本指标的代表性
7.销售额与流通费用率,在必然条件下,存在相关关系,这种相关关系属于( A完全相关 B单相关 C负相关 D复相关 8.在直线相关和回归分析中( )
A据同一资料,相关系数只能计算一个 B据同一资料,相关系数可以计算两个
) C据同一资料,回归方程只能配合一个
D据同一资料,回归方程随自变量与因变量的肯定不同,可能配合两个 9.相关系数r的数值( )
A可为正值 B可为负值 C可大于1 D可等于-1 10.从变量之间彼此关系的表现形式看,相关关系可分为( ) A正相关 B负相关 C直线相关 D曲线相关 11.肯定直线回归方程必需知足的条件是( ) A现象间确实存在数量上的彼此依存关系 B相关系数r必需等于1
C y与x必需同方向转变 D现象间存在着较密切的直线相关关系
12.当两个现象完全相关时,下列统计指标值可能为( ) A r=1 B r=0 C r=-1 D Sy=0
13.在直线回归分析中,肯定直线回归方程的两个变量必需是( ) A一个自变量,一个因变量 B均为随机变量
C对等关系 D一个是随机变量,一个是可控制变量 14.配合直线回归方程是为了( )
A肯定两个变量之间的变更关系 B用因变量推算自变量 C用自变量推算因变量 D两个变量都是随机的 15.在直线回归方程中( )
A在两个变量中须肯定自变量和因变量 B一个回归方程只能作一种推算 C要求自变量是给定的,而因变量是随机的。D要求两个变量都是随机变量 16.相关系数与回归系数( )
A回归系数大于零则相关系数大于零 B回归系数小于零则相关系数小于零 C回归系数大于零则相关系数小于零
D回归系数小于零则相关系数大于零 三、判断题
1.相关关系和函数关系都属于完全肯定性的依存关系。 ( )
2.若是两个变量的变更方向一致,同时呈上升或下降趋势, 则二者是正相关关系。( ) 3.假定变量x与y的相关系数是0.8,变量m与n的相关系数为-0.9,则x与y的相关密切程度高。( )
4.当直线相关系数r=0时,说明变量之间不存在任何相关关系。( )
5.相关系数r有正负、有大小,因此它反映的是两现象之间具体的数量变更关系。( ) 6.回归系数b的符号与相关系数r的符号,可以相同也可以不相同。( )
7.在直线回归分析中,两个变量是对等的,不需要区分因变量单䍂襬5⠊5阁耀555伀r越大,则估量标准误差 Sy值越大,从而直线回归方程的精准性越低。( )
9.工人的技术水平提高,使得劳动生产率提高。这种关系是一种不完全的正相关关系( )
10.回归分析和相关分析一样所分析的两个变量都必然是随机变量( ) 11.相关的两个变量,只能算出一个相关系数( )
12.一种回归直线只能作一种推算,不能反过来进行另一种推算( ) 四、简答题
1.什么是相关关系?它和函数关系有什么不同? 2.简述相关分析和回归分析关系。
3.直线回归方程中y=a+bx,参数a、b是如何求得的?它们代表什么意义? 4.构造直线回归模型应具有哪些条件? 5.什么是估量标准误差?其作用如何? 6.应用相关与回归分析应注意哪些问题? 五、计算题
1.有14个同类企业的生产性固定资产年平均价值和工业总产值资料如下:
企业编号 生产性固定资产价值(万
元)
工业总产值(万元)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 合计
2.8 2.8 3.0 2.9 3.4 3.9 4.0 4.8 4.9 5.2 5.4 5.5 6.2 7.0 61.8
6.7 6.9 7.2 7.3 8.4 8.8 9.1 9.8 10.6 11.7 11.1 12.8 12.1 12.4 134.9
(1)计算两变量的相关系数并说明两变量之间的相关方向。 (2)成立直线回归方程,并说明其参数的经济意义。
(3)估量生产性固定资产(自变量)为10万元时,估量总产值(因变量)的可能值。 2.某公司对10户家庭进行调查,取得一下资料:
某种商品的月需求量和价钱调查表
家庭号 需求量(kg) 价格(元) 1 2 3 4 5
1.0 3.5 3.0 2.7 2.4
