ORIGINALPAPER
InvestigationofgranularbatchsedimentationviaDEM–CFDcoupling
T.Zhao·G.T.Houlsby·S.Utili
Received:3February2014/Publishedonline:12November2014©Springer-VerlagBerlinHeidelberg2014
AbstractThispaperpresentsthreedimensionalnumeri-calinvestigationsofbatchsedimentationofsphericalparti-clesinwater,byanalysesperformedbythediscreteelementmethod(DEM)coupledwithcomputationalfluiddynam-ics(CFD).Byemployingthismodel,thefeaturesofbothmechanicalandhydraulicbehaviourofthefluid-solidmix-turesystemarecaptured.Firstly,theDEM–CFDmodelisvalidatedbythesimulationofthesedimentationofasinglesphericalparticle,forwhichananalyticalsolutionisavail-able.Thenumericalmodelcanreplicateaccuratelytheset-tlingbehaviourofparticlesaslongasthemeshsizeratio(Dmesh/d)andmodelsizeratio(W/Dmesh)arebothlargerthanagiventhreshold.Duringgranularbatchsedimentation,segregationofparticlesisobservedatdifferentlocationsinthemodel.Coarsegrainscontinuouslyaccumulateatthebot-tom,leavingthefinergrainsdepositedintheupperpartofthegranularassembly.Duringthisprocess,theexcessporewaterpressureinitiallyincreasesrapidlytoapeakvalue,andthendissipatesgraduallytozero.Meanwhile,thecompressibilityofthesedimentsdecreasesslowlyasasoillayerbuildsupatthebottom.Consolidationofthedepositedlayeriscausedbytheself-weightofgrains,whilethecompressibilityofthesampledecreasesprogressively.
ElectronicsupplementarymaterialTheonlineversionofthisarticle(doi:10.1007/s10035-014-0534-0)containssupplementarymaterial,whichisavailabletoauthorizedusers.
T.Zhao(B)·G.T.Houlsby
DepartmentofEngineeringScience,UniversityofOxford,OxfordOX13PJ,UK
e-mail:tzhaooxford@gmail.com
S.Utili
SchoolofEngineering,UniversityofWarwick,CoventryCV47AL,UK
KeywordsGranularbatchsedimentation·DEM–CFDcoupling·Segregation·Porewaterpressure·Effectivestress·Compressibility
1Introduction
Thesedimentationandconsolidationprocessesofgranu-larmaterialsarecommoninbothterrestrialandsubmergedenvironments.Inthenaturalenvironment,granularmate-rialsoftensettlecontinuouslytowardstheseabed,lakeorriverfloortoformaloosesedimentlayer.Astheskeletonofthesedimentlayerisextremelycompressible,itunder-goesrelativelylargestrainunderadditionalloads.Sedimen-tationprocessesareveryimportantforsolid-liquidsepa-ration,ascanbefoundinthefieldsofchemical,mining,wastewater,food,pharmaceuticalandotherindustries[1–3].Therelatedresearchincludestheoretical,experimentalandnumericalinvestigationsonavarietyofmaterials[3–10].
Duringgranularsedimentation,theaveragesettlingveloc-ityofasuspensionisthemostnotableparameterquantifyingthedynamicbehaviourofthefluid-solidmixturesystem[11–15].AsfirstproposedbyKynch[4],theaveragesettlingvelocityofasuspensiondependsonlyonthelocalconcen-trationofsolidmaterials(inadditiontothecharacteristicsoftheparticlesandfluid).Thisstatementhasbeenvalidatedbyexperimentalmeasurementsofthegrainsettlingratesingran-ularsuspensionsystems[6,8,16].Numericalsimulationsofsedimentationmainlyfocusonthesettlinganddepositionalbehaviourofparticlesineithermonodisperse[7,12,17]orpolydisperse[10,18]systems.Thisresearchrevealsthreedistinctzonesinagrainsettlingsystem,enumeratedfromtoptobottomas:1.thehinderedsettlingzone,wherethesurfacesettlingvelocityisapproximatelyconstant;2.the
123
922transitionzonewherethesettlingratedecreasesgraduallytowardszero;and3.thecompressionzonewhereasoillayerisformedatthebottomandconsolidationoccursduetotheself-weightofsediments.However,asreportedbyRichard-sonandZaki[7],zone1isabsentforveryfineflocculatedpulps,andthesettlingratedecreasesprogressively.
