解二元一次方程的步骤_99
第1篇:列一元二次方程解题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;
一元二次方程
(2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值;
(5)检验所求的答案是否符合题意,并做答. 经典例题精讲
1.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.
2.解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.3.一元二次方程(a≠0)的根的判别式正反都成立.利用其可以(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.
4.一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.
韦达定理
韦达(Vieta's,Francois,seigneurdeLaBigotiere)1540年出生于法国普瓦捷,1603年12月13日卒于巴黎。早年在普法捷学习法律,后任律师,1567年成为议会的议员。在对西班牙的战争中曾为破译敌军的密码,赢得很高声誉。法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。
他1540年生于法国的普瓦图。1603年12月13日卒于巴黎。年青时学习法律当过律师,后从事政治活动,当过议会的议员,在对西
班牙的战争中曾为破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数
及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。韦达定理实质上就是一元二次方程中的根与系数关系
韦达定理(Viete'sTheorem)的内容
一元二次方程ax +bx+c=0(a≠0且△=b -4ac≥0)中 设两个根为X1和X2 则X1+X2=-ba X1*X2=ca 韦达定理的推广
韦达定理在更高次方程中也定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元n次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根。两端比较系数即得韦达定理。 韦达定理在方程论中有着广泛的应用。 韦达定理的证明
设x1,x2是一元二次方程ax +bx+c=0的两个解。 有:a(x-x1)(x-x2)=0
所以ax -a(x1+x2)x+ax1x2=0 通过对比系数可得: -a(xn*ΠXi
所以:∑Xi=(-1) *A(n-1)A(n) ∑XiXj=(-1) *A(n-2)A(n)
ΠXi=(-1) *A(0)A(n)
其中∑是求和,Π是求积。 本段计算机解一元二次方程 VB实现方法
'该代码仅可实现一般形式的求值,并以对话框形式显示。dima,b,c,i
'在这里添加a、b、c的赋值过程 '例如:a=text1.text 'b=text2.text 'c=text3.text '以上代码为赋值 ifa0andb0andc0then ifa*20then
i=((0-b)+Sqr(b -4*a*c))2 msgboxi
i=((0-b)-Sqr(b -4*a*c))2 msgboxi else msgbox(
endif(1)分析题意,找到题中未知数和题给条件的相等关系; 一元二次方程
(2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值;
(5)检验所求的答案是否符合题意,并做答. 经典例题精讲
1.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.
2.解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.3.一元二次方程(a≠0)的根的判别式正反都成立.利用其可以(1)不解方程判定方
程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.
4.一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的
代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.
韦达定理
韦达(Vieta's,Francois,seigneurdeLaBigotiere)1540年出生于法国普瓦捷,1603年12月13日卒于巴黎。早年在普法捷学习法律,后任律师,1567年成为议会的议员。在对西班牙的战争中曾为破译敌军的密码,赢得很高声誉。法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。
他1540年生于法国的普瓦图。1603年12月13日卒于巴黎。年青时学习法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。韦达定理实质上就是一元二次方程中的根与系数关系
韦达n)
其中∑是求和,Π是求积。 如果一元二次方程 在复数集中的根是,那么
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元n次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解
成一次因式的乘积:
其中是该方程的个根。两端比较系数即得韦达定理。
'该代码仅可实现一般形式的求值,并以对话框形式显示。dima,b,c,i
'在这里添加a、b、c的赋值过程 '例如:a=text1.text 'b=text2.text 'c=text3.text '以上代码为赋值 ifa0andb0andc0then ifa*20then
i=((0-b)+Sqr(b -4*a*c))2 msgboxi
i=((0-b)-Sqr(b -4*a*c))2 msgboxi else msgbox( endif
第2篇:解一元一次方程的步骤?解一元一次方程的步骤: 一般解法:
⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
⒉去括号:一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)⒊移项:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)(=号的一边移到另一边时变符号)
⒋合并同类项:把含有未知数的项系数进行运算,把已知项进行运运算。(先确定符号,1、加法:同号相加,符号不变,绝对值相加;异号相加,符号随大,大-小。2、减法,减去一个数等于加上这个数
的相反数。3、乘除法,同号得正,异号得负)
⒌系数化为1:在方程两边都除以未知数的系数a,得
到方程的解(系数为分数时,乘系数的倒数;系数为整数时,除以系数)
第3篇:解一元一次方程的步骤教学设计示例 教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点
一元一次方程解简单的应用题的方法和步骤. 课堂教学过程设计
一、从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题. 例1某数的3倍减2等于某数与4的和,求某数. (首先,用算术方法解,由学生回答,教师板书) 解法1:(4+2)÷(3-1)=3. 答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成) 解法2:设某数为x,则有3x-2=x+4. 解之,得x=3. 答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出 重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉.