5.0 2.0 2.0 2.3 2.5
家庭号
6 7 8 9 10
需求量(kg) 价格(元)
2.5 2.0 1.5 1.2 1.2
2.6 2.8 3.0 3.3 3.5
要求:(1)计算相关系数,分析该商品价钱与需求量之间上的相关性。 (2)成立回归模型,并说明其参数的经济意义。 (3)计算估量标准误差。
(4)假定价钱下降至1.5元时,以95.45%的靠得住程度估量该商品的需求量。 3、为研究产品销售额与销售利润之间的关系,某公司对所属6家企业进行调查。设产品销售额x(万元),销售利润y(万元),调查资料经初步整理和计算,结果如下:
x=225,
y=13,x2=9823,
y2=36.7,
xy=593。
要求:(1)计算产品销售额与销售利润之间相关系数。
(2)写出配合销售利润对销售额的直线回归方程。
第六章 相关与回归分析
一、单项选择
1. B 2. B 3. A 4. D 5. B 6. C 7. C 8. A 9. A 10.C 11. D 12. D 13. B 14. C 二、多项选择
1.AC 2. DE 3.ABC 4.AB 5. AC 6. BC 7. BC 8. AD 9.ABD 10. CD 11.AD 12.AC 13.AD 14. AC 15. ABC 16.AB 三、判断
1. × 2. √ 3. × 4. × 5. ×
6. × 7. × 8. × 9. √ 10. × 11. √ 12. √ 四、简答
1.相关关系是一种不完全肯定的随机关系,在相关关系的情况下,自变量的每一个数值都可能有若干个因变量的数值与之对应。因此,相关关系是一种不完全的依存关系。相关关系与函数关系的不同表此刻:(1)相关关系的两变量的关系值是不肯定的,当给出自变量的数值后,因变量可能会围绕其平均数出现若干个数值与之对应;而函数关系的两变量的关系值是完全肯定的,即当给出自变量的数值后,因变量只有一个唯一肯定的数值与之对应。(2)函数关系变量之间的依存关系可用方程y=f(x)表现出来,而相关关系则不能,它需要借助函数关系的数学表达式,才能表现出现象之间的数量关系。
2.就一般意义而言,相关分析包括回归和相关两方面的内容,因为它们都是研究变量之间彼此关系的。但就具体的方式所解决的问题而言,回归和相关又有明显的区别,二者的区别
主要表此刻以下几方面:(1)进行相关分析时没必要事前肯定两个变量中哪个是自变量哪个是因变量,而进行回归分析时,则必需事前肯定自变量和因变量。(2)相关分析中的两个变量都是随机变量,而回归分析中的两变量只有因变量是随机的,自变量是可以控制的量。(3)计算相关系数的两变量是对等的,改变二者的位置并非影响相关系数的数值,而回归分析中,对于一种没有明显因果关系的两变量,可以求得两个回归方程,一个为Y倚X的回归方程,另一个为X倚Y的回归方程。(4)相关分析只能分析两变量的相关程度和方向,而回归分析要比相关分析更深切,更具体,它要分析因变量是如何随着自变量的转变而发生转变的。二者的联系主要表此刻:回归分析和相关分析是彼此补充的 ,密切联系的。相关分析需要回归分析来表明现象数量关系的具体形式,而回归分析则应该成立在相关分析的基础上。依托相关分析表明现象的数量转变具有密切的关系,进行回归分析求其相关的具体形式才成心义。
3.一般来讲,拟合回归方程的要求是:找出适合的参数a和b,使所肯定的回归方程能够达到实际的Y值与对应的理论值Yc的离差平方和为最小值。即:Q=
22yyyabx=最小值 。回归方程中参数a和b的经济含义是:参数ac代表直线的起点值,在数学上称为直线的纵轴截距,它表示X=0时Y的常数项。参数b称为回归系数,表示自变量X增加一个单位时因变量Y的平均增加值。回归系数的正负号用来判断两变量相关的方向。
4. (1)在定性分析的基础上进行定量分析,是正确运用回归分析的必要条件。构造直线回归方程,首先要通过理论分析判断,对确有因果关系或密切相关关系的变量,肯定自变量和因变量,因变量。
(2)具有足够的样本数据。
(3)数据分析表明,因变量与自变量具有显著地线性相关关系。