Formanyyears,analyticalandnumericalinvestiga-tionsofsedimentationemployingempiricalcorrelationsofthemixturepropertiesbasedonlaboratoryexperimentshavebeenreported[3,7,19–22].However,afullysystem-aticstudyofsedimentationisstilllackingasthefluid-solidmixturepresentsahighlyheterogeneousstructurefeaturingaspatiallynon-uniformdistributionofparti-cles[6,23].Thenumericalinvestigationreportedhereisbasedontheconceptthatthemotionofparticlesiscom-pletelygovernedbytheNewtonianequationsofmotion,andinterparticlecollisionsaremodelledbythesoftparti-cleapproach[3].ThefluidflowiscalculatedbytheNavier–Stokesequations[3,11,24].Consequently,thediscreteele-mentmethod(DEM)[25]andcomputationalfluiddynamics(CFD)[26]techniquescanbeusedtostudythemechanicalandhydraulicbehaviourofparticlesandfluidflow,respec-tively.Bycouplingthesetwomethods,acompleteanalysisofthesedimentationofafluid-solidmixturesystemcanbeachieved[27].
TheworkpresentedhereispartofaresearchefforttoextendtheDEMmodellingoflandslides[28–30]tothesub-mergedcase.Thepaperisorganisedasfollows.WeexplainthetheoryandmethodologyoftheDEMandCFDinSect.2.Thenumericalinvestigationofgranularsedimentationispre-sentedinSect.3.WefirstvalidatetheDEM–CFDcouplingmodelbysimulatingthesedimentationofasinglesphericalparticle(Sect.3.1).Then,weanalysethebatchsedimen-tationofparticles,examiningthesegregationofparticles,generationanddissipationofexcessporewaterpressures,andevolutionofcontactforcechains(Sect.3.2).Section4summarizestheresultsandmainconclusionsachievedbythework.
2Theoryandmethodology
Theequationsgoverningafluid-solidmixturesystemarederivedfromthetheoryofmultiphaseflow[27,31].Figure1illustratesthecomponentsofthemixture,whichconsistsoffluid,andparticles.Thefluiddensity(ρf),velocity(U)andparticlepackingporosity(n)arefunctionsofspatialposi-tionandtime.TheDEMandCFDopensourcecodesESyS-Particle[32,33]andOpenFOAM[34]wereemployedforthesimulationspresentedhere.ThecouplingalgorithmfromChenetal.[27]originallywritteninYADE[35]wasimple-mentedinESyS-Particlebytheauthors.
123
T.Zhaoetal.
