betweencustomers
MirtaB.Gordon(1),Jean-PierreNadal(2),DenisPhan(3)andJeanVannimenus(2)
(1)LaboratoireLeibniz-IMAG,
46,Ave.F´elixViallet,38031GrenobleCedex1,France
(mirta.gordon@imag.fr,
http://www-leibniz.imag.fr/Apprentissage/Membres/Gordon/index.html)(2)LaboratoiredePhysiqueStatistique,EcoleNormaleSup´erieure,
24rueLhomond,75231Pariscedex05,France(nadal@lps.ens.fr,http://www.lps.ens.fr/˜nadal)(3)CREM,Universit´edeRennes1,France
(denis.phan@univ-rennes1.fr,http://perso.univ-rennes1.fr/denis.phan/)
Abstract
Inthispaperweconsideradiscretechoicemodelwhereheterogeneousagentsaresubjecttomutualinfluences.Weexploresomeconsequencesonthemarket’sbehaviour,inthesimplestcaseofauniformwillingnesstopaydistribution.Weexhibitafirstorderphasetransitionintheprofitoptimisationbythemonopolist:ifthesocialinfluenceisstrongenough,thereisaregimewhere,ifthemeanwillingnesstopayincreases,oriftheproductioncostsdecrease,theoptimalsolutionforthemonopolistjumpsfromasolutionwithahighpriceandasmallnumberofbuyers,toasolutionwithalowpriceandalargenumberofbuyers.Dependingonthepathofpricesadjustmentsbythemonopolist,simulationsshowhystereticeffectsonthefractionofbuyers.
1Introduction
Inthispaperweexploretheeffectsofsocialinteractionsonthepropertiesofasimplemarketmodel,inwhichtheindividualshavetomakeabinarychoice(whethertobuyornotasingleunitofagood)givenapricefixedbyasingleseller(amonopolist).Eachindividualhasareservationprice,i.e.themaximumpriceheisreadytopayforthegood,whichisthesumoftwoterms:anidiosyncraticwillingness-to-pay(IWP),andasocialcomponentproportionaltothefractionofhisneighboursthatbuy.Thislastterm,knownintheeconomicslitteratureasanexternality,istheresultofmutualinteractionsbetweencustomers.Asaconsequence,themarketmaypresentcomplexbehaviours[1,2].Asweshowinthefollowing,theseinteractionsintroducemultiplesolutionsinthedemandfunctionandareresponsiblefortheexistenceofatransitionintheoptimalstrategyofthemonopolist.
ThereisastraightforwardanalogybetweenthecustomersdescriptionandtheIsingmodel,whichhasbeenpointedoutinrecentpapersineconomics[3,4,5,6,7].DependingonthenatureoftheIWPs,theanalogycorrespondstotwodifferentfamiliesofmodelsinstatisticalmechanics:eithertheIWPsarerandomlychosenandremainfixed,ortheypresentindependenttemporalfluctuationsaroundafixed(homogeneous)value.TheformercasecorrespondstoaRandomFieldIsingModelmodel(quencheddisorder).Ifthedistributionofthetemporalfluctuationsinthelatterislogistic,itcorrespondstoanannealed,thatisthermal,disorder.
Onthesupplyside,weassumethatthemonopolistdoesnotknowtheIWPofeachcustomer,butisawareofitsdistributionamongthepopulation.Hedeterminesthepricethatoptimizeshisprofit.Sincethedemandmaybeamultiplevaluedfunctionoftheprice,themonopolist’ssituationisrisky.
1
InthispaperweconsiderthecaseofquencheddisorderinwhichthedistributionoftheIWPsisuniformandthesocialinfluenceisglobal.Thelatterassumptionisequivalenttothemeanfieldapproximation,andallowsustoobtainanalyticresults.Wedeterminethesupplyanddemandcurves,andthephasediagram,asafunctionoftheaverageIWPofthepopulation,andofthesocialinfluencestrength.
