您好,欢迎来到微智科技网。
搜索
您的当前位置:首页Simulated and Experimental Bending Dynamics in DNA with and without A-Tracts

Simulated and Experimental Bending Dynamics in DNA with and without A-Tracts

来源:微智科技网
ComparativeBendingDynamicsinDNAwithandwithoutA-tracts

AlexeyK.MazurandDimitriE.Kamashev

LaboratoiredeBiochimieTh´eorique,CNRSUPR9080

InstitutdeBiologiePhysico-Chimique

13,ruePierreetMarieCurie,Paris,75005,France.FAX:+33[0]1.58.41.50.26.Email:alexey@ibpc.fr

arXiv:physics/0108038v2 [physics.bio-ph] 20 Sep 2001ThemacroscopiccurvatureofdoublehelicalDNAin-ducedbyregularlyrepeatedadeninetractsiswell-knownbutstillpuzzling.Itsphysicaloriginremainscontroversialeventhoughitisperhapsthebest-documentedsequencemodula-tionofDNAstructure.Wereportheretheresultsofcompara-tivetheoreticalandexperimentalstudiesofbendingdynamicsin35-merDNAfragments.Thislengthappearslargeenoughforthecurvaturetobedistinguishedbygelelectrophoresis.TwoDNAfragments,withidenticalbasepaircomposition,butdifferentsequencesarecompared.Inthefirstone,asingleA-tractmotifwasfourtimesrepeatedinphasewiththeheli-calscrewwhereasthesecondsequencewas”random”.BothcalculationsandexperimentsindicatethattheA-tractDNAisdistinguishedbythelargestaticcurvatureandcharacter-isticbendingdynamics,suggestingthatthecomputedeffectcorrespondstotheexperimentalphenomenon.TheresultspoorlyagreewithearlierviewsthatattributedadecisiveroleinDNAbendingtosequencespecificbasepairstackingorbindingofsolventcounterions,butlendadditionalsupporttothehypothesisofacompressedfrustratedstateoftheback-boneastheprincipalphysicalcauseofthestaticcurvature.Wediscussthepossiblewaysofexperimentalverificationofthishypothesis.

INTRODUCTION

ItisgenerallyacceptedthatthebasepairsequencecanaffecttheoverallformoftheDNAdoublehelix.In-trinsicDNAbendingisthesimplestsucheffect.NaturalstaticcurvaturewasdiscoverednearlytwentyyearsagoinDNAcontainingregularrepeatsofAnTm,withn+m>3,calledA-tracts1,2,3.Sincethenthisintrigu-ingphenomenonhasbeenactivelystudied,withsev-eralprofoundreviewsoftheresultspublishedindifferentyears4,5,6,7,8,9.ItisknownthatthecurvatureisdirectedtowardstheminorgroovesofA-tractsand/orthemajorgroovesofthejunctionzonesbetweenthem,andthatitsmagnitudeisaround18◦perA-tract.However,theexactsitesandthecharacteroflocalbendsremainamatterofdebateaswellastheirmechanismandphysicalorigin.AlreadythepioneeringconformationalcalculationsoftheseventiesshowedthattheDNAdoublehelixexhibitssignificantbendabilitywhichisanisotropicandsequencedependent10,11.BasedupontheseviewsthewedgemodelofferedtheveryfirstexplanationofbendinginducedbyA-tractsbypostulatingthatstackinginApAstepsisin-trinsicallynon-parallel12.Modifiedversionsofthisthe-1

oryaccountedforasubstantialpartofavailableexper-imentaldata,withgoodscoresofcurvaturepredictionfromsetsoffittedwedgeangles13,14,15.Atthesametime,clearexperimentalcounter-examplesexistwherebendingcouldnotresultfromsimpleaccumulationofwedges16,17.Thejunctionmodel18,2betterthanothertheoriesex-plainedexperimentaldataongelretardationofcurvedDNA.ItoriginatedfromanideathatabendshouldoccurwhentwodifferentDNAformsarestacked19.Ifpoly-dAdoublehelixhadaspecialB’formassuggestedbysomedata20thehelicalaxisshouldbekinkedwhenanA-tractisinterruptedbyarandomsequence.Inturn,theX-raydataarebestinterpretedwithanalternativetheorythatpostulatesthatbendingisintrinsicinmostDNAsequencesexceptA-tractswhicharestraight21,22,23.An-otherinterestingmodelattractedattentionintherecentyears,namely,bendingbyelectrostaticforcesthatre-sultfromneutralizationofphosphatesbysolventcationstrappedintheminorgroovesofA-tracts24.Thisprob-lemisofgeneralimportancebecausetheaccumulatedlargevolumeofapparentlyparadoxicalobservationssug-geststhatsomeessentialfeaturesarestillunknownthatmaybeessentialforthefinestructureandthebiologicalfunctionoftheDNAmolecule.

OneofushasrecentlyproposedanewhypothesisofthephysicaloriginofintrinsicbendsindoublehelicalDNA25.Accordingtoit,thesugar-phosphatebackboneinphysiologicalconditionsisslightlycompressed,thatistheequilibriumspecificlengthofthecorrespondingfreepolymerinthesamesolventislargerthanthatinthecanonicalB-form.Therefore,thebackbone“pushes”stackedbasepairs,forcingthemtoincreasethehelicaltwistandrisewhilethestackinginteractionsopposethis.Asaresult,thebackboneincreasesitslengthbydeviatingfromitsregularspiraltraceandwandersalongtheheli-calsurfacecausingquasi-sinusoidalmodulationsofDNAgrooves.Concomitantbasestackingperturbationsresultinmacroscopicstaticcurvaturewhencertainpropertiesofbasepairsalternatealongthesequenceinphasewiththehelicalscrew.

DrewandTravers(1984,1985)apparentlywerethefirsttonoticethatnarrowingofbothDNAgroovesattheinneredgeofabendisanecessaryandsufficientconditionofbending,andthatanunusuallocalgroovewidthshouldbeaccompaniedbystructuralperturbationsbeyondthisregion.They,andlaterBurkhoffandTul-lius(1987),consideredthepreferenceofnarrowandwideminorgrooveprofilesbycertainsequencesasthepos-

sibleoriginalcauseofthiseffect.Sprousetal(1999)proposedasimilarideawithinthecontextofthejunc-tionmodel.Inacertainsense,thecompressedback-bonetheorycontinuedthesamelineofthinking.Unlikeothermodels,itnaturallyexplainswell-knownenviron-mentaleffectupontheA-tractcurvature,notably,itsreductionwithtemperature26,27,28andadditionofdehy-dratingagents29,30,31(seediscussioninMazur(2000)).Thistheorycertainlyneedsfurtherexaminationandcrit-icalcomparisonwithothermodelsinbothcalculationsandexperiments.

Conformationalmodelingearlierhelpedtoshedlightuponmanyaspectsoftheaboveproblems.ConstructionofspatialDNAtracesfromlocalwedgeparameterscom-binedwithMonteCarlosimulationsofloopclosurewasappliedtocheckdifferenthypothesesandtoestimatelo-calbendinganglesfromexperimentaldata18,32.Energycalculationsrevealedthatbendingmaybeeasieratsomedinucleotidestepsandincertainspecificdirections11,33,withexperimentalsequenceeffectsreproducedinsomeremarkableexamples34.DNAwasshowntohavelocalenergyminimainbentconformationscorrespondingtothejunctionmodel35,36.AllatomMonteCarlocalcula-tionsshowedthatnarrowingoftheA-tractminorgroovewithafewNMR-derivedrestraintsmaybesufficienttoprovokethecurvature37.

Thesimplestset-upformodelingDNAbendingistotakeastraightsymmetricaldoublehelixandletitbendspontaneouslywithnoextraforcesapplied,thatisduetogenericatom-atominteractions.This“naive”approachhasrecentlybecomepossibleowingtotheprogressinmethodologyofmoleculardynamics(MD)calculationsofnucleicacids38,whichwasdemonstratedbysuccess-fulsimulationsofseveralcurvedandstraightDNAfrag-mentsinrealisticenvironmentincludingexplicitwaterandcounterions39,40.Thecharacterofbendingqualita-tivelyagreedwiththetheoriesoutlinedabovesothatnoneofthemcouldbepreferred.Thoroughdiscrimi-nativetestingwouldrequiremoreextensivesamplingofbendingevents,whichshouldbecomepossibleinfuture.DetailedstructuresofshortA-tractfragmentshavealsobeenstudiedbyMD41,42.