Fig.1Aninfinitesimallysmallelementofthefluid-solidsystem
2.1Equationsgoverningparticlemotion
AccordingtoNewton’ssecondlawofmotion,theequationgoverningthetranslationalmotionofasphericalparticleisexpressedas:
md2i−dt2−→xi=mi−→g+→fnc+−→ftc+−f−f−luid→(1)
c
wheremiisthemassofparticlei;→−xiisthetroid;−→gisthegravitationalacceleration;−position→ofitscen-fncand−→ftcarethe
normalandtangentialparticle-particlecontactforcesexertedbytheneighbouringparticlesonparticlei,whicharecalcu-latedusingthelinear-springandrollingresistancemodelasdetailedbyIwashita[36],Jiangetal.[37]andBelheineetal.[38];thesummationofthecontactforcesisoverallparticlesincontactwithparticlei;−f−f−luid→
the
istheforceexertedbyfluidontheparticle,whichwillbedefinedinSect.2.2.TherotationalmotionofasphericalparticleisgovernedbyEq.(2),as:
Ididt−→ωi=
−→rc×−→ftc+−M→r(2)cwhere−→Iiisthemomentofinertiaabouttheωiistheangularvelocity;→−graincentroid;
rcisthevectorfromtheparticle
masscentretothecontactpoint;−M→
ristherollingresistantmoment,whichinhibitsparticlerotationoverotherparti-cles.TherollingresistantmomentusedintheDEMmodelaccountsapproximatelyfortheangularshapeandinterlock-ingeffectsbetweenparticles.2.2Fluid-particleinteraction
Theinteractionforcebetweenfluidandparticles(−f−f−luid→
)consistsoftwoparts:hydrostaticandhydrodynamicforces[39].Thehydrostaticforceaccountsforthefluidpressure
Investigationofgranularbatchsedimentationgradientaroundanindividualparticle(i.e.buoyancy)[27,40,41],expressedas:−→fbi=−vpi∇p
(3)
where−→
fiisthehydrostaticbuoyantforceactingonparticlei,vb
piisthevolumeofparticlei;pisthefluidpressure.Thehydrodynamicforcesactingonaparticlearethedrag,liftandvirtualmassforces.Thedragforceiscausedbytheviscousshearingeffectoffluidontheparticle;theliftforceiscausedbythehighfluidvelocitygradient-inducedpressuredifferenceonthesurfaceoftheparticleandthevirtualmassforceiscausedbyrelativeaccelerationbetweenparticleandfluid[42–44].ThelattertwoforcesarenormallyverysmallwhencomparedtothedragforceinsimulatingfluidflowatrelativelylowReynoldsnumbers[44].Therefore,theliftandvirtualmassforcesareneglectedinthecurrentDEM–CFDcouplingmodel.Inthisprocess,thedragforceoccurswhenthereisanon-zerorelativevelocitybetweenfluidandparti-cles.Itactsattheparticlecentreinadirectionoppositetotheparticlemotionrelativetothefluid[45].Experimentalcorre-lations[20,21,46]andnumericalsimulations[47–49]forthedragforcearereportedintheliterature.Inthisresearch,thedragforce(Fdi)actingonanindividualparticleiscalculatedusingtheempiricalcorrelationproposedbyDiFelice[22],as:
Fdi=1
πd22Cdρf
4
|U−V|(U−V)n−χ+1(4)
whereCdisthedragforcecoefficient;dandVareparticlediameterandvelocity,respectively.
Theporositycorrectionfunctionn−(χ+1)inEq.(4)rep-resentstheinfluenceofthepackingconcentrationofgrainsonthedragforce.Theexpressionforthetermχis[22]:χ=3.7−0.65exp−
1.5−log2
10Rep
2
(5)
whereRep=ρfdn|U−V|/μistheReynoldsnumberdefinedattheparticlesizelevel,withμbeingthefluidvis-cosity.Inthecurrentanalyses,χrangesfrom3.4to3.7.Thereareseveraldefinitionsofdragforcecoefficientreportedintheliterature[49–51].AcomparisonbetweenthesecorrelationsandexperimentaldataisshowninTable1andFig.2.AccordingtoFig.2,itcanbeobservedthatthecor-relationofBrownandLawler[51]matchestheexperimentaldatawellinthewholerangeofReynoldsnumbersconsid-eredinthisresearch.Therefore,thedragforcecoefficientisimplementedintheDEM–CFDcouplingmodelas:Cd=2400.407Re1+0.150Re.681