2Simplemodelsofdiscretechoicewithsocialinfluence
WeconsiderasetΩNofNagentswithaclassicallinearIWPfunction[8].Eachagenti∈ΩNeitherbuys(ωi=1)ornot(ωi=0)oneunitofthesinglegivengoodinthemarket.ArationalagentchoosesωiinordertomaximizehissurplusfunctionVi:
Jikωk−P),(1)maxVi=maxωi(Hi+
ωi∈{0,1}
ωi∈{0,1}
k∈ϑi
wherePisthepriceofoneunitandHirepresentstheidiosyncraticpreferencecomponent.
Someotheragentsk,withinasubsetϑi⊂ΩN,suchthatk∈ϑi,hereaftercalledneighboursofi,influenceagenti’spreferencesthroughtheirownchoicesωk.Thissocialinfluenceisrepresentedherebyaweightedsumofthesechoices.LetusdenoteJikthecorrespondingweighti.e.themarginalsocialinfluenceonagenti,ofthedecisionofagentk∈ϑi.Whenthissocialinfluenceisassumedtobepositive(Jik>0),itispossible,followingDurlauf[4],toidentifythisexternaleffectasastrategiccomplementarityinagents’choices[9].
Forsimplicityweconsiderhereonlythecaseofhomogeneousinfluences,thatis,identicalpositiveweightsJik=Jϑandidenticalneighbourhoodstructuresϑofsizen,foralltheagents.Thatis,
Jik=Jϑ≡J/n>0∀i∈ΩN,k∈ϑi,(2)
2.1Psychologicalversuseconomicpointsofview
DependingonthenatureoftheidiosyncratictermHi,thediscretechoicemodel(1)may
representtwoquitedifferentsituations.FollowingthetypologyproposedbyAndersonetal.[10],wedistinguishapsychologicalandaneconomicapproachtoindividualchoices.Withinthepsychologicalperspective(Thurstone[11]),theutilityhasastochasticaspectbecause“therearesomequalitativefluctuationsfromoneoccasiontothenext...foragivenstimulus”.Inthiscase,theIWPspresentindependenttemporalfluctuationsaroundafixed(homogeneous)value(thispointofviewwillbereferredtohereafterastheTP-model).Ifthedistributionofthesetemporalfluctuationsislogistic,itcorrespondstoanannealeddisorder,thatis,tofinitetemperature[7,12]
Onthecontrary,withintheeconomicperspectiveofMcFadden[13](seeAndersonetal.[10]),eachagenthasawillingnesstopaythatisinvariableintime,atleastduringtheperiodunderconsideration,butmaydifferfromoneagenttotheother(wecallhereafterthisperspectivetheMcFmodel).ThissituationisknowninthePhysicslitteratureasamodelwithquencheddisorder.EvenifasellerknowsthestatisticaldistributionoftheIWPoverthepopulation,hecannotobserveeachspecificindividualIWP.Inthelangagueofinteractivedecisiontheory,thissellerisinaemriskysituation.
Thus,thesetwoperspectives,whichdifferinthenatureoftheindividualwillingnesstopay,correspondtoverydifferenttheoreticalmodels.
IntheTPmodel,theidiosyncraticpreferencehastwosub-components:aconstantde-terministictermH(thesameforalltheagents),andatime-andagent-dependentadditivetermi(t)(Hi=H+i).Thei(t)arei.i.d.randomvariablesofzeromean;inthesimula-tionstheyarerefreshedateachtimestep(asynchronousupdating).Agentidecidestobuy
2
accordingtotheconditionalprobability
P(ωi=1|zi(P,H))=P(i>zi(P,H))=1−F(zi(P,H)),
with
zi(P,H)=P−H−Jϑ
ωk,
(3)(4)
k∈ϑi
whereF(zi)=P(i≤zi)isthecumulativedistributionoftherandomvariablesi.InthestandardTPmodel,theagentsmakerepeatedchoices,andthetimevaryingcomponentsi(t)aredrawnateachtimetfromalogisticdistributionwithzeromean,andvarianceσ2=π2/(3β2),FL(z)=(1+exp(−βz))−1.