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题
意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)
解:设第一小组有x个学生,依题意,得 3x+9=5x-(5-4), 解这个方程:2x=10, 所以x=5.
其苹果数为3×5+9=24.
答:第一小组有5名同学,共摘苹果24个.
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得
)
三、课堂练习
1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?
2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人
数.
四、师生共同小结
首先,让学生回答如下问题: 1.本节课学习了哪些内容?
2.列一元一次方程解应用题的方法和步骤是什么? 3.在运用上述方法和步骤时应注意什么? 依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;
(2)以上步骤同学应在理解的基础上记忆. 五、作业
1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?
4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?
5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数.
第4篇:消元法解二元一次方程组的概念、步骤与方法消元法解二元一次方程组的概念、步骤与方法
湖南李琳高明生 一、概念步骤与方法:
1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.
2.用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.
注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.
⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的基本思路仍然是“消元”. 4.用加减法解二元一次方程组的一般步骤:
第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,?可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,?可以直接把两个方程的两边相减,消去这个未知数.
第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值
相等(都等于原系数的最小公倍数),再加减消元.
第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,?合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,?常数项在方程的右边的形式,再作如上加减消元的考虑.
注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.
5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,
找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.
6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;
⑵找出题中的两个等量关系;
⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;
⑷解这个方程组,求出未知数的值.
⑸检验所得结果的正确性及合理性并写出答案.
注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列
出几个方程.即未知数的个数应与方程组中方程的个数相等. 二、化归思想
所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.
三、典型例题解析: 类型一:基本概念: x?2,? y??1,
例1、(2005年盐城大纲)若一个二元一次方程的一个解为?则这个方程可以是
________.(只要写出一个)
分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。
x?2,? y??1,
解:可以先设左边为3x+2y,然后将?代入:3x+2y求得其值为4,则可以得?x?2,
y??1,x?yx?y
到符合题意的一个方程:3x+2y=4;也可以先设左边为,然后将?代入:
求得其值为1,则可以得到符合题意的一个方程:x?y?1; 评述:利用概念解题是初中数学的基本要求,注意概念的内涵和外延是解题的关键,本题实质是考查方程组的解与方程的关系,从而转化为代数求值的问题.
类型二:用含一个字母的式子表示另一个字母 1x? 32y?1 例2、已知2 .
⑴用含x的式子表示y;⑵用含y的式子表示x.
分析:用一个字母表示另一个字母时,应该按照解方程的方法步骤,逐步“剥离”出要表示的字母并把它放在等号的左边,其他未知项、常数项则要统统移到等号的右边.
解:⑴去分母,得x?3y?2.移项,得-3y=2-x. 2
系数化为1,得 y =-3 x3.
⑵去分母,得,x?3y?2. 移项,得x?3y+2.
评述:用含一个字母的式子表示另一个字母是代入法消元法的基础,同时也是消元思想的目的,即消去一元化为一元一次方程。
类型三:消元法解二元一次方程组的两种类型 2x?y?5,①? x?3y?6.②
例3、(2007年山东青岛)?
分析:当一个未知数前的系数为1时,两种方法都比较简单。方法1.代入消元法解二元一次方程组由②可得x=3y+6③
将③代入①得:2(3y+6)+y=5,解得:y=-1,将y=-1,代入③得:x?3
x?3,
∴原方程组的解是?y??1.
方法2.加减消元法解二元一次方程组①?3,得6x?3y?15.③②? ③,得7x?21, x?3.
把x?3代入①,得2?3?y?5, y??1. x?3,
∴原方程组的解是?y??1.
评述:解二元一次方程组有代入消元法和加减消元法,一般是当可以比较容易的把一个未知数用含有另一个未知数的式子表示的时候,用代入消元法;否则可用加减消元法.用代入消元法时,对用含有一个未知数的式子表示另一个未知数要特别细心.用加减消元法时,当两个方程相减时,要特别注意符号问题,这都是容易出错的地方.另外,解二元一次方程组是“化归”思想的充分体现,要注意体会这种数学思想.
考点四:列二元一次方程组解决实际问题:
例4、为了保护环境,某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1?号电池和5号电池每节分别重多少克?
分析:如果1号电池和5号电池每节分别重x克,y克,则4克1号电池和5节5?号电池总重量为4x+5y克,2节1号电池和3节5号电池总重量为2x+3y克.
解:设1号电池每节重 y克,根据题意可得 4x?5y?460? 2x?3y?240 ②×2-①,得y=20
把y=20代入②,得2x+3×20=240,x=90 x?90? y?20
所以这个方程组的解为?
答:1号电池每节重90克,5号电池每节重20克.
