您好,欢迎来到微智科技网。
搜索
您的当前位置:首页神奇积木

神奇积木

来源:微智科技网
神奇积木的数学文化

摘要:生活中我们常常相信亲眼所见,但又常常为自己的眼睛所骗,魔术就是一个很好的例子。数学中也有这种欺骗我们眼睛的奇妙的数学魔术. 关键字:斐波那契数列;

刘谦在1分04秒开始打乱积木,1分07秒打乱完毕,这时桌面的积木是9块,没有停顿又开始调整了,1分11秒重新调整完毕,这时桌面上的积木变成了8块。大家要问:怎么少了1块积木呢?被刘谦从桌面上拿走了吗?其实没有。大家仔细看,1分07秒的时候刘谦左手,靠近他身体最近的那块长条形积木,在1分09秒的时候被他用右手拿最大的一块积木给盖住了,他的左手此时放在了右手的前面,挡住了大家的视线,也就是说最大的那块积木不是实心的,是空心的。1分37秒时刘谦恢复了积木的方形,这时是8块,面积肯定比原来的要小。后来第一次加了1块小的积木,又拼成了方形。这时的面积比8块的大,比一开始9块的要小,第二次加了1块比第一次大些的积木,同样也拼成了方形,这时的面积和一开始9块的面积是一样的,他用框框套了一下,得出结论,加进去两块积木的总面积是和被他盖住的那块长条积木的面积一样大。为什么加了第一块积木的时候不把框框向上套啊?很简单,达不到框框的面积。这个魔术的巧妙在,积木在变成8块的时候和在加入第一块积木的时候都成方形,设计者动脑筋了!

,请看下面问题1这两个图形,如果将图1中的四块几何图形裁剪开来重新拼接成图2,我们将会发现,与图1相比,图2多出了一个洞!这怎么可能呢?理性会提出这样的疑问。奥妙何在我们姑且按下不表,让喜欢思考的同学先动动脑子。

我们还是来看一个更简单的问题2吧,将图3中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图4,计算可知长方形的面积为8×21=168,比正方形少了一个 单位的面积,真不可思议!

这两个问题是这样的令人惊奇和难以理解,值得我们花费一些时间动手按照所说的剪裁方法做一做。以问题2为例,我们在白纸上将正方形量好画出,剪成四块,重新安排后拼成长方形,除非图形做得很大并且作图和剪裁都十分精确,我们一般是不会发现拼接成的长方形在对角线附近发生了微小的重叠,正是沿对角线的微小重叠导致了一个单位面积的丢失。要证实这一点我们只要计算一下长方形对角线的斜率和正方形拼接各片相应边的斜率,比较一下就会清楚了。

问题2中涉及到四个数据5、8、13和21,有一定数学基础的同学会认出这是著名的斐波那契数列中的四项,斐波那契数列的特征是它的每一项都是前两项之和:1,1,2,3,5,8,13,21,34,……。我们还可以使用这个数列中的其他相邻四项来试验这个过程,无论选取哪四项,都可以发现正方形和长方形的面积是不会相等的,有时正方形的面积比长方形多一个单位面积,有时则正好相反。多做几次上述实验,我们就会得出斐波那契数列的一个重要性质:这个数列任意一项的平方等于它前后相邻两项之积加1或减1。用公式表示就是: 。其中 表示正方形的面积, 表示长方形的面积。知道了这个事实,我们就可以自己构造类似于问题2的几何趣题。用高二的斜率知识能解答

我们在白纸上将正方形量好画出,剪成四块,重新安排后拼成长方形,除非图形做得很大并且作图和剪裁都十分精确,我们一般是不会发现拼接成的长方形在对角线附近发生了微小的重叠,正是沿对角线的微小重叠导致了一个单位面积的丢失。要证实这一点我们只要计算一下长方形对角线的斜率和正方形拼接各片相应边的斜率,比较一下就会清楚了。

问题2中涉及到四个数据5、8、13和21,有一定数学基础的同学会认出这是著名的斐波那契数列中的四项,斐波那契数列的特征是它的每一项都是前两项之和:1,1,2,3,5,8,13,21,34,„„。我们还可以使用这个数列中的其他相邻四项来试验这个过程,无论选取哪四项,都可以发现正方形和长方形的面积是不会相等的,有时正方形的面积比长方形多一个单位面积,有时则正好相反。多做几次上述实验,我们就会得出斐波那契数列的一个重要性质:这个数列任意一项的平方等于它前后相邻两项之积加1或减1。

上面的这个斐波那契数列是以1,1两数开始的,广义的斐波那契数列可以从任意两数开始。比如说,用广义斐波那契数列2,2,4,6,10,16,……做上述试验,就会多得或丢失四个单位的面积。如果用a、b、c表示广义斐波那契数列的相邻三项,以x表示“得”或“失”的数字,则下列两式成立: 我们还可以来研究这样一个有趣的问题:把正方形按上述方法剪成四块,是否会拼接成一个与它面积相等的长方形?要回答这个问题,可以令方程组中的x等于零,再解之得唯一正解是: 。其中 恰是著名的黄金分割比,通常用 来表示,它是一个无理数,等于1.618033……。这就是说,唯一的每项平方等于前后相邻两项之积的斐波那契数列是:1, , , , ,……。要证明它的确是斐波那契数列,只要证明它等价于数列1, , +1,2 +1,3 +2,……就可以了。只有用这个数列相邻项数表示的长度来分割正方形,才可以拼出面积不变的长方形。