ThemajorobstacleinfreeMDsimulationsofintrinsiccurvatureisthelimitedcapacityofsamplingofbendingevents.Thephysicaltimeoftransitionbetweenstraightandbentconformationsmaybetoolongforastatisticallysignificantnumberofsucheventstobeaccumulatedinsimulations.Moreover,experimentaleffectsmaynotap-pearduringinfinitelylongMDbecausemodelsareneverperfect.Tocircumventthesedifficulties,weemployedadifferentstrategy.Wefirstlookedfor,andfoundashortA-tractmotifthatcouldreproduciblyinducesta-blebendsinDNAduringafewnanosecondsofMDwithasimplifiedmodelofB-DNA.Weusedthismotiftocon-structlongerdoubleheliceswithintrinsiccurvatureinsilicoandwecouldincreasethelengthofDNAfragmentsincalculationsto35bp,whichmakespossibleadirectcomparisonwithexperimentsinvitro.

2

Thetwo35-merDNAfragmentswestudyherehaveidenticalbasepaircompositionanddifferonlybytheirsequences.ThefirstfragmentisthedesignedA-tractrepeatwhiletheothersequenceis“random”.AllMDtrajectoriesstartfromcanonicalstraightA-andB-DNAconformations.FortheA-tractDNAfragmenttheycon-vergedtoasinglestaticallybentstatewithplanarcur-vaturetowardsthenarrowedminorgroovesat3’endsofA-tracts.Themagnitudeofbendingisclosetotheexperimentalestimates.Therandomfragmentwasnotstraightaswell,butitscurvaturewasmuchlesssignif-icantandlessplanar.Ingelmigrationassaysthetwomoleculesproducewell-resolveddistinctbands,withtheA-tractsequencedemonstratingareducedmobilitychar-acteristicofcurvedDNA.TheseresultssuggestthattheintrinsicDNAcurvaturereproducedincalculationscor-respondstotheexperimentalphenomenon.Thebendingdynamicsqualitativelyagreeswiththecompressedback-bonetheory,butitcannotbeaccountedforbyothermodels.

MATERIALSANDMETHODS

Calculations

Moleculardynamicssimulationshavebeenperformedbytheinternalcoordinatemethod(ICMD)43,44includ-ingspecialtechniqueforflexiblesugarrings45,withAMBER9446,47forcefieldandTIP3Pwater48.Allcal-culationswerecarriedoutwithoutcut-offsandbound-aryconditions.Thetimestepwas10fsec.Theso-calledminimalmodelofB-DNAwasused49,50.Itin-cludesonlyapartialhydrationshellandtreatscounterionandlongrangesolvationeffectsimplicitly.Advantagesaswellaslimitationsofthisapproachhavebeenreviewedelsewhere38.Themodelhasnootherbiastowardsbentornon-bentconformationsexceptthebasepairsequence.ThestartingfiberA-andB-DNAmodelswerecon-structedfromthepublishedatomcoordinates51.Thehy-drationprotocolsweresameasbefore,25withanidenti-calnumberofexplicitwatermoleculesinA-andB-DNAstarts.ProgramsCurves,52XmMol,53andMathematicabyWolframResearchInc.wereemployedforgraphicsanddataanalysis.

Thetwo35pbDNAfragmentsarereferredtobelowasAtandnAt,fortheA-tractrepeatandthenon-A-tractDNA,respectively.ForbothfragmentstwolongMDtrajectorieswerecomputedstartingfromeitherA-orB-canonicalDNAforms.Thesefourtrajectoriesarere-ferredtoasAt-A,At-B,nAt-A,andnAt-B,respectively,wherethelastcharacterindicatesthestartingstate.Alltrajectorieswerecontinuedto20nsexceptAt-Bwhichwasstoppedatabout12nsbecauseithadclearlycon-vergedlongbefore.

Experimental Sequence5’−...CAAAAATGTCAAAAAATAGGCAAAAAATG...3’RESULTSANDDISCUSSIONConstructionofDNAFragments

Bend centre135bp A−tract repeat5’−AAAATAGGCTATTTTAGGCTATTTTAGGCTATTTT−3’3’−TTTTATCCGATAAAATCCGATAAAATCCGATAAAA−5’234Reference random fragment5’−TTAGATAGTATGACTATCTATGATCATGTATGATA−3’3’−AATCTATCATACTGATAGATACTAGTACATACTAT−5’FIG.1.Constructionof35bpdoublestrandedDNAfrag-ments.ThetopsequencewiththeboxedheptamermotifAAAATAGistakenfromthetrypanosomekinetoplastDNA2.TheA-tractsarenumberedandtheircentersareseparatedbyapproximately10bp.Thereferencerandomfragmenthasthesamebasepaircontentasthe35-merrepeat,butitssequencehasbeenmanuallyre-shuffledtoexcludeanyA-tractmotives.Oligonucleotidesandconstructionof5’-labeledDNA

probes

Figure1explainshowthetwoDNAfragmentsusedinourstudyhavebeenconstructed.TheA-tractmo-tifAAAATAGoriginallyattractedourattentioninMDsimulationsofthenaturalDNAshowninFig.154,whichisthefirstcurvedDNAlocusstudiedinvitro2.The35bpA-tractfragmentwasconstructedbyrepeatingthismotiffourtimesandithadtobeinvertedtomakethetwoDNAterminisymmetrical.Suchinversionshouldnotaffectbending,55butisessentialforsimulationsbe-causethe3’-and5’-endA-tractsmayrepresentqualita-tivelydifferentboundaries.InrepeatedsimulationswiththisandsimilarA-tractfragments,thestaticcurvatureemergedspontaneouslyanditbecamemoreevidentasthechainlengthincreased25.Toobtainareferencenon-A-tractDNA,wehavere-shuffledmanuallybasepairsoftheA-tractrepeat.Wepreferredthisrandomizedse-quencetocommonlyusedGC-richstraightfragmentsinordertokeepthebasepaircontentidenticalandreducethenoisethatcouldcausesmallvariationsingelmobilityandhidethesubtledifferencesweweregoingtodetect.

SpontaneousDevelopmentofCurvaturein

Simulations

Thesequencesofthe35nt-longsyntheticoligonu-cleotidesusedhereareshowninFig.1.Thedou-blestrandedDNAswereobtainedbyannealingofthetwocomplementaryoligonucleotides,oneofthemla-beledwithT4polynucleotidekinaseand[32-P]-ATP.Theannealingwascarriedoutbyincubatingtheoligonu-cleotides(300nM)for3minat80◦Cin20mMTris-HCl(pH8.0),400mMNaCl,0.2mMEDTAandthenallowingthemtocoolslowly.

Gelmobilityassays

MobilityoftheDNAfragmentswasanalyzedin16%gels(acrylamidetobis-acrylamide,29:1)bufferedwith90mMTris-borate,1mMEDTA,pH8.6.Gelswerepre-rununderconstantpoweruntilstabilizationofcurrent.End-labeledDNAinabuffercontaining20mMTris-HCL,50mMNaCL,7%glycerol,pH8.0andbromophenol-bluewasloadedontothegel.Theelectrophoresiswasper-formedunderconstantpowerandconstanttemperatureof8◦C.Thedriedgelswereexposedtostoragephos-phorscreensandvisualizedona400SPhosphorImager(MolecularDynamics).

AllfourtrajectoriesexhibitedstabledynamicswithDNAstructuresclosetotheBform.TableIshowspa-rametersofthefinal1ns-averageconformations.TheyallhaveremarkablysimilarhelicoidalscorrespondingtoatypicalB-DNA.Forexample,theaveragehelicaltwistestimatedfromthebest-fitB-DNAexperimentalvalues56gives34.0±0.2◦and33.8±0.2◦fortheA-tractfragmentandtherandomizedsequence,respectively.Atthesametime,thermsdeviationsfromthecanonicalstructuresvarymoresignificantly.

AsshowninFig.2,duringthefirstfewnanoseconds,thermsdfromthecanonicalB-DNAquicklyleveledataround4˚Ainallfourtrajectories.FortheA-DNAstartthiscorrespondstoarapidtransitiontoB-formwithre-ductionofrmsdfromtheinitial10.7˚A.ThesubsequentdynamicsisremarkablydifferentfortheAtandnAttra-jectories.InAt-AandAt-B,aftersomedelay,thermsdvaluedrasticallyincreasedandstabilizedatahigherlevelofaround6˚A.Thetracesofthebendangleandtheaxisshorteningindicatethatthiswasatransitiontoasignifi-cantlylargercurvature.Incontrast,fornAttrajectories,Fig.2exhibitsonlyfluctuationsatroughlythesamelevelasinAt-AandAt-Bbeforethetransition.