IntheMcFmodel,theprivateidiosyncratictermsHiarerandomlydistributedovertheagents,butremainfixedduringtheperiodunderconsideration.Therearenotemporalvariations:theiarestrictlyzero.InanalogywiththeTPmodel,itisusefultointroducethefollowingnotation:Hi=H+θi.Inthelimitofaverylargenumberofcustomers,thisimplies:
1
Hi=H.(5)lim
N→∞NiThecustomer’sbehaviour,giventhepriceandthechoicesinhisneighbourhoodϑi,isde-terministic.Agentibuysif:
ωk.(6)θi>P−H−Jϑ
k∈ϑi
Iftheθiarelogisticallydistributedwithzeromeanandvarianceσ2=π2/(3β2)overthe
population,thenthecorrespondencebetweentheTPandtheMcFmodelsisbetterthelargerthenumberofagents,butitisactuallystrictonlyinthelimitofaninfinitepopulation.Noticehoweverthat,althoughformulatedoriginallyforalogisticIWPdistribution,theMcFmodelmaybegeneralizedtoanydistribution.InthepresentpaperwerestrictourinvestigationtotheMcFmodelandweillustrateitsbehaviourintheparticularcasewheretheIWPsareuniformlydistributedoverthepopulation.
2.2Staticversusdynamicpointsofview
Hereafter,weconcentrateontheMcFmodelinthe“global”externalitycase,consideringhomogeneousinteractionsandfullconnectivity,whichisequivalenttothemeanfieldmodelatzerotemperatureinphysics.
Withinthisgeneralframework,weareinterestedintwodifferentaspects.Firstweconsiderastaticpointofviewcomputingthesetofpossibleeconomicequilibria,solvingfortheequalitybetweendemandandsupply.Thiswillallowustoanalyseinsection4theoptimalstrategyofthemonopolist,asafunctionofthemodelparameters.
Weconsidernextthemarket’sdynamicsassumingtheusualparallelMonteCarloupdat-ingrules,whichinthemodelsofeconomicagentscorrespondtomyopiclearningwithfullinformation(i.e.basedonthelastiteration,withoutmemory):basedontheobservationofthebehaviouroftheotheragentsattimet−1,eachagentdecidesattimettobuyornottobuy.Weshowthat,ingeneral,themarketconvergestowardsthestaticequilibriaoftheprecedingsection,exceptforapreciserangeoftheparametervalueswhereinterestingstaticaswellasdynamicfeaturesareobserved.
InPhysics,thesetwokindsofanalysiscorrespondtothestudyof,respectively,thethermalequilibriumpropertieswithinthestatisticalensembleframeworkononeside,andtheoutofequilibriumdynamics(which,inmostcases,approachesthestaticequilibriumthrougharelaxationprocess)ontheotherside.