我们再回到问题1,题中涉及到的数据1,1,2,3,5,8,13恰是斐波那契数列的前七项,因此问题1实际上是问题2的一个复杂化版本,计算一下图中两个大小三角形斜边的斜率,那么一开始的疑问已不讲自明。

最后再给喜欢思考的同学提出一个与前两个问题略有不同的问题 3,图5这个正方形按图中标出的数据分割成了五块几何图形,剪开后重新拼接成图6,奇怪,又多出了一个洞!这次斜线处并无叠合,少掉的一个单位面积哪里去了呢?这个问题最初是由美国魔术师保罗?卡瑞提出的,虽然它曾经难倒了许多美国

人,但相信它难不倒聪明的中国学生。为帮助大家思考,提示一下:不要忘了计算!最后送给大家一句华罗庚教授的话作为本文的结束,“数缺形时少直观,形少数时难入微”。

图表 1

你的眼睛欺骗了你!其实这根本不是三角形!

图中的绿色三角形,斜边的斜率=高:底=2:5=0.4 红色三角形,斜边的斜率=高:底=3:8=0.375 两者不相等!!!

因此上面“三角形”的“斜边”略向下凹,而下面“三角形”的“斜边”略向上凸,造成的面积差刚好等于1个方格!只是一般人没觉察到“不是三角形”这一点。

欺骗眼睛的几何问题

生活中我们常常相信亲眼所见,但又常常为自己的眼睛所骗,魔术就是一个很好的例子。数学中也有这种欺骗我们眼睛的奇妙的数学魔术,请看下面问题1这两个图形,如果将图1中的四块几何图形裁剪开来重新拼接成图2,我们将会发现,与图1相比,图2多出了一个洞!这怎么可能呢?理性会提出这样的疑问。奥妙何在我们姑且按下不表,让喜欢思考的同学先动动脑子。

我们还是来看一个更简单的问题2吧,将图3中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图4,计算可知长方形的面

积为8×21=168,比正方形少了一个 单位的面积,真不可思议!

这两个问题是这样的令人惊奇和难以理解,值得我们花费一些时间动手按照所说的剪裁方法做一做。以问题2为例,我们在白纸上将正方形量好画出,剪成四块,重新安排后拼成长方形,除非图形做得很大并且作图和剪裁都十分精确,我们一般是不会发现拼接成的长方形在对角线附近发生了微小的重叠,正是沿对角线的微小重叠导致了一个单位面积的丢失。要证实这一点我们只要计算一下长方形对角线的斜率和正方形拼接各片相应边的斜率,比较一下就会清楚了。 问题2中涉及到四个数据5、8、13和21,有一定数学基础的同学会认出这是著名的斐波那契数列中的四项,斐波那契数列的特征是它的每一项都是前两项之和:1,1,2,3,5,8,13,21,34,„„。我们还可以使用这个数列中的其他相邻四项来试验这个过程,无论选取哪四项,都可以发现正方形和长方形的面积是不会相等的,有时正方形的面积比长方形多一个单位面积,有时则正好相反。多做几次上述实验,我们就会得出斐波那契数列的一个重要性质:这个数列任意

一项的平方等于它前后相邻两项之积加1或减1。用公式表示就是:

。其中

表示正方形的面积,

表示长方形的面积。知

道了这个事实,我们就可以自己构造类似于问题2的几何趣题。

上面的这个斐波那契数列是以1,1两数开始的,广义的斐波那契数列可以从任意两数开始。比如说,用广义斐波那契数列2,2,4,6,10,16,„„做上述试验,就会多得或丢失四个单位的面积。如果用a、b、c表示广义斐波那契

数列的相邻三项,以x表示“得”或“失”的数字,则下列两式成立:

我们还可以来研究这样一个有趣的问题:把正方形按上述方法剪成四块,是否会拼接成一个与它面积相等的长方形?要回答这个问题,可以令方程组中的x等于零,再解之得唯一正解是:

。其中

恰是著名的黄金分割比,通

常用 来表示,它是一个无理数,等于1.618033„„。这就是说,唯一的每项平方等于前后相邻两项之积的斐波那契数列是:1,,

,„„。要证

明它的确是斐波那契数列,只要证明它等价于数列1,,+1,2+1,3+2,„„就可以了。只有用这个数列相邻项数表示的长度来分割正方形,才可以拼出面积

不变的长方形。

我们再回到问题1,题中涉及到的数据1,1,2,3,5,8,13恰是斐波那契数列的前七项,因此问题1实际上是问题2的一个复杂化版本,计算一下图中

两个大小三角形斜边的斜率,那么一开始的疑问已不讲自明。

最后再给喜欢思考的同学提出一个与前两个问题略有不同的问题 3,图5这个正方形按图中标出的数据分割成了五块几何图形,剪开后重新拼接成图6,奇怪,又多出了一个洞!这次斜线处并无叠合,少掉的一个单位面积哪里去了呢?这个问题最初是由美国魔术师保罗?卡瑞提出的,虽然它曾经难倒了许多美国人,但相信它难不倒聪明的中国学生。为帮助大家思考,提示一下:不要忘了计算!最后送给大家一句华罗庚教授的话作为本文的结束,“数缺形时少直观,形少数

时难入微”。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务