评述:列二元一次方程组解决实际问题一般需要般要遵循如下步骤: ①审题;②确定相等关系;③设出未知数;④解方程;⑤检验、写出答案.四、举一反三:
1、(2007江苏南京)解方程组答案提示:①+②,得把 代入②,得 . .解得 .
原方程组的解是
2、(2007恩施自治州)团体购买公园门票票价如下:
今有甲、人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人.(2)求甲、乙两旅行团各有多少人?答案提示:(1)∵100×13=1300
∴乙团的人数不少于50人,不超过100人(2)设甲、乙两旅行团分别有x人、y人,
则解得:
所以甲、乙两旅行团分别有36人、84人3、(1)(2006·扬州)xy=16,写出满足x与y的值_________________.
(2)(2006·烟台)在横线上,写出一个解为x=1y=2的二元一次方程组:.
答案提示:这两个填空题以发散的形式考查方程(组)的概念和方程(组)解的定义,它们的答案都不唯一.
第(1)题首先可想到42=16;第(2)题列两个含有1和2的等式,然后用x和y分
别代换1和2,并将它们联立起来,即可得到一个解为解:(1)x=4,y=2或x=2,y=4.
的方程组. (2)∵
1+2=3,2×1-2=0.
∴以为解的一个二元一次方程组是x+y=3,2x-y=0.
4、下图是按一定规律排列的方程组集合和它们解的集合的对应关系图:
若方程组集合中的方程组自上而下依次记作方程组1,方程组2,方程组3,…,方程组n.
(1)将方程组1的解填入上图中;
(2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中;
(3)若方程组的解是求a、b的值,并判断该方程组是否符合(2)中的规律?
答案提示:通过两个集合代数式中项的上下数字的对比不难发现方程组和方程组的解
的通式分别为 解:(1)2,-1.
找到这个规律,问题就变的很简单了. (2)
(3)由题意,得
解之得 该方程组若为
x2-1=0x2+x-2=0x2+2x-3=0…… x2+(n-1)x-n=0
那么它符合(2)中的规律;若为则不符合.
5、已知下列n(n为正整数)个关于x的一元二次方程: (1)请解上述一元二次方程、、……;
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.答案提示:(1)(x+1)(x-1)=0,所以x1=-1,x2=1.(x+2)(x-1)=0,所以x1=-2,x2=1.(x+3)(x-1)=0,所以x1=-3,x2=1.……
(x+n)(x-1)=0,所以x1=-n,x2=1.
(2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等.6、在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.
(1)求乙工程队单独完成这项工程所需的天数.(2)求两队合作完成这项工程所需的天数.
答案提示:设这项工程的总量为单位“1”,则“乙工程队10天完成的工程量+甲、乙合作20天完成的工程量=总工程量“1”,根据此关系式可列方程求解.解:(1)设乙工程队单独完成这项工程需要x天.根据题意,得
解得x=60.经检验x=60是原方程的解.
答:乙工程队单独完成这项工程所需的天数为60天.(2)设两队合作完成这项工程所需的天数为y天.
根据题意,得 解得y=24.
答:两队合作完成这项工程所需的天数为24天.
第5篇:一元一次方程解题步骤详解一元一次方程的应用(一)1、
掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。
2运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。
一、目标导入
前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。
二、例题
例1有一列数,按一定规律排列成1,-3,9,-27,81,-243,?,其中某三个相邻数的和是-1701,这三个数各是多少?
分析:从符号与绝对值两方面观察,这列数有什么规律? 符号正负相间;后者的绝对值是前者绝对值的3倍。即后一个数是前一个数的-3倍。如果设其中一个数为x,那么后面与它相邻
的两个数你能用x表示出来吗? 后面两数分别是-3x,9x。 问题中的相等关系是什么? 三个相邻数的和=-1701。 由此可得方程x-3x+9x=-1701 解之,得x=-243。
所以这三个数是-243,729,-218。
注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。这一点要注意学习。例2根据下面的两种移动电话计费方式表,考虑下列问题。
(1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢?
(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?
分析:(1)按方式一在本地通话200分钟需要交费多少元?350分钟呢?
通话200分钟需要交费:30+200×0.3=90元;
通话350分钟需要交费:30+350×0.3=135元.
按方式二在本地通话200分钟需要交费多少元?350分钟呢?通话200分钟需要交费:200×0.4=80元;
通话350分钟需要交费:350×0.4=140元.
(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元?
按方式一要收费(30+0.3t)元;按方式二要收费0.4t元. 问题中的等量关系是什么? 方式一的收费=方式二的收费. 由此可列方程30+0.3t=0.4t 解之,得t=300
所以,当一个月内通话300分钟时,两种计费方式的收费一样多. 引申:你知道怎样选择计费方式更省钱吗?