+1+8710(6)
Re923
Table1Somecorrelationsofdragforcecoefficientforsphericalpar-ticlesStokes[42]Re24
Newton(Inertial)[3]0.44
24
SchillerandNaumann[50]1.0+0.15Re0.687Re≤1000DallaValle[46]
0Re.44Re0.63+√4.8
>1000
2ReBrownandLawler[47]
Re24
1+0.150Re0.681+0.4071+8710
Re1000010.810000.6)dC( tn1000.4eiciffeoC10103104105 Experimental data ga Brown and Lawler (2003)rD1DallaValle (1948)Schiller and Nauman (1935)Stokes0.1Newton10-410-2100102104106Reynolds Number (Re)Fig.2Dragcoefficientofvariouscorrelationsandexperimentaldataforsphericalparticles
Thetotalforceexertedbyfluidonasingleparticleisthereforeexpressedas:
−f−f−luid→
=−vpi∇p+1πd22Cdρf
4
|U−V|(U−V)n−χ+1(7)2.3Governingequationsoffluidflow
Thecontinuityandmomentumequationsgoverningthemotionoffluidflowinafluid-solidmixturesystemarederivedfromthetheoryofmultiphaseflow[31],as:∂ρfn
∂
∂ρt+fnU∇·ρfnU=0(8)∂t+∇·ρfnUU=−n∇p+n∇·τ+nρf→−g+fd
(9)wherefdistheaveragedragforceperunitfluidvolume,definedaswithiniN=1Fdi/Vmesh,withNbeingthenumberofparticlesthefluidmeshcell,Vmeshisthevolumeofthefluidmeshcell;τisthefluidviscousstresstensor.
123
924T.Zhaoetal.
malizedsettlingtimeisdefinedas:
gd2ρs−ρftt
[T]==
tc18μH
(11)
Theverticalposition(h)isnormalizedbytheinitialparal-lelepipedheight(H),as:[H]=h/H
(12)
Fig.3Configurationofthegranularsedimentationmodel
3NumericalinvestigationofgrainsedimentationThisresearchexaminesthesettlingbehaviourofparticlesin
fluidwithinaparallelepiped,employingtheDEMcoupledwithCFD.Thefundamentalparametersgoverningtheset-tlingprocessarethefluiddensity(ρf)andviscosity(μ),thewidthoftheparallelepiped(W),thediameterofparticle(d)andtheporosityofthegranularpacking(n).BasedonthedimensionalanalysisperformedbyRichardsonandZaki[7],afunctionrelatingalltheseparametersis:
WρdUrUr
,n,(10)=f
U0µdwhereUristherelativesettlingvelocitybetweenparticleandfluid,U0=gd2(ρs−ρ)/18μistheterminalsettlingvelocityofasinglesphericalparticleinfluid,calculatedbyStokes’lawofsedimentation[46].Intheanalysis,thenor-Table2Inputparametersofthesedimentationsimulation
InEq.(10),thefirsttwodimensionlessgroupsontherighthandsidecorrespondtotheReynoldsnumberandtheporos-itycorrectiontermsofthegoverningequationsintheDEM–CFDcouplingmodel(i.e.Eqs.(4)–(6)).Thesizeratio(W/d)representstheinfluenceofmodelsizeonthesettlingveloc-ityofparticles.Asperiodicboundariesareusedinthelateraldirectionsofthefluidmodel(seeFig.3),theinfluenceofwallfriction(non-slipeffect)onthesettlingbehaviourofparticlescanbeneglectedinthesimulations.
ThenumericalmodelconfigurationisshowninFig.3.Theparallelepipedhascross-sectionaldimensionsof0.025m×0.025mandaheightof1.0m.Theparticlesofvarioussizesareinitiallyrandomlygeneratedwithintheparallelepipedandthensettledownwardsundergravity.Theinputparame-tersofthesimulationsarelistedinTable2.3.1Sedimentationofasingleparticle
AsimulationofthesedimentationofasingleparticlehasbeenusedtovalidatetheDEM–CFDcouplingcode.Asphericalparticlewithradius1mmsettlesfromaposition9cmbelowtheuppersurfaceofthefluidmodel.Theporosityofthefluidmeshcellinwhichtheparticleisplacediscalculatedas0.99.Themotionofthesphericalparticleisgovernedby:4143∂Ur
πrρs=πr3ρs−ρfg−πr2ρfCdUr23∂t32
(13)
wherer=d/2istheparticleradius.
