2012年十堰市初中毕业生学业考试
数学试题
注意事项:
1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.
2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.
3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交. 一、选择题:(本题共10个小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.
1.有理数1,2,0,3中,最小的一个数是( ). (A)1 (B)2 (C)0 (D)3 2.点P2,关于x轴对称点的坐标是( ). 3(A)3,2 (B)2,3 (C)2,3 (D)2,3
3.郧阳汉江大桥是国家南水北调中线工程的补偿替代项目,是南水北调丹江口库区最长的跨江大桥,桥长约2100米,将数字2100用科学记数法表示为( ). (A)2.110 (B)2.110 (C)2110 (D)2.110
4.如图是某体育馆内的颁奖台,其主视图是( ).
5.如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为( ). (A)60° (B)75° (C)90° (D)105° 6.下列运算中,结果正确的是( ).
22623(A)xxx (B)xyxy
23224(C)x23x5 (D)822 7.下列说法正确的是( ).
(A)要了解全市居民对环境的保护意识,采用全面调查的方式
22(B)若甲组数据的方差S甲0.1,乙组数据的方差S乙0.2,则甲组数据比乙组稳定
(C)随机抛一枚硬币,落地后正面一定朝上 (D)若某彩票“中奖概率为1%”,则购买100张彩票就一定会中奖一次
8.如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MBMC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( ). (A)22 (B)24 (C)26 (D)28
9.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程S(千米)与行驶时间t(小时)的函数关系如图所示,则下列结论中错误的是( ). (A)甲、乙两地的路程是400千米 (B)慢车行驶速度为60千米/小时 (C)相遇时快车行驶了150千米 (D)快车出发后4小时到达乙地
10.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,连接AO′,下列结论:①△BOA可以由△BOC绕点BOB=150逆时针旋转60°得到;②点O与O′的距离为4;③∠A⑤S△AOCS△AOB= 6+°;④S四边形OBA′633 ;
93.其中正确的结论是( ). 4(A)①②③⑤ (B)①②③④ (C)①②③④⑤ (D)①②③ 二、填空题:(本题有6个小题,每小题3分,共18分) 11.在函数y12.计算:x2中,自变量x的取值范围是 .
031 .
13.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数是 . 14.如图,矩形ABCD中,AB2,AD4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF= .
,∠B=30°,AB=12cm,以AC为直径的半圆O15.如图,Rt△ABC中,∠ACB=90°交AB于点D,点E是AB的中点,CE交半圆O于点F,则图中阴影部分的面积为 cm2.
16.如图,直线y6x,yk2x分别与双曲线y在第一象限内交于点A,B,若
x3S△AOB8,则k .
三、解答题:(本题有9个小题,共72分) 17.(6分)先化简,再求值:11a其中a2. ,2a1a1
18.(6分)如图,在四边形ABCD中,ABAD,CBCD.求证:∠B∠D. 19.(6分)一个不透明的布袋里装有3个大小、质地均相同的乒乓球,分别标有数字1,2,3,小华先从布袋中随机取出一个乒乓球,记下数字后放回,再从袋中随机取出一个乒乓球,记下数字.求两次取出的乒乓球上数字相同的概率.
20.(8分)一辆汽车开往距离出发地180千米的目的地,按原计划的速度匀速行驶60千米后,再以原来速度的1.5倍匀速行驶,结果比原计划提前40分钟到达目的地,求原计划的行驶速度.
21.(8分)如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角为30°的斜坡走100米到达D点,在D点测得山顶A的仰角为30°,求山AB的高度.(参考数据:3≈1.73) 22.(6分)阅读材料: 例:说明代数式x1解:x122x324的几何意义,并求它的最小值.
2x324x0122x32如图,建立平面直角坐标系,22,点Px,0是x轴上一点,则x012可以看成点P与点A01,的距离,
x3222可以看成点P与点B3,2的距离,所以原代数式的值可以看成线段PA与
PB长度之和,它的最小值就是PAPB的最小值.
′设点A关于x轴的对称点为A′,则PAPA,因此,求PAPB的最小值,只需求
PA′PB的最小值,PB的最小值为线段A′B而点A′、B间的直线段距离最短,所以PA′′CB,因为AC=3,CB=3,所以A′B32,即原式的长度.为此,构造直角三角形A的最小值为32.
根据以上阅读材料,解答下列问题: (1)代数式
x121x229的值可以看成平面直角坐标系中点Px,0与点
(填写点B的坐标) A11,、点B___________的距离之和.(2)代数式x249x212x37的最小值为_____________.
23.(10分)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?
(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)
AB是直径,OD∥AC,BD=BA∠C24.(10分)如图1,O是△ABC的外接圆,且∠C,
OD交O于点E.