当t=400时,30+0.3t=30+0.3×400=150元; 0.4t=0.4×400=160元.
当时间大于300分钟时,方式一更省钱. 三、一元一次方程解实际问题的基本过程
将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。
四、课堂练习
学校办了储蓄所,开学时,李英存了200元,王建存了140元,以后李英每月存20元,王建每月存35元,经过几个月,李英、王建的存款数相等?
五、小结
本节课我们研究了通过列一元一次方程,把实际问题抽象成数学问题即建立数学模型,再通过解一元一次方程即解决数学问题来解决实际问题的具体方法,这是解决实际问题的一般思想方法。解一元一次方程-去括号(1)
1、掌握含有括号的一元一次方程的解法;
2、经历运用方程解决实际问题的过程,进一步体会方程模型的作
用。
2含有括号的一元一次方程的解法是重点;括号前面是负号时去括号是难点。
一、导入新课
前面我们已经学会了运用移项、合并同类项来解一元一次方程,但当问题中的数量关系较复杂时,列出的方程也会较复杂,解方程的步骤也相应些,如下面的问题。
二、探索去括号解一元一次方程
问题某加工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电150万度,这个工厂去年上半年每月平均用电多少度?
分析:问题中的等量关系是什么?
上半年用电度数+下半年用电度数=1500000。
设去年上半年平均用电x度,那么下半年每月平均用电多少度?上半年共用电多少度?下半年共用电多少度?
下半年每月平均用电(x-2000)度;上半年共用电6x度;下半年共用电6(x-2000)度。
由此可得方程:
6x+6(x-2000)=1500000
这个方程中含有括号,怎样才能转化为我们熟悉的形式呢? 去括号。
去括号,得6x+6x-12000=1500000 解得x=13500
所以这个工厂去年上半年每月平均用电13500度。 思考:你还有其它的解法吗? 设去年下半年平均用电x度,则 6x+6(x+2000)=1500000 解之,得x=11500
所以去年上半年每月平均用电11500+2000=13500度。 三、例题
例1解方程:3x-7(x-1)=3-2(x+3) 解:去括号,得 3x-7x+7=3-2x-6 合并,得-4x+7=-2x-3 移项,得-4x+2x=-3-7 -2x=-10 ∴x=5
注意:括号外面是负号时,去括号后,括号内的每一项的积都要变号。
四、课堂练习
1、初一某班同学准备组织去东湖划船,如果减少一条船,每条船正好坐9名同学,如果增加一条船,每条船正好坐6名同学,问这个班共有多少名同学?
五、小结
1、含有括号的一元一次方程的解法。
当括号外面是负号,去掉括号后,要注意变号。 2、解一元一次方程的步骤:
①去括号;②移项;③合并同类项;④系数化为1。
3、例题解法一是求什么设什么,叫直接设元法,方程的解就是问题的答案;解法二不是求什么设什么,叫间接设元法,方程的解并不是问题的答案,需要根据问题中的数量关系求出最后的答案
解一元一次方程——去括号(2) 1、进一步掌握列一元一次方程解应用题;
2、通过分析“顺逆水”和“配套”问题,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。
2分析题意、找等量关系和列方程是重点;找出能够表示问题全部含义的相等关系是难点。
一、复习导入
上节课我们学习了解含有括号的一元一次方程,现在我们来解两道题:
(1)2(x+3)=2.5(x-3);(2)2×1200x=2000(22-x)
怎样运用这样的方程来解决实际问题呢?今天我们就来讨论一下。 二、例题
例1一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。已知水流的速度是3千米时,求船在静水中的平均速度。
分析:顺流行驶的速度、逆流行驶的速度、水流的速度、静水中的速度之间有什么关系?顺流的速度=静水中的速度+水流的速度;
逆流的速度=静水中的速度-水流的速度。 问题中的相等关系是什么? 顺水行驶的路程=逆水行驶的路程。
设船在静水中的平均速度为x千米/时,那么顺流的速度是什么?逆流的速度是什么?顺流的速度是(x+3)千米/时逆流的速度是(x-3)千米/时。
由些可得方程
2(x+3)=2.5(x-3) 由前面的解答,知x=27
所以船在静水中的速度是27千米/时。
注意:要牢牢记住顺流的速度=静水中的速度+水流的速度;逆流的速度=静水中的速度-水流的速度。
例2某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
分析:当问题中的量比较多,关系比较复杂时,我们可以把量分成两类列表,从而使条件条理化,如下表所示:
请设未知数,填上表。 问题中的等量关系是什么? 螺母的数量=2×螺钉的数量。 由此,可列方程
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务