3
a21h-p0-1η=10<η<1 -a-2-3-4-501η=02345jFigure1:
B j678Customer’sphasediagramintheplane(j,h−p):Theregionwithdiagonalstripescorrespondsto
parametersforwhichallthecustomersarebuyers(η=1).Thedarkgreyregioncorrespondstoparametervalueshinderingadoption(η=0).Forj (7) whereθiisarandomvariable. Forthefollowingdiscussionitisconvenienttodividebothsidesoftheprecedingequationbyσ,thevarianceofthedistribution,andconsidernormalizedvariables xi≡θi/σ,p≡P/σ,h≡H/σ,j≡J/σ. Then,thedistributionofxihaszeromeanandunitaryvariance.Intheillustrationsweconsidertheuniformdistributiondefinedby 1/2aif−a≤x≤a f(x)=(9) 0otherwise √ witha= (8) wherez,definedbyequation(10),dependsonp,h,jandη. Sinceforagivenp,equation(11)definesthepenetrationrateηasafixed-point,inversionofthisequationgivesaninversedemandfunction: pd(η)=h+jη+G(η) whereG(η)istheinverseofthecomplementarydistributionfunction;itsatisfies: ∞ f(x)dx=η. G(η) (12) (13) Thus,G(η)isanonincreasingfunctionofη.NoticethatitsderivativesatisfiesG(η)=−1/f(G(η)).Givenvaluesofjandh,formostvaluesofp,(11)hasauniquesolutionη(p).Thesearethevaluesofηthatsatisfyp=pd(η)wherepd(η)isgivenbyequation(12). However,forjlargerthanacriticalvaluejB,thatdependsonthespecificdistributionf(x)thereisarangeofpricessuchthat,foranyvalueofpwithinthisrange,(11)hasmultiplesolutions.Moreprecisely,iff(x)ismonomodal(likeinthepresentcase),therearetwostablesolutionsandanunstableone,andjB=1/fMax,wherefMaxisthemaximumvalueoff(x).Theunstablesolutionsarethosewithpositivederivativeofpd(η)(theycorrespondtostateswherethefractionofbuyerswouldincreaseuponincreasingtheprice). Theupperandlowervalues,p1andp2,oftherangepresentingmultipledemandsolutions, p1(j,h) (14) areobtainedfromtheconditionthateq.(12)hasasingledegeneratesolutionη(p).Fordifferentiablepdfs,itis: η=1−F(z),and d(1−F(z)) 321 32a-j j=3ah=-3a/2210 p(η)s p(η)-ca/2 d0j=a-1h=a/2-20.00 p(η)s p(η)-c-a 0.250.500.751.00d-1-20.00-a0.250.500.751.00Figure2: Inversesupplyanddemandcurvesfordifferentvaluesofhandj. 4Supplyside Onthesupplyside,weconsideramonopolistfacingheterogeneouscustomersinariskysituationwherethemonopolisthasperfectknowledgeofthefunctionalformoftheagents’surplusfunctionsandtheirmaximisationbehaviour(1).Healsoknowsthestatisticaldis-tributionoftheidiosyncraticpartofthereservationprices,h+xi.However,themonopolistcannotobserveanyindividualreservationprice.Heonlyobservestheaggregateresultoftheindividualchoices(tobuyornottobuy),thatis,thefractionofcustomersη,whoseexpectedvalueforagivenpriceisgivenbyequation(11).Noticethat,astheinteractionsareglobal,inthelimitofalargenumberofcustomers(rigorouslyforN→∞)thisisthesamequantityastheonethatentersinthetermofsocialinfluenceamongcustomers,equation(7). 4.1Profitmaximisation Letc≡C/σbethemonopolist’scostinunitsofσ(thevarianceofthedistributionoftheIWP)foreachunitsold,sothatp−cishis(normalized)profitperunit. Sinceeachcustomerbuysasingleunitofthegood,themonopolist’stotalexpectedprofitis(p−c)Nη.Heisleftwiththefollowingmaximisationproblem: pM=argmaxΠ(p), p (16) whereNΠ(p)istheexpectedprofit,with: Π(p)≡(p−c)η(p), (17) andη(p)isthesolutiontotheimplicitequation(11).Ifthereisnodiscontinuityinthedemandcurveη(p)(henceforj≤jB),pMsatisfiesdΠ(p)/dp=0,whichgivesdη/dp=−η/patp=pM.Usingtheimplicitequation(11)tocalculatethederivative,weobtainatp=pM: f(z) p, (18) wherezhastobetakenatp=pM. Becausethemonopolistobservesthedemandlevelη,wecanuseequation(11)toreplace1−F(z)byη.Aftersomemanipulations,equation(18)givesthemonopolist’spriceasafunctionofthedemand,whichmaybeinterpretedasan(effective)inversesupplyfunctionps(η): ps(η)=c−η[G(η)+j].(19) 6
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务