(1)求证:BD是O的切线;
(2)若点E为线段OD的中点,证明:以O、A、C、E为顶点的四边形是菱形;
(3)作CFAB于点F,连接AD交CF于点G(如图2),求
FG的值. FC25.(12分)抛物线yx2bxc经过点A、B、C,已知A13. ,0,C0,(1)求抛物线的解析式;
C的(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BD面积最大时,求点P的坐标;
(3)如图2,抛物线顶点为E,EFx轴于F点,Mm,0是x轴上一动点,N是线段
EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
2012年十堰市初中毕业生学业考试
数学试题参及评分说明
一、选择题:(本题共10个小题,每小题3分,共30分)
1.B 2.C 3.A 4.A 5.D 6.D 7.B 8.B 9.C 10.A 二、填空题:(本题有6个小题,每小题3分,共18分)
11.x≥2 12.3 13.7 14.5 15.3三、解答题:(本题有9个小题,共72分)
3 16.6 a211a1 17.解:原式= ··············································································· 2分 2a1aa2a1a ························································· 4分 .
a1a1aa1当a2时,原式的值为2.································································································ 6分
18.证明:连接AC, ·································································································· 1分 ∵ABAD,CBCD,ACAC, ······································································· 4分 ∴△ABC≌△ADC, ································································································ 5分 ∴∠B∠D ·············································································································· 6分 19.解:列表如下:
1 2 3 1 (1,1) (2,1) (3,1) 2 (1,2) (2,2) (3,2) 3 (1,3) (2,3) (3,3)
由以上表格可知:有9种可能结果,两个数字相同的只有3种······························· 4分 所以,P两个数字相同31. ······················································································ 6分 9320.解:设原计划的行驶速度为x千米/时, ······································································ 1分
180601806040················································································· 5分 x1.5x60解得x60,
经检验:x60是原方程的解,且符合题意,所以x60.
则:
答:原计划的行驶速度为60千米/时. ······································································ 8分 21.解:过D作DEBC于E,作DFAB于F,设AB=x,
,CD=100, 在Rt△DEC中,∠DCE=30°∴DE50,CE503 ·················································································· 2分 在Rt△ABC中,∠ACB=45°,∴BCx
则AFABBFABDEx50
···································································· 4分 DFBEBCCEx+503 ·
,tan30°=在Rt△AFD中,∠ADF=30°∴AF , FDx503, ··························································································· 6分 3x503∴x503+3≈236.5(米),
答:山AB的高度约为236.5米. ················································································ 8分
22.(1)(2,3) ·········································································································· 3分 (2)10 ·························································································································· 6分 23.解:(1)设甲材料每千克x元,乙材料每千克y元,则xy40 ················ 2分,2x3y105
∴x15所以甲材料每千克15元,乙材料每千克25元 ············································ 3分 ,y25(2)设生产A产品m件,则生产这50件产品的材料费为:
1530m+2510m+152050m+252050m=40000100m,
由题得:40000100m≤38000 ··················································································· 4分 m≥20, ·························································································································· 5分 又50m≥28m≤22,∴20≤m≤22,∴m20, 21,22, ······················ 6分 生产方案如下表:
A(件) B(件) 20 30 21 29 22 28 ·································································································································· 7分 (3)设总生产成本为W元,加工费为:200m30050m,
则W=40000100m200m30050m=200m55000, ······························ 8分 因为W随m的增大而减小,又m20,21,22,
所以当m22时,总成本最低,此时W50600元. ············································· 10分 24. (1)证明:∵AB是O的直径,
∴∠BCA=90°,
∴∠ABC+∠BAC=90°, ······························································································· 1分 又∠CBD=∠BAC,
∴∠ABC+∠CBD=90°, ∴∠ABD=90°, ·············································································································· 2分 又点B在O上,∴BD为O的切线 ·········································································· 3分
(2)连接CE、OC,∵OEED,∴OD2OB,又∵∠OBD90°,
,∠BOE60° ·∴∠ODB30°··················································································· 4分
又AC∥OD,∴∠OAC60°,又OAOC,∴ACOAOE ∴AC∥OE且ACOE,
∴四边形OACE是平行四边形, ····················································································· 5分 又OAOE,∴四边形OACE是菱形 ············································································ 6分 (3)∵CFAB,∴∠AFC∠OBD=90°,又AC∥OD, ∴∠CAF∠DOB,∴△AFC∽△OBD,∴又∠FAG∠BAD,∠AFG∠ABD90°, ∴∠AFG∽△ABD,∴∴
FCAF ······································ 8分 BDOBFGAF ············································································· 9分 BDABFGOB1. ········································································································ 10分 FCAB21bc0b225.解:(1)由题,解得:,
c3c3所以抛物线解析式为yx22x3 ············································································· 3分 (2)令x2x30,∴x11,x23 即B3,0
设直线BC的解析式为ykxb′,
2∴3b′k1 ∴ 033kb′b′故直线BC的解析式为yx3, ················································································ 4分
a22a3,设Pa, 3a,则Da,PDa22a33aa23a ······································································ 5分
S△BDCS△PDCS△PDB
111PDaPD3aPD3 2223a23a ················································································································· 6分 23327a
228当a2333时,△BDC的面积最大,此时P,. ······················································· 7分 222
2xx23x1(3)由(1),y42,
所以OF1,EF4,OC3,过C作CHEF于H点,则CHEH1.
当M在EF左侧时,因为∠MNC90°,
MFFN, NHHC1mn, 设FNn,则NH3n,∴································································· 8分 3n1则△MNF∽△NCH,得
2即n3nm10,关于n的方程有解,34m1≥0,
254当M在EF右侧时,Rt△CHE中,CHEH1,∠CEH=45°,即∠CEF=45°, 作EMCE交x轴于点M,则∠FEM45°, ∵FMEF4,∴OM5,
即N为点E时,OM5,∴m≤5. ·········································································· 11分
5综上,m的变化范围为:≤m≤5.
4
得m≥. ······················································································································· 9分
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务