InEq.(13),thedragforcecoefficient(Cd)iscalculatedfromEq.(6).SinceUalsoappearsintheexpressionofthedragcoefficient,itisnotstraightforwardtoobtainasolu-
DEMparametersParticlediameter,d(mm)Granulardensity,ρs(kg/m3)Normalstiffness,Kn(N/m)Shearstiffness,Ks(N/m)Particlefrictionangle,φμ(◦)
Value[1.8,3.8]2,6503.0×1072.7×107301.00.1
CFDparametersFluiddensity,ρf(kg/m3)Viscosity,μ(Pa·s)SimulationparametersGravity,g(m/s2)
DEMtimestepsize,ts(s)CFDtimestepsize,tf(s)Couplingfrequency∗,α
Value1,0000.001Value−9.8110−710−5100
∗
ThecouplingfrequencyisthenumberofiterationstepsusedintheDEMinonecouplinginterval
Coefficientofrollingstiffness,βCoefficientofplasticmoment,η
123
Investigationofgranularbatchsedimentation
0.30)0.25s/m( y0.20 Analytical resultst Numerical resultsicolev0.15 gniltte0.10S0.050.000.00.10.20.30.4Time (s)Fig.4Thesettlingvelocityofaparticlewithdiameterbeing1mm
tionforthesettlingvelocityfromEq.(13)explicitly.Thus,aforwardfinitedifferencenumericaltechniqueisusedtocalculatetherelativesettlingvelocityatdifferenttimes.InFig.4,thecalculatedanalyticalresultsforsettlingvelocityarecomparedwiththenumericalones.Inthistest,thefluiddomainismeshedinthex-,y-andz-directionswith5×5×200equalsizedparallelepipedcells.Thepar-ticlesettlesfromaninitialstaticstateandthenacceleratesuntiltheterminalvelocityisreached.ThenumericalresultsmatchanalyticalonescalculatedbyEq.(13)well.Theter-minalvelocityoftheparticleis0.28m/s.
Asthecouplingmethodologyonlydescribestheaver-ageparameters(e.g.dragforce,flowvelocity,pressure)ofthefluid-solidmixture,thefluidflowaroundtheparticlesisnotexplicitlyrepresented.Duringthecalculation,thelocalporosityisassumedtobeevenlydistributedwithinonefluidmeshelement[52].Inordertogetaccurateresults,severalDEMparticlesarerequiredtofitinsideoneCFDmeshele-ment,whichmeansthatthesizeratiobetweenfluidmeshdimension(Dmesh)andparticlediameter(d)shouldbelargerthansomecriticalvalues.Aseriesofnumericalsimulationswithdifferentmeshsizeratioswereconductedtoexplorethissizeeffect:thesizeoffluidmeshwasvariedfrom0.0025to0.025m,whiletheparticlediameterwasheldconstantfordifferentsimulations).Theterminalvelocityofgrainsisnor-malizedbytheanalyticalsettlingvelocityofasingleparticle(U0),asshowninFig.5.
Thevalueofmeshsizeratio(Dmesh/d)reflectstheaccu-racyoftheaveragingprocessusedintheDEM–CFDcou-plingmodel.Ifitistoosmall,fluctuationofsettlingvelocityoccursacrossthedomainduetotheheterogeneouspackingofthefluid-solidmixture.AccordingtoFig.5,theparticlesettlingvelocitymatchesthetheoreticalvaluewhenthesizeratio(Dmesh/d)islargerthan5.Thisconclusionagreeswellwiththecriticalmesh-grainsizeratiosuggestedbyItasca[52]forthesettlingbehaviourofasingleparticle.