3

TABLEI.SomestructuralparametersofstandardandcomputedDNAconformations.ThehelicoidalsarethesequenceaveragedvaluescomputedwithprogramCurves52.Alldistancesareinangstr¨omsandanglesindegrees.A-DNAB-DNAAt-AAt-BnAt-AnAt-B

-5.4-0.7+0.1-0.4-0.1-0.1

+19.1-6.0-4.0-5.2-4.2-4.7

2.63.43.53.53.53.5

32.736.034.234.534.334.4

0.010.711.611.610.611.2

10.70.05.96.83.84.1

At−AX20A100510150T TT TA TC GG AT TT TA TC GG AT TT TA TC GG AT AA AA0nAt−AX10500520nsT TT TA TC GG AT TT TA TC GG AT TT TA TC GG AT AA AA20ns1015A TA GT AT GT AC TA GT AT CT AT CA GT AT GA TA GA TT20ns420-2YY0510101520ns15A TA GT AT GT AC TA GT AT CT AT CA GT AT GA TA GA TTFIG.3.ThetimeevolutionoftheoverallshapeofthehelicalaxisinAt-AandnAt-A.Theaxisofthecurveddoublehelixiscomputedasthebestfitcommonaxisofcoaxialcylindricalsurfacespassingthroughsugaratoms,whichgivessolutionsclosetothoseproducedbytheCurvesalgorithm52.ThetwosurfaceplotslabeledXandYareconstructedbyusingprojectionsofthecurvedaxisupontheXOZandYOZplanes,respectively,oftheglobalCartesianframeshowninFig.4a.Anytimesectionofthesesurfacesgivesthecorrespondingprojectionaveragedoveratimewindowof400ps.Thehorizontaldeviationisgiveninangstr¨omsand,forclarity,itsrelativescaleistwotimesincreasedwithrespecttothetrueDNAlength.Shownontherightarethecorrespondingviewsofthefinal1ns-averageconformations.TheATbasepairsareshownbythickerlines.

5

TheoriginofthisdifferenceisanalyzedinFig.3.ItdisplaysdynamicsoftheoverallDNAshapebyusingtwoorthogonalprojectionsofthehelicalaxis.AplanarbendwouldgiveaplaneintheYprojectionandacurvedsur-faceintheXprojection.AsharpincreaseofcurvatureinAt-Aafterthe13thnanosecondisevident.AnalogouseventoccurredinAt-Bafterabout3ns.InagreementwithFig.2,thetwonAtsurfacesshowfluctuationswithamplitudessimilartothoseduringthefirst13nsofAt-A.Thispatternprobablycorrespondstoagenerictypeofdynamicscharacteristicofarbitrary35-merDNAfrag-ments.

ComparisonofthethreecolumnsofplotsinFig.2in-dicatesthatfluctuationsusuallyoccurredsimultaneouslyinallthreeparameters,whichmeansthatthebendingdynamicsmakesamajorcontributiontothermsdfromB-DNA.ItsvaluesshowninTableIareactuallymuchlargerthanwouldbeforstraightconformationswiththesamehelicalparameters.Forinstance,thermsdbetweentheAt-AandAt-BstructuresinTableIwas2.3˚Aonlybecause,asweshowbelow,theywerebentinthesamedirection.

ConvergenceofTrajectories

(a)JLZϕO’KXYO(b)180120600-60-120-180180120600-60-120-180180120600-60-120-180180120600-60-120-180At−A05101520ADNAmoleculewithdetectablestaticcurvaturecaneitherhaveaminimumofpotentialenergyinabentstateoritsenergyvalleyshouldhaveaspecialshapesuchthatabentformhaslargerconformationalentropy57.InbothcasessuchstaterepresentsafreeenergyminimumwhereMDtrajectoriesshouldbetrapped.Thequestionis,how-ever,howlongarealMDtrajectoryshouldstayinabentconformationtoberepresentative.SomeexperimentssuggestthatbendingdynamicsinDNAfragmentsofonly100basepairsmayinvolverelaxationtimeslongerthanamicrosecond58,59,therefore,nopracticalprocedureexiststoproverigorouslythatcomputedconformationsarerep-resentative.Nevertheless,ifseveraltrajectoriesconvergetothesamestatefromverydifferentstartingpoints,onecanarguethatthisstateisanattractorintheconfor-mationalspace,whichisanecessaryconditionofthestaticcurvature.Thereciprocalconvergenceoftrajecto-riesstartingfromcanonicalA-andB-DNA,therefore,isaveryimportantaspectofthesesimulations.Themini-malB-DNAmodelisnotexpectedtogivestableA-DNAstructuresandwedidnottrytoequilibratetheinitialA-DNAstates.ThestartformtheA-formisimportantbecauseitprovidesanindependentdynamicassaywithaverydifferententrytotheB-DNAfamily,whichal-lowsonetoverifyconvergenceoftrajectoriestospecificconformations.Weanalyzeseparatelytwolevelsofstruc-turalconvergence.

At−B024681012nAt−A05101520nAt−B05101520Time (ns)FIG.4.(a)GeometricconstructionsusedforevaluatingtheDNAbending.ThetwocoordinateframesshownaretheglobalCartesiancoordinates(OXYZ),andthelocalframeconstructedinthemiddlepointofthecurvedDNAaxisac-cordingtotheCambridgeconvention(O’JKL)88.ThecurveisrotatedwithtwoitsendsfixedattheZ-axistoputthemid-dlepointinplaneXOZ.ThebendingdirectionismeasuredbyangleϕbetweenthisplaneandvectorJofthelocalframe.Bydefinition,thisvectorpointstothemajorDNAgroovealongtheshortaxisofthereferencebasepair88.Consequently,thezeroϕvaluecorrespondstotheoverallbendtowardsthemi-norgrooveinthemiddleoftheDNAfragment.(b)Thetimeevolutionofthebendingdirectionasmeasuredbytheϕangleinplate(a)(indegrees).Thetraceshavebeensmoothedbyaveragingwithawindowof75psinAt-Band150psother-wise.

6

Overallshapes

ThermsdcomparisonbetweenAt-AandAt-BisshowninFig.5.ItclearlydemonstratesthatAt-AandAt-Btrajectoriesmanagedtocomeveryclosetoeachothereventhoughtheirstartingpointsweresignificantlysepa-ratedinconformationalspace.Theinitialrmsdof10.7˚Abetweenthecanonical35-merA-andB-DNAformseven-tuallywentdowntoaslowas1.3˚A.Thefinalfallofthermsdoccurredwhenthecurvaturedrasticallyincreased(compareFigs.2and5).Moreover,duringthelastnanosecondsthebendingdirectionwasvirtuallyiden-ticalinAt-AandAt-Bandessentiallyfixedataround90◦(seeFig.4b),whichexplainstheoriginoftheblackrectangleintheupperrightcornerofFig.5.Thisdi-rectioncorrespondstobendingtowardstheminorgrooveatapproximatelythreebasepairstepsfromthemiddleGCpair(seeFig.4a),thatisatthe3’endofthethirdA-tractinFig.1.

ThenAttrajectoriesexhibitedqualitativelydifferentfeatures.ThermsdcomparisonofanytwolongintervalsofnAt-AandnAt-Bgivesfluctuationsbetween3and6˚Awithoutanycleartimetrend.Figure2showsthatthermsdfromB-DNAalsofluctuatedbetween3and6˚Aandthatitcorrelatedwithbendingparameters.AsseeninFig.3themoleculereallywasnotstraight.Ac-cordingtoFig.4bthebendingdirectionsinnAt-AandnAt-Bwerewelldefinedbutslightlydifferent.Theynei-therdivergednorconverged,remainingataround100◦fromeachother.Themoleculeshowsnosignsofslowstraightening,whichwouldgiveadecreaseoffluctua-tionsinFig.2andanincreaseinscatteringofdirectionsinFig.4b.Allthissuggeststhatbentshapesarefa-voredoverstraightones,andthattherearemanystablebends,withtransitionsbetweenthembeingtooraretobesampledbyoursimulations.