(4)拟合直线回归方程要找出适合的参数a和b,使所肯定的回归方程能够达到实际的Y值与对应的理论值Yc的离差平方和为最小值。即:Q=
22yyyabx=最小值。 c5.估量标准误是表明回归方程理论值与实际值之间离差的平均水平的指标。此指标的作用有 以下几点:
(1)它可以说明以回归直线为中心的所有相关点的离散程度。 (2)它可以说明回归方程的理论值代表相应实际值的代表性的大小。 (3)它可以反映两变量之间相关的密切程度。
6. (1)在定性分析的基础上进行定量分析,是正确运用回归分析的必要条件。在肯定哪些变量作自变量,哪些变量作因变量之前,必需要对所研究的问题有充分的熟悉。若对本来没有内在联系的现象,硬性进行相关分析,将致使“虚假相关”的错误。若在此基础上据以进行回归分析,并用以指导实际工作,必将会造成失误。要弄好定性分析,必需熟悉所研究的领域,有足够的理论知识、专业知识和实践经验。
(2)回归预测适宜于内插预测,不宜用于超过必然范围的外推预测。这是因为咱们成立的回归模型,一般都是按照必然范围的有限样本资料取得的经验公式,其有效性只适用于内插预测和较短时期的外推预测。例如,增加施肥量和耕耘深度可以提高亩产,但如果施肥量过量,耕耘太深,亩产不但不会提高,反而会减少。
(3)在回归模型中,回归系数的绝对值只说明自变量与因变量变更的比例关系,不表示变更的密切程度,因为回归系数的大小受变量计算单位大小的影响。
(4)在进行回归分析时,为了使分析结果更准确、靠得住,对于同一资料可以配合多种回归方程,别离计算估量值(理论值)和实际值的估量标准差,选择误差最小的方程式作为进行回归分析的方程。
六、计算五、计算题
1.有14个同类企业的生产性固定资产年平均价值和工业总产值资料如下:
企业编号
生产性固定资产价值(万
元)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 合计
2.8 2.8 3.0 2.9 3.4 3.9 4.0 4.8 4.9 5.2 5.4 5.5 6.2 7.0 61.8
6.7 6.9 7.2 7.3 8.4 8.8 9.1 9.8 10.6 11.7 11.1 12.8 12.1 12.4 134.9
工业总产值(万元)
(1)计算两变量的相关系数并说明两变量之间的相关方向,0.956,正相关。 (2)成立直线回归方程,并说明其参数的经济意义。(SPSS:A=3.1,b=1.448)EXCEL(a=3.1,b=1.448),b=1.448表示生产性固定资产价值增加1(万元),工业总产值
平均增加1.448(万元)。
(3)估量生产性固定资产(自变量)为10万元时,估量总产值(因变量)的可能值17.549万元。
2.某公司对10户家庭进行调查,取得以下资料:
某种商品的月需求量和价钱调查表
家庭号
6 7 8 9 10
家庭号 需求量(kg) 价格(元) 1 2 3 4 5
1.0 3.5 3.0 2.7 2.4
5.0 2.0 2.0 2.3 2.5
需求量(kg) 价格(元)
2.5 2.0 1.5 1.2 1.2
2.6 2.8 3.0 3.3 3.5
要求:(1)计算相关系数,r=-0.8621该商品价钱与需求量之间具有高度负相关性。 (2)成立回归模型,Yc=4.495125-0.82591X,并说明其参数-0.82591的经济意义是,价钱上涨1元,需求就减少0.82591kg。
(3)计算估量标准误差为0.458582 kg
(4)假定价钱下降至1.5元时,以95.45%的靠得住程度估量该商品的需求量(3.256267-0.9171,3.256267+0.9171)即(2.339103,4.173431)kg
3、为研究产品销售额与销售利润之间的关系,某公司对所属6家企业进行调查。设产品销售额x(万元),销售利润y(万元),调查资料经初步整理和计算,结果如下:
x=225,
y=13,x2=9823,
y2=36.7,
xy=593。
3.解:(1)r=0.9703
(2)成立回归模型,b=0.0761 a=2.1667-0.0761*37.5=-0.68705
Yc=-0.68705+0.0761X1