925
1.0)U00.8/U (ytic0.6olev g0.4niltteS0.20.001234567Size ratio (Dmesh/d)Fig.5Theeffectofsizeratio(Dmesh/d)onthenormalizedsettlingvelocity
100Sample Height (m)800.15 (base)n0.50 (middle)ah0.85 (top)t re60nif egat40necreP2001.52.02.53.03.54.0Particle diameter (mm)Fig.6Theparticlesizedistributioncurveofthesampleatthreedif-ferentlocations
Ingeneral,toconsidertheresolutionofCFDcalcula-tionandpossibleboundarywallfrictioneffects,oneneedstostudytheinfluenceofthemodelsizeratio(i.e.theratiobetweenthewidthofthefluidmodel(W)andthemeshsize(Dmesh))onthegranularsettlingbehaviour.Itasca[52]sug-gestthatthisratioshouldbenolessthan5andthattheimple-mentationofperiodicboundariesintheCFDcaneffectivelyreducetheboundarywallfrictioneffects.TheItascarecom-mendationsareimplementedinthecurrentmodel,andthenumericalresultsobtainedarethereforethoughttobeinde-pendentoftheboundarywallfrictioneffects.
3.2NumericalsimulationofbatchgranularsedimentationFornumericalsimulationsofgranularbatchsedimentation,6000polydispersedparticlesarerandomlygeneratedwithinaparallelepiped(seeFig.3).Theparticlesizedistribution(PSD)ischeckedalongtheparallelepiped.AsshowninFig.6,thePSDcurvesatthreelocationsalongtheparal-lelepiped(base,middleandtop)overlapeachother,indi-
123
926
100T.Zhaoetal.
100Percentage smaller thanPercentage smaller than8060402001.5 Base Middle TopInitial PSD curve[T] = 0.0806040200 Base Middle TopInitial PSD curve[T] = 1.82.02.53.03.54.01.52.02.53.03.54.0Particle diameter (mm)100100Particle diameter (mm)Percentage smaller than8060402001.5Percentage smaller than Base Middle TopInitial PSD curve[T] = 3.6806040200 Base Middle TopInitial PSD curve[T] = 5.42.02.53.03.54.01.52.02.53.03.54.0Particle diameter (mm)Particle diameter (mm)Fig.7Particlesizedistributionsinsuspensionsandsedimentsatdifferenttimes
catingthattheinitialDEMsampleisuniform.Theaverageporosityis0..Inthefollowinganalyses,thefluidmodelismeshedinx-,y-andz-directionswith5×5×200equalsizedfixed-gridparallelepipedcells,asabove.3.3Observationsfromnumericalanalysis3.3.1Segregationofparticles
AccordingtoStokes’lawofsedimentation[46],duringthesettlingprocess,coarsegrainssettlefasterthanthefinerones,leadingtosegregationofgrains.Toillustratethis,wepresenttheparticlesizedistributionatdifferentlocationsinthesampleinFig.7.Thesystemhasbeendividedintothreelayers(base,middleandtop),witheachlayercon-tainingthesameamountofparticles.Atthebeginningofsedimentation,segregationisnotsignificant,withthethreePSDcurvesalmostthesameasthoseoftheinitialassem-bly.At[T]=1.8,thePSDcurveofthebaseregiondevi-atesslightlybelowtheinitialPSDduetotheaccumulationofcoarsegrainsatthebottom.Asthesimulationcontin-ues,thePSDcurvesoftheupperandbottomregionsdevi-ategraduallyfromtheinitialPSDcurve.ThePSDcurveforthemiddleregionremainsalmostthesameastheini-tialPSDcurveuntil[T]=3.6,andthendeviatesgradu-allytowardsthePSDcurveofgrainsinthebaseregion.