Grooveprofilesandlocalstructures

ularoscillationsoftheminorgroovewidthsareobservedonlyinA-tractrepeats60,andthisstructuralperiodicityiscertainlyrelatedtothatofthesequence.However,suchbehaviorisexactlywhatoneshouldexpectifthewavingofthebackboneresultsfromitsintrinsiccompression.Inthiscase,thegroovemodulationsshouldoccurregardlessofthebasepairsequenceandtheircharacteristicwavelengthsshouldbedeterminedbythebackbonestiffnessaswellasoverallhelicalpitchanddiameter.Thisex-plainswhythewavesintheleft-handandtheright-handplatesinFig.6haveroughlysimilarscales,eventhoughonlytheA-tractsequenceisperiodical.Inexperiment,however,suchmodulationscanbeobservedonlyiftheirphasesarefixedintime,whichisthecaseofA-tractre-peats.Forrandomsequences,liketheoneweuseasareference,thefinestructureshouldbesmoothedoutonaveragingoverthewholeensemble.

Figure7comparesBI/BIIbackbonedynamicsinthetwoAttrajectories.Therearemanysimilaritiesindy-namicsaswellasinthefinalconfigurations.Theconver-genceisbetternearbothendsandwithinA-tracts.ThedissimilardistributionsoftheconformersinthemiddlecorrespondstothedifferenceinminorgrooveprofilesinFig.6.InA-tracts,theBIIconformersareveryrareinT-strandsandtendtoalternatewithBIinA-strands.Figure8compareslocalhelicalparametersinthelastav-eragestructures.OnlytheBuckleandPropellertracesexhibitlargescalemodulationsphasedwiththehelicalscrew.Allparametersstronglyfluctuateandthesefluc-tuationsareapparentlychaoticwithratherdissimilarphasesinthetwostructures.

Couplingbetweenthelevels

DynamicsoftheminorgrooveprofilesisshowninFig.6.Thereareevidentqualitativeresemblanceaswellassomesubtledifferencesbetweenthesefoursurfaces.InAt-B,thecharacteristicregulargrooveshapehasestab-lishedearly,withsignificantwideningsinthethreezonesbetweentheA-tracts.Theveryleftwideningissome-whatdifferentprobablybecauseitoccursbetweenanti-parallelA-tracts.InAt-A,theprofilestronglychangedatthebeginning,butalsoestablishedbytheendofthe10thnanosecond.AlthoughthefinalAt-AandAt-Bpro-filesarenotidentical,theyareclearlysimilar,withgoodcorrespondenceoflocalwideningsandnarrowings.

ThetwonAtsurfacesshowlittlesimilaritybetweeneachother,butqualitativelytheirshapesarenotverydifferentfromthosefortheA-tractfragment,withmodu-lationsofsimilarwavelengthsandamplitudes.Thislookssomewhatcounter-intuitivebecause,inexperiments,reg-

Figures5and4demonstratethatAt-AandAt-Bar-rivedatthesamestaticallybentstate.ThisdynamicscontraststhoseofthetwonAttrajectoriesanditstronglysuggestthatthecurvedDNAshapeoftheA-tractfrag-mentisanattractoroftrajectorieswithameta-basinofattractioncomprisingbothcanonicalAandBDNAforms.Figures6-8showthatthebendingconvergenceisaccompaniedbysomecleartrendsinlocalconformationaldynamics.Theselocalfeaturesareprobablycoupledtobending,however,acloselookrevealsthatthiscouplingisveryloose.Theconvergenceoftheminorgroovepro-filesinFig.6isatbestqualitative.Figure7indicatesthatactivebackbonedynamicscontinuedafterthecur-vaturehasestablishedandthatonecanpickupratherdifferentdistributionsofconformersfromtheensembleofbentstructures.ThenoisytracesinFig.8obtainedbyaveragingovertwosimilarlybentensemblessuggestthatthehelicalparametersarefarfrombeingconstant.Thenaturalconclusionfollowsthatconvergenceofthebendingdynamicsdoesnotrequireuniquespecificlocalconformations,i.e.thatthebentstateismicrohetero-geneous.

7

129At−A6305101520At−BFIG.5.A2DdensityplotofthermsdifferencebetweenAt-AandAt-B.Conformationsspacedby2.5psintervalswerefirstaveragedoverof50and25psintervalsinAt-AandAt-B,respectively,andtheresultingstructurescomparedbetweenthetrajectories.Darkershadingimpliessmallerrmsdvalues.Thelowerleftcornercorrespondstotheinitialstructures,thatisthecanonicalA-andB-forms,withrmsdabout10.7˚A.Theshadedrectangleintheupperrightcornerdemonstratesconvergence

Aarenotshadedwhereasinthedarkestzonesitfallsdownofthetwotrajectoriestothesamebentstate.Thevaluesabove4˚

˚to1.3A.Theblackverticalbandatapproximately10nsindicatesthatAt-Ashortlyvisitedthefinalstate3nsbeforethe

definitetransition.

At−A048121620ns10A86nAt−A048121620ns10A86AATAGGCTATTTTAGGCTATTTTAGGCTATT4AGATAGTATGACTATCTATGATCATGTATGA4At−B024681012ns10A86nAt−B121620ns10A86AGATAGTATGACTATCTATGATCATGTATGA4AATAGGCTATTTTAGGCTATTTTAGGCTATT4FIG.6.Thetimeevolutionoftheprofileoftheminorgrooveinthefourtrajectories.Thesurfaceplotsareformedbytime-averagedsuccessiveminorgrooveprofiles,withthatonthefrontfacecorrespondingtothefinalDNAconformation.ThegroovewidthisevaluatedbyusingspacetracesofC5’atoms.Itsvalueisgiveninangstr¨omsandthecorrespondingcanonicalB-DNAlevelof7.7˚Aismarkedbythethinstraightlinesonthefacesofthebox.ThesequencesareshownforthecorrespondingtopstrandsinFig.1withthe5’-endsontheleft.TheA-tractsareunderlined.Notethatthegroovewidthcanbemeasuredonlystartingfromthethirdbasepairfrombothtermini.

8

(a)At−AAAAATAGGCTATTTTAGGCTATTTTAGGCTATTTT00At−BAAAATAGGCTATTTTAGGCTATTTTAGGCTATTTT4147.7872144.0154Time (ns)Time (ns)-210.74586128-228.714101620TTTTATCCGATAAAATCCGATAAAATCCGATAAAA12TTTTATCCGATAAAATCCGATAAAATCCGATAAAA(b)AAAATAGGCTATTTTAGGCTATTTTAGGCTATTTTAt-AAt-BTTTTATCCGATAAAATCCGATAAAATCCGATAAAAFIG.7.(a)DynamicsofBIandBIIbackboneconformersinAt-AandAt-B.TheBIandBIIconformationsaredistinguishedbythevaluesoftwoconsecutivebackbonetorsions,εandζ.Inatransition,theychangeconcertedlyfrom(t,g−)to(g−,t).Thedifferenceζ−εis,therefore,positiveinBIstateandnegativeinBII,anditisusedasamonitoringindicator,withthecorrespondinggrayscalelevelsshownontheright.Eachbasepairstepischaracterizedbyacolumnconsistingoftwosub-columns,withtheleftsub-columnsreferringtothesequencewrittenatthetopin5’-3’directionfromlefttoright.Therightsub-columnsrefertothecomplementarysequenceshownatthebottom.(b)ComparisonofthefinaldistributionsofBIandBIIbackboneconformersinAt-AandAt-Bshowninthesamewayasinplate(a).

9

TheMagnitudeandTheCharacterofBendingin

theA-tractRepeat

TheexperimentalmagnitudeofbendingcausedbyA-tractswasearlierestimatedbyseveralgroupswithdiffer-entapproaches61,21,62,32.Thereportedbendangleswerebetween11◦and28◦perA-tract,and18◦ispresentlyconsideredasthemostreasonableestimate9.Thecur-vaturesomewhatvarieswiththebasepairsequenceanddependsuponenvironmentalconditionssuchasthetem-perature,theconcentrationofcounterionsetc.Althoughincalculationsallthesedetailscannotyetbeproperlytakenintoaccountaquantitativecomparisonwithex-perimentisinstructive.

Whenthecurvaturehasestablished,thatisafter13nsofdynamicsinAt-Aandafter3nsinAt-B,thebendangleoscillatedaround60◦(seeFig.2).Intheconsec-utive1ns-averagedconformationsitsvaluewasbetween42◦and74◦,withtheaverageof54◦for16suchstruc-tures.Thisvaluecorrespondsto54/4=13.5◦perA-tract,thatisclosetothelowerexperimentalestimate.Alargervalueof54/3=18◦results,however,ifoneassumes,assuggestedbysomeexperimentalobservations23,63thattheA-tractsarestraight,andthatthebendingactuallyoccursinthethreezonesbetweenthem.Yetanotherestimateisobtainedfromtheincreaseofbendingwithrespecttotheshorter25-merfragmentstudiedearlier25.ItappearsthatoneadditionalA-tractandjunctionzoneincreasetheoverallbendby20-22◦.Weseethatthemagnitudeofbendinginsimulationsisratherclosetoexperimentalestimates,andthattheagreementisbetterifthecurvatureisreallylocalizedinthejunctionzonesbetweenA-tracts.

Figure9presentsacloserlookathowthelocalcur-vatureisdistributedinthelast1-nsaveragestructureofAt-B.Thetotalbendingangleisabout50◦.Threezonescontributemorethanothertotheoverallbend.ThetwojunctionsbetweenA-tracts2,3and4arebentinanidenticaldirectionwhichisclosetothatofthewholestructure.Togethertheycontributearound40◦totheto-talbend,whichisthelargestlocalpositivecontribution.Incontrast,thestronglycurvedfourthA-tractmakesanegativecontributionbecauseitsdirectiondivergesbymorethan90◦.ThethirdA-tractisvirtuallystraight.Finally,A-tracts1and2andthejunctionzonebetweenthemexhibitasmoothcurvaturewithastable“good”directionandcontributetheremaining20◦ofthetotalbend.

AAAATAGGCTATTTTAGGCTATTTTAGGCTATTTT20100-10-20-30105RollTiltSlideTwistRisePropellerBuckle0-5-101.510.50-0.5-1504030204.2543.753.53.25350-5-10-15-20-25-3020100-10-20-30TTTTATCCGATAAAATCCGATAAAATCCGATAAAAFIG.8.Sequencevariationsofhelicoidalparametersinthelast1ns-averagestructuresofAt-AandAt-B.Thesequenceofthefirststrandisshownonthetopin5’–3’direction.Thecomplementarysequenceofthesecondstrandiswrittenonthebottomintheoppositedirection.AllparameterswereevaluatedwiththeCurvesprogram52andaregivenindegreesandangstr¨oms.At-A–solidline,At-B–dashedline.

10

(a)(b)4Local angle202341AAAATAGGCTATTTTAGGCTATTTTAGGCTATTTT1030TTTTATCCGATAAAATCCGATAAAATCCGATAAAA(c)6810ns220151050AAAATAGGCTATTTTAGGCTATTTTAGGCTATTTTAAAATAGCTATTTT1FIG.9.(a)Thelast1-nsaveragestructureofAt-BshownintheXOZprojectionaccordingFig.4a.TheATbasepairs

arehighlighted.(b)Thequantifieddistributionofcurvatureinthestructureshowninplate(a).Thelocalbendingangleisevaluatedbymovingaslidingwindowalongthehelicalaxis.Thewindowsizewas3basepairsteps,withthemeasuredvaluesassignedtoitscenter.ThesequencesofstrandsaregivenasinFig.1withtheA-tractsunderlinedandnumbered.(c)DynamicsoflocalbendinginAt-B.Thesurfaceplotisformedbytime-averagedsuccessiveprofileslikethatinplate(b),withthefrontfaceoftheboxcorrespondingtotheendofthetrajectory.

11

Theforegoinganalysiscertainlyisnotfreefrompit-falls.Forinstance,theapparentsmoothcurvaturecanresultfromtimeaveragingofseveralalternativelocalbends.Nevertheless,Fig.9indicatesthattherearezonesinthisDNAfragmentthatarebentmorethanotherandthattwosuchzonesaredistinguishablebetweenA-tracts.Figure9cdisplaysthelocalbendingdynamicsinAt-B.Itisseenthatthemainfeaturesnoticedinplates(a)and(b)werequitevisibleduringthewholetrajectory.Moreover,thezonebetweenthefirsttwoA-tractsalsosometimescarriedanincreasedcurvature.However,itwouldbein-correcttoconcludethatA-tractsarestraight.Theyjustexhibitgenerallysmalleranddistributedcurvaturethanthejunctionzones.Thiscurvatureisusuallydirectedto-wardstheminorgroove,therefore,itdoesnotcanceloutinaveragedstructures.

Theforegoingpatternagreesqualitativelywiththere-centNMRandX-raydata65aswellasthecharacterofbendingearlierobservedincalculations39,40.Manyear-lierreportedX-raystructuresofA-tractssuggestedthattheyproduceanintrinsicallystraightDNAcomparedtoothersequences63.OurcalculationsdonotcontradicttheseobservationsbecausethecrystalA-tractstructuresshouldbeadditionallystraightenedduetospecialcrys-tallizationconditions30,31,66,andbecauseasingleshortA-tractmayinfactbesomewhatlesscurvedthanthatinsertedinalongDNAfragment.

VerificationofCurvaturebyGelElectrophoresis

Gel startThesequenceinducedstaticDNAcurvaturewasfirstnoticedowingtoreducedmigrationrateofcurvedDNAfragmentsingelelectrophoresis1.LatergelmigrationstudiesprovidedawealthofinformationoncurvatureinA-tractrepeats7.Thedifferenceingelmobilitybe-tweenstraightandcurvedDNArapidlygrowswithchainlength,therefore,thecurvaturewasusuallystudiedinratherlongDNAfragments.Dataforsequencesshorterthan50bparerare27,and,toourbestknowledge,ithasneverbeenshownthatcurvedandstraight35-merscouldbedistinguished.Nevertheless,subtlesequenceeffectsindoublestrandedoligomersofaround10bpweredetectedwithhighergelconcentration67,andonecouldhopethatthiswouldworkforsomewhatlongersequencesaswell.Alternatively,theeffectofbendingcouldbeenhancedbyinsertingconstructedfragmentsintoalongstretchofstraightDNA2,butthiswouldcomplicatefurtheranaly-sisbecausetheDNAmoleculesusedinexperimentsandcalculationscouldnolongerbeidentical.

Figure10showscomparisonoftheacrylamidegelmo-bilityofthesetwofragments.Asexpected,theA-tractrepeatexhibitsareducedrateofmigration.Thediffer-enceisquitesignificantsothatthetwomoleculesarewellresolvedbothinseparatelanesandwhenmixedinthesamesample.Owingtotheidenticalbasepaircontent,theminorfactorssuchasthenumberoftightlybound

AtnAtnAtAtAt+nAtFIG.10.Gelmobilityassay.Thetwo32P-labeled35bpDNAconstructs(AtandnAt)wereelectrophoresedin16%plyacrylamidegelbufferedwithTris-borate,pH8.6.Thegelwasdriedandautoradiographed.ThelaneslabeledAt,nAt,andAt+nAtcorrespondtotheA-tractrepeat,therandomsequence,andtheirmixture,respectively.BandsassignedtoeachDNAfragmentaremarkedbyarrows.

12

counterionsandwatermoleculesisreducedheretothepossibleminimumand,mostprobably,theobserveddif-ferenceisentirelyduetothecurvatureintheA-tractfragment.

DISCUSSION

ComparisonwithEarlierStudies

tionsandwebelievethisapproachpresentsconsiderableinterestforfuturestudies.SequenceeffectsinDNAfrag-mentsof35-50basepairscanbeprobedinbothMDsimulationsandgelelectrophoresis.Suchexperimentsarerapidandinexpensive,whichprogressivelybecomesthecaseforMDsimulationsaswell.

ComparisonwithTheoriesofDNABending

Toourknowledge,theonlyearliersuccessfulunbiasedsimulationsaimedatreproducingA-tractinducedcur-vatureinDNAhavebeenreportedbyDavidBeveridgegroup39,40.Thesesimulationswerecarriedoutinfullwaterenvironmentwithexplicitcounterions.Thechar-acterofthephasedA-tractbendingappearedoscillatorywithaperiodofatleast3to4ns39.Becausedurationoftrajectorieswasonly5ns,itwasdifficulttoconfirmthestaticcharacterofbendinganddistinguishbetweenessentialandoccasionalobservations.Therefore,con-clusionsconcerningapplicabilityofdifferentmodelswerenotrestrictiveandleftroomformanytheories.Oursim-ulationshavethesamegoalandasimilarsetup,butweuseasimplermodelsystem.TheprimarilylongterminterestinB-DNAmodelswithimplicitorsemi-implicitrepresentationofenvironmentisconnectedwithapprox-imatesimulationsofverylongDNAmolecules38.Asshownheretheminimalmodelcanalsocapture,atleastqualitatively,importantsequenceeffectsliketheA-tractinducedcurvature.

Severalfeaturesinourcalculationscorrespondwelltothoseobservedearlier,notably,spontaneousdevelop-mentofquasi-sinusoidalminorgrooveprofilesinbothA-tractandnon-A-tractsequencesandstrongbendsinjunctionzonesbetweenA-tracts.Incontrasttoearliersimulations,however,thecurvaturehereemergedafterseveralnanosecondsofdynamicsandthedifferencebe-tweentheA-tractandnon-A-tractstructuresdidnotreducewithtime.OneshouldnotealsothattheA-tractstructurescomputedwiththeminimalmodelareveryclosetoexperimentaldataasregardsthehelicalpitchandtheabsolutegroovesizes25,50.InstandardAMBERandCHARMMsimulations,B-DNAalwaysap-pearssomewhatunderwoundandthenarrowestA-tractminorgroovesremain1-2˚Awiderthaninexperimental

39,40,42

structures.Theoriginofthissubtlebiasremainsunclear,andattemptstoreduceithavebeenmadeintheveryrecentmodificationsoftheAMBERforcefield47,68.Intheminimalmodel,thisbiaswascompensatedbyfit-tingreducedphosphatecharges,whichapparentlyim-provedtheA-tractstructuresandstabilizedthecurva-ture.

Asignificantenforcementofthepresentresultscom-paredtoourpreviousreports25,54consistsinthedirectcomparisonofbendinginsilicoandinvitro,whichbe-camepossibleowingtoincreasedlengthoftheDNAfrag-ment.SuchapossibilityisratheruniqueforMDsimula-

TheoriginofintrinsiccurvatureinDNAremainsun-clear.Theoriesthatexplainitalwaysassumesomespe-cificbalanceofinteractionsintheDNAstructure,andthatiswhythesetheoriesareperhapsmoreimportantthantheparticularroleofA-tracts.Thelistofavailableinteractionsiswell-known,butthequestioniswhichofthemisthedrivingforce.Belowwebrieflyanalyzeourresultsincontextsofsometheories.

BasePairStackingModels

Accordingtoanymechanismthatstartsfrombasepairstacking,likethewedgeorthejunctionmodels12,18,2,acurvedDNAmustbebuiltoutofasymmetricblocks,withtheirstructuresdeterminedbybasepairsequence.Thebending,therefore,mustbeaccompaniedbyrep-etitionoflocalstructuresinidenticalsequencefrag-ments.Thisfundamentaltheoreticalpredictionfailsforthestaticbendsobservedhere,whichconfirmsearlierconclusions25,54.Thestructuresofsequencerepeatsinthebentstatearemicroscopicallyheterogeneousandcon-vergencetospecificlocalconformationsisnotnecessaryforbending.Asshownabove,theA-tracttrajectoriesar-riveatasinglebentstate,buttheminorgrooveprofilesinFig.6areonlysimilar,notidenticalaswellaslocalhelicalparametersandbackboneconformationsinFigs.7and8.

CounterionElectrostaticModels

AnalternativemodelthatrecentlyattractedmuchattentionconsiderssolventcationstrappedinA-tractminorgroovesastheinitialcauseofbending24.Theroleofcounterionsinthisphenomenonisrathercontroversial69,65,70,andafewgeneralcommentsarenec-essarybeforeconsideringourresults.BecausestraightDNAstructurescorrespondtosymmetricminimaofelec-trostaticenergybendscanresultfromsymmetrybreak-inginthechargedistribution,namely,ifpositiveexternalchargesaccumulateatoneDNAsideitshouldbendto-wardsthem71,72,73,74,24.However,thesamesituationiswellinterpretedbyothermodelsofbending.Namely,inacurveddoublehelix,thephosphategroupsattheinneredgemustapproach,whichcreatesregionsoflowpotentialthatshouldbepopulatedbycounterionsifthey13

areavailable61.Inthefirstcasethecounterion-DNAin-teractionsaresequencespecificandtheycausebending.Inthesecondcasetheyarestructurespecificandtheystabilizepre-existingcurvature.

Twophysicallydifferentmodelsofsequence-specificcounterioninvolvementcanbedistinguished.Inthefirstonethecounterionsactlocally.WhenacounterionisplacedinoneoftheDNAgroovesbetweentwophos-phategroupstheirelectrostaticinteractionbecomesat-tractive,whichnarrowsthegroove74.Asinsomeear-liermodels75,60,theglobalcurvatureresultsfromagen-eralmechanicallinkbetweengroovedeformationsandbending.Incontrast,thesecondmodelispurelyelectro-static.HeretheminorgroovesofA-tractsactasflexibleionophores24,76andtrapcounterions.SinceinphasedsequencestheyoccuratthesameDNAsidethedoublehelixbendstowardsthemtorelaxthelongrangephos-phaterepulsionattheoppositeside.

ThesecondmodelemploysthegeneralideainitiallyproposedforproteinDNAinteractions71andconfirmedexperimentallyforfreeDNA72.However,itqualitativelydisagreeswithacornerstoneexperimentalobservationconcerningtheA-tractinducedbending,namely,thatanA-tractcanbecharacterizedbyadefinitebendan-gleregardlessofitslengthandthedistancefromotherA-tracts.WhenthelengthofanA-tractexceedsoneheli-calturnbothsidesofthedoublehelixappearneutralized.Asaresult,thecurvatureshoulddecreaseintheseries(A12N9)n−(A14N7)n−(A16N5)nbecausethelengthofthenon-neutralizedN-tractsisreduced,andfurthermore,insequence(A16N5)nthebendangleperA-tractshouldbedrasticallyreducedwithrespecttothatin(A6N5)n,forexample,becausethedistancebetweentherepulsiveN-tractsisincreased.Thesepredictionsapparentlydis-agreewiththeexperimentaltrends77althoughadditionalexperimentsareperhapsnecessarytocheckthem.

ThefirstmodelcannotexplaintheoriginoftheA-tractcurvaturebecauseonlymultivalentcounterionscancausesignificantbends74whereasbendingiscommonlyobservedinbufferscontainingEDTAandotherchelat-ingagents.Also,theoptimalcounterionpositionforthistypeofbendisattheentranceofthegrooveandnotinside,therefore,itcannotbebothstrongandsequencespecific.ThelastargumentagreeswiththerecentMDstudiesofcorrelationsbetweentheminorgroovewidthandpositioningofcounterions.Notably,thereisnosuchcorrelationwhenonlycounterionsinteractingwithbasesareconsidered70.Incontrast,acorrelationexistsforcounterionpositionsatthegrooveentrance78.Thelastobservationcorrespondstothestructurespecificbind-ingbetterthantothesequencespecificone.Structure-specificinteractionscanexplainallexperimentalresultsconcerningthepreferentialbindingofcounterionsinA-tracts79,24,80,whichmakessuchdataintrinsicallyneutralasregardsdifferentmodelsofbending.

Inourcalculationsallcounterioneffectsareconsiderednon-specific,andtheresultsobtainedindicatethatmod-ulationsofDNAgroovesandstaticbendingarephys-14

icallypossiblewithoutbreakingthechargesymmetryaroundDNA.Althoughsimulationsalonecannotprovetherealmechanismallexperimentalandcomputationalobservationstakentogethersuggestthatsolventcounte-rionsarehardlyresponsiblefortheintrinsiccurvatureinDNA,whichbynomeansquestionstheirimportantroleinDNAstructureandfunction.

CompressedBackboneTheory

Themainideaofthecompressedbackbonetheory25wasoutlinedinIntroduction.AllseeminglyparadoxicalMDobservationsfromwhichitoriginallyemergedareconfirmedhere.Notably,thistheorypredictsthat,withanybasepairsequence,thebackbonestiffnessshouldcausesmoothmodulationsofDNAgrooves.Thehelicalsymmetrybecomesbrokenwiththebasepairstackingperturbed,whichcreatesregionsofintrinsiccurvature.Ina“random”DNA,thelocalcurvaturechangesitsdi-rectionwithtimebecausegroovewideningsandnarrow-ingsmigrateslowlyalongthedoublehelix.Asaresult,thegenericDNAappearsstraightonaveragealthoughitiscurvedlocally.Insequenceswherecertainbasepairpropertiesstronglyalternate,thephasesofbackboneos-cillationsappearfixed.Inthiscasethelocalcurvaturecansumuptogivemacroscopicstaticbends,asinA-tractrepeats.ThistheoryconsidersamacroscopicallycurvedDNAasan“idioform”characterizedbytopolog-icalattributes,ratherthanastructurewithfixedatompositions.Theseattributesarethebenddirectionandthephaseofgroovemodulations.Themicroheterogene-ityofthebentstateshouldbeexpectedbecausethesamewavingbackboneprofileiscompatiblewithmanyalter-nativelocalconformations.

Acompetitionbetweenthestackinginteractionsandthebackbonecompressionpostulatedbythistheoryischaracteristicofphysicalsystemscalledfrustrated81.Considerthecommontextbookexampleofthreeanti-ferromagneticspinsinatriangleconfiguration.Theop-timalorientationofeachpairisanti-parallel,butallthreepairscannotbeanti-parallelinatriangle.Thereisalwaysatleastoneparallelpairandthegroundstateappearsde-generate.NowconsideracircularduplexDNAwithaho-mopolymersequence.Thecompressedbackbonecausesgroovemodulations,buttherearenopreferableregionsfornarrowingsandwideningsandthegroundstateap-pearsstronglydegenerate.Thesimilaritybetweenthesetwoexamplesisevident.Oneusualphysicalconsequenceoffrustrationisveryimportantforbiology,namely,thepossibilityofaglassystatewheremicroscopictransitionsaredramaticallysloweddown.TransitionsbetweenwavybackboneconfigurationsinalongDNAcanbeveryslowbecausemanygroovenarrowingsandwideningsmustbemovedconcertedly.Thismayexplainobservationsofsupra-microsecondrelaxationtimesinbendingdynam-icsofrelativelyshortDNAfragments58,59.

Finally,thecompressedbackbonetheoryoffersanewviewofsomeenvironmentaleffectsuponthecurvature.Commonphysicalfactorslikethetemperature,counte-rions,andvariousdehydratingagentsarelong-knowntochangeslightlythehelicalpitchofDNA82,83,84,whichcanreasonablybeattributedtothedependenceofthestateoftheDNAbackboneuponthesolventscreeningofphos-phates.Thesesamefactorsmodulatesignificantlythese-quencespecificityofnucleasesprobablybychangingtheshapeofDNAgrooves85,andproducecomplexeffectsupontheintrinsiccurvature26,27,29,30,31,28.Itseemswisetopostponeanydetailedinterpretationofthesefactsforfuturestudies,butonecanjustnotethatwithintrinsicfrustrationoutlinedaboveaverysmallchangeinthepar-tialspecificbackbonelengthcaninducesignificantglobalchangesintheDNAstructure.

PossibilitiesofExperimentalVerificationof

BackboneCompression

Thethecompressedbackbonetheorydoesnotgivesimplerulesforaprioricalculationofcurvatureinanysequence.Nevertheless,itofferssomepredictionsthatcanbecheckedinexperiments.Itsuggests,forexample,thattheA-tractcurvaturecanberelaxedbyintroducingsingle-strandbreaks.Itseemsinterestingalsotoexaminethepossiblerelationshipbetweenthebackbonecompres-sionandsupercoiling.Thereisaconsensusthatintrin-sicbendsaffecttheshapeofthesuperhelicalDNA86,87.Unlikeothermodels,however,thecompressedbackbonetheorypredictsthattheintrinsiccurvatureshouldvaryundersuperhelicalstressinaratherspecialway.Namely,withapositivedensity,thebackboneisstretchedandthecurvatureofaninternalA-tractrepeatshouldbere-duced.Conversely,thecurvatureshouldincreasewhenthesuperhelicaldensityisnegative.DiekmannandWangearlierobservedthattheA-tractstructurechangesun-dersuperhelicalstress26,andtheirapproachmayserveforamorespecificexperimentalverificationoftheabovepredictions.

DNA,Biopolymers27,585(1988).

R.E.Dickerson,D.S.Goodsell,andS.Neidle,‘...thetyrannyofthelattice...’,Proc.Natl.Acad.Sci.USA91,3579(1994).24

N.V.Hud,V.Sklen´a˘r,andJ.Feigon,Localizationofam-moniumionsintheminorgrooveofDNAduplexesinsolu-tionandtheoriginofDNAA-tractbending,J.Mol.Biol.286,651(1999).25

A.K.Mazur,TheoreticalstudiesofthepossibleoriginofintrinsicstaticbendsindoublehelicalDNA,J.Am.Chem.Soc.122,12778(2000).26

S.DiekmannandJ.C.Wang,Onthesequencedetermi-nantsandflexibilityofthekinetoplastDNAfragmentwithabnormalgelelectrophoreticmobilities,J.Mol.Biol.186,1(1985).27

S.Diekmann,Temperatureandsaltdependenceofgelmi-grationanomalyofcurvedDNAfragments,Nucl.AcidsRes.15,247(1987).28

B.JerkovicandP.H.Bolton,ThecurvatureofdAtractsistemperaturedependent,Biochemistry39,12121(2000).29

J.C.Marini,P.N.Effron,T.C.Goodman,C.K.Sin-gleton,R.D.Wells,R.M.Wartell,andP.T.Englund,PhysicalcharacterizationofakinetoplastDNAfragmentwithunusualproperties,J.Biol.Chem.259,74(1984).30

D.Sprous,W.Zacharias,Z.A.Wood,andS.C.Harvey,DehydratingagentssharplyreducecurvatureinDNAscon-tainingAtracts,Nucl.AcidsRes.23,1816(1995).31

M.Dlakic,K.Park,J.D.Griffith,S.C.Harvey,andR.E.Harrington,Theorganiccrystallizingagen2-methyl-2,4-pentanediolreducesDNAcurvaturebymeansofstructuralchangesinA-tracts,J.Biol.Chem.271,17911(1996).32

H.-S.Koo,J.Drak,J.A.Rice,andD.M.Crothers,De-terminationoftheextentofDNAbendingbyanadenine-thyminetract,Biochemistry29,4227(1990).33

N.B.UlyanovandV.B.Zhurkin,Sequence-dependentanisotropicflexibilityofB-DNA:Aconformationalstudy,J.Biomol.Struct.Dyn.2,361(1984).34

S.R.Sanghani,K.Zakrzewska,S.C.Harvey,andR.Lav-ery,Molecularmodellingof(A4T4NN)nand(T4A4NN)n:Sequenceelementsresponsibleforcurvature,Nucl.AcidsRes.24,1632(1996).35

E.vonKitzingandS.Diekmann,Molecularmechan-icscalculationsofdA12.dT12andofthecurvedmoleculed(GCTCGAAAA)4.d(TTTTTCGAGC)4,Eur.Biophys.J.14,13(1987).36

V.P.ChuprinaandR.A.Abagyan,Structuralbasisofsta-blebendinginDNAcontainingAntracts.Differenttypesofbending,J.Biomol.Struct.Dyn.6,121(1988).37

V.B.Zhurkin,N.B.Ulyanov,A.A.Gorin,andR.L.Jernigan,StaticandstatisticalbendingofDNAevaluatedbyMonteCarlosimulations,Proc.Natl.Acad.Sci.USA88,7046(1991).38

T.E.Cheatham,IIIandP.A.Kollman,Moleculardynam-icssimulationsofnucleicacids,Annu.Rev.Phys.Chem.51,435(2000).39

M.A.YoungandD.L.Beveridge,Moleculardynamicssim-ulationsofanoligonucleotideduplexwithadeninetractsphasedbyafullhelixturn,J.Mol.Biol.281,675(1998).40

D.Sprous,M.A.Young,andD.L.Beveridge,Moleculardynamicsstudiesofaxisbendingind(G5−(GA4T4C)2−

23C5)andd(G5−(GT4A4C)2−C5):EffectsofsequencepolarityonDNAcurvature,J.Mol.Biol.285,1623(1999).41

E.C.Sherer,S.A.Harris,R.Soliva,M.Orozco,andC.A.Laughton,MoleculardynamicsstudiesofDNAA-Tractstructureandflexibility,J.Am.Chem.Soc.121,5981(1999).42

D.StrahsandT.Schlick,A-tractbending:Insightsintoexperimentalstructuresbycomputationalmodels,J.Mol.Biol.301,3(2000).43

A.K.Mazur,Quasi-Hamiltonianequationsofmotionforinternalcoordinatemoleculardynamicsofpolymers,J.Comput.Chem.18,1354(1997).44

A.K.Mazur,inComputationalBiochemistryandBio-physics,editedbyO.M.Becker,A.D.MacKerell,Jr,B.Roux,andM.Watanabe(MarcelDekker,NewYork,2001),pp.115–131.45

A.K.Mazur,Symplecticintegrationofclosedchainrigidbodydynamicswithinternalcoordinateequationsofmo-tion,J.Chem.Phys.111,1407(1999).46

W.D.Cornell,P.Cieplak,C.I.Bayly,I.R.Gould,K.M.Merz,D.M.Ferguson,D.C.Spellmeyer,T.Fox,J.W.Caldwell,andP.A.Kollman,Asecondgenerationforcefieldforthesimulationofproteins,nucleicacidsandor-ganicmolecules,J.Am.Chem.Soc.117,5179(1995).47

T.E.Cheatham,III,P.Cieplak,andP.A.Kollman,AmodifiedversionoftheCornelletal.forcefieldwithim-provedsugarpuckerphasesandhelicalrepeat,J.Biomol.Struct.Dyn.16,845(1999).48

W.L.Jorgensen,Transferableintermolecularpotentialfunctionsforwater,alcoholsandethers:Applicationtoliquidwater.,J.Am.Chem.Soc.103,335(1981).49

A.K.Mazur,AccurateDNAdynamicswithoutaccuratelongrangeelectrostatics,J.Am.Chem.Soc.120,10928(1998).50

A.K.Mazur,MoleculardynamicsofminimalB-DNA,J.Comput.Chem.22,457(2001).51

S.ArnottandD.W.L.Hukins,OptimisedparametersforA-DNAandB-DNA,Biochem.Biophys.Res.Communs.47,1504(1972).52

R.LaveryandH.Sklenar,Thedefinitionofgeneralizedhelicoidalparametersandofaxiscurvatureforirregularnucleicacids,J.Biomol.Struct.Dyn.6,63(1988).53

P.Tuffery,XmMol:AnX11andmotifprogramformacro-molecularvisualizationandmodelling,J.Mol.Graph.13,67(1995).54

A.K.Mazur,Moleculardynamicsstudiesofsequence-directedcurvatureinbendinglocusoftrypanosomekine-toplastDNA,J.Biomol.Struct.Dyn.18,832(2001).55

H.-S.Koo,H.-M.Wu,andD.M.Crothers,DNAbendingatadenine-thyminetracts,Nature320,501(1986).56

W.Kabsch,C.Sander,andE.N.Trifonov,ThetenhelicaltwistanglesforB-DNA,Nucl.AcidsRes.10,1097(1982).57

W.K.Olson,N.L.Marky,R.L.Jernigan,andV.B.Zhurkin,InfluenceoffluctuationonDNAcurvature:Acomparisonofflexibleandstaticwdgemodelsofintrinsi-callybentDNA,J.Mol.Biol.232,530(1993).58

L.SongandJ.M.Schurr,DynamicbendingrigidityofDNA,Biopolymers30,229(1990).59

T.M.Okonogi,A.W.Reese,S.C.Alley,P.B.Hopkins,andR.H.Robinson,FlexibilityofduplexDNAonthesub-

16

microsecondtimescale,Biophys.J.77,3256(1999).

A.M.BurkhoffandT.D.Tullius,Theunusualconforma-tionadoptedbytheadeninetractsinkinetoplastDNA,Cell48,935(1987).61

S.D.Levene,H.-M.Wu,andD.M.Crothers,BendingandflexibilityofkinetoplastDNA,Biochemistry25,3988(1986).62

L.E.Ulanovsky,M.Bodner,E.N.Trifonov,andM.Choder,CurvedDNA:Design,synthesis,andcirculariza-tion,Proc.Natl.Acad.Sci.USA83,862(1986).63

M.A.Young,G.Ravishanker,D.L.Beveridge,andH.M.Berman,Analysisoflocalhelixbendingincrys-talstructuresofDNAoligonucleotidesandDNA-proteincomplexes,Biophys.J.68,2454(1995).

D.MacDonald,K.Herbert,X.Zhang,T.Polgruto,andP.Lu,SolutionstructureofanA-tractDNAbend,J.Mol.Biol.306,1081(2001).65

T.K.Chiu,M.Zaczor-Grzeskowiak,andR.E.Dick-erson,AbsenceofminorgroovemonovalentcationsinthecrosslinkeddodecamerC-G-C-G-A-A-T-T-C-G-C-G,J.Mol.Biol.292,5(1999).66

R.E.Dickerson,D.Goodsell,andM.L.Kopka,MPDandDNAbendingincrystalsandinsolution,J.Mol.Biol.256,108(1996).67

J.-H.Chen,N.C.Seeman,andN.R.Kallenbach,TractsofATbasepairsretardtheelectrophoreticmobilityofshortDNAduplexes,Nucl.AcidsRes.16,6803(1988).68

J.Wang,P.Cieplak,andP.A.Kollman,Howwelldoesarestrainedelectrostaticpotential(RESP)modelperformincalculatingconformationalenergiesoforganicandbio-logicalmolecules,J.Comp.Chem.21,1049(2000).69

L.McFail-Isom,C.C.Sines,andL.D.Williams,DNAstructure:Cationsincharge?,Curr.Opin.Struct.Biol.9,298(1999).70

K.J.McConnellandD.L.Beverdige,DNAstructure:What’sincharge?,J.Mol.Biol.304,803(2000).71

A.D.MirzabekovandA.Rich,Asymmetriclateraldis-tributionofunshieldedphosphategroupsinnucleosomalDNAanditsroleinDNAbending,Proc.Natl.Acad.Sci.USA76,1118(1979).72

J.K.StraussandL.J.Maher,III,DNAbendingbyasym-metricphosphateneutralization,Science266,1829(1994).73

M.A.Young,B.Jayaram,andD.L.Beveridge,Intru-sionofcounterionsintothespineofhydrationintheminorgrooveofB-DNA:Fractionaloccupancyofelectronegativepockets,J.Am.Chem.Soc.119,59(1997).74

I.RouzinaandV.A.Bloomfield,DNAbendingbysmall,mobilemultivalentcations,Biophys.J.74,3152(1998).75

H.R.DrewandA.A.Travers,DNAbendinganditsre-lationtonucleosomepositioning,J.Mol.Biol.186,773(1985).76

N.V.HudandM.Polak,DNA-cationinteractions:Themajorandminorgroovesareflexibleionophores,Curr.Opin.Struct.Biol.11,293(2001).77

T.E.HaranandD.M.Crothers,CooperativityinA-tractstructureandbendingpropertiesofcompositeTnAnblocks,Biochemistry28,2763(19).78

D.Hamelberg,L.D.Williams,andW.D.Wilson,Influ-enceofthedynamicpositionsofcationsonthestructureoftheDNAminorgroove:Sequenc-dependenteffects,J.

60

Am.Chem.Soc.32,7745(2001).

N.V.HudandJ.Feigon,LocalizationofdivalentmetalionsintheminorgrooveofDNAA-tracts,J.Am.Chem.Soc.119,5756(1997).80

N.C.Stellwagen,S.Magnusdottir,C.Gelfi,andP.G.Righetti,PreferentialcouterionbindingtoA-tractDNAoligomers,J.Mol.Biol.305,1025(2001).81

R.Liebmann,LectureNotesinPhysics(Springer,Berlin,1986),Vol.251.82

R.E.DepewandJ.C.Wang,ConformationalfluctuationsofDNAhelix,Proc.Natl.Acad.Sci.USA72,4275(1975).83

P.AndersonandW.Bauer,Supercoilinginclosedcircu-larDNA:Dependenceuponiontypeandconcentration,Biochemistry17,594(1978).84

C.-H.Lee,H.Mizusawa,andT.Kakefuda,Unwindingofdouble-strandedDNAhelixbydehydration,Proc.Natl.Acad.Sci.USA78,2838(1981).85

H.R.DrewandA.A.Travers,DNAstructuralvariationsintheE.colityrTpromoter,Cell37,491(1984).86

C.H.LaundonandJ.D.Griffith,CurvedhelixsegmentscanuniquelyorientthetopologyofsupertwistedDNA,Cell52,545(1988).87

Y.Yang,T.P.Westcott,S.C.Pedersen,I.Tobias,andW.K.Olson,EfectsoflocalizedbendingonDNAsuper-coiling,TrendsBiochem.Sci.20,313(1995).88

R.E.Dickerson,M.Bansal,C.R.Calladine,S.Diekmann,W.N.Hunter,O.Kennard,R.Lavery,H.C.M.Nelson,W.K.Olson,W.Saenger,Z.Shakked,H.Sklenar,D.M.Soumpasis,C.-S.Tung,E.vonKitzing,A.H.-J.Wang,andV.B.Zhurkin,Definitionsandnomenclatureofnucleicacidstructureparameters,J.Mol.Biol.205,787(19).

A.K.Mazur,InternalcorrelationsinminorgrooveprofilesofexperimentalandcomputedB-DNAconformations,J.Mol.Biol.290,373(1999).

79

17

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务