Theseobservationsindicatethatthecoarsegrainsmovefasterthanthefinerones,leadingtoahigherconcentra-tionofcoarsegrainsatthebaseandfinergrainsatthetop.
Initially,coarsegrainsinthetoplayersettleintothemiddlelayer,whilethecoarsegrainsinthemiddlelayersettleintothebaselayer.Asaresult,onlytheportionofcoarsegrainsatthetopandbaselayershavechanged,whilethePSDinthemiddlelayerremainsunchanged.After[T]=5.4,arelativelythickdepositisformedatthebase,andthePSDcurvesofthethreelayersremainunchanged.Eventhoughsomefinegrainsarestillsuspendedinthefluid,theysettleveryslowlyontopofthedeposit.Attheendofthesimulation,onlythePSDcurvefortheupperregionliesabovetheinitialPSDcurve,whilethePSDcurvesofgrainsinthemiddleandbaselayersoverlapeachotherandlieslightlybelowtheinitialPSDcurve.Thisindicatesthatinsmallscalesedimentationsimulations,thesegregationofgrainsmanifestsitselfprin-cipallyasahigherconcentrationoffinegrainsatthetopofthesedimentlayer.3.3.2Densityprofile
Animportantfeatureofbatchsedimentationisthegradualchangeofbulkdensityofthesuspensionduetotheseg-regationofparticles.Thebulkdensitycanbecalculated
123
Investigationofgranularbatchsedimentation927
as:
ρb=nρf+(1−n)ρs
(14)
whereρbisthebulkdensityρsisthedensityofsolidmate-rials.
Duringthesimulation,theporosityineachfluidcellisrecorded,whichisusedtocalculatethebulkdensity,Eq.(14).Figure8illustratestheevolutionofthebulkdensityprofilesofthefluid-solidmixture.Itcanbeobservedthatthebulkdensityofthesuspensionincreasesgraduallyalongtheparallelepipedheighttowardsthebottomduetotheseg-regationofgrains.Inthebottomregion,grainsaccumulatetoformadensesedimentlayer,whichconsolidateprogres-
Fig.8Thedensityprofileofthefluid-solidmixtureatdifferentnor-malizedtimes
sivelyundertheself-weightoftheoverlyinggrains.After[T]=10.8,thebulkdensityatthebottomreachesanapprox-imatelyconstantvalueof1,965kg/m3.Avideoofthesimu-lationshowingtheparticlessettlingin3Disprovidedinthesupplementarymaterial.
ItispossibletoextractthepositionsofgrainsduringtheDEMsimulation.Figure9illustratesthegranularcolumnatfoursettlingtimes,inwhichagridissuperimposedonthesampletoshowtherelativelocationofthegrains.Tovisu-alizethegrainmotion,particlesatdifferentheightsoftheparallelepipedarecolouredredandgreen.Bytrackingthepositionsoftheuppermostgrains,thepositionofthefluid–suspensioninterfaceisobtained.However,asmanygrainsdecelerateandconsolidateatthebottom,thereisnowell-definedinterfacebetweensuspensionandsediment.Thus,aclosecomparisonbetweenseveralsuccessivesnapshotsofthemodeliscarriedouttofindastablepositionofthesuspension-sedimentinterfaceataspecifictime.Theevo-lutionofthesuspension-sedimentinterfaceisplottedasadashedcurveinFig.10.
BasedonFig.8,aseriesofconstantdensitypointsalongtheparallelepipedatdifferentsettlingtimeswasmappedontoFig.10.Inthisfigureitcanbeobservedthatthegeneralpat-ternsofconstantdensitycurvesissimilartothetheoreticalresultsofsedimentationbyKynch[4].Morespecifically,theuppersurfaceinitiallyacceleratesdownwardstoreachacon-stantvelocitywithinaveryshorttimeandthensettlesataconstantvelocitytowardsthebottom.Astheinitialsuspen-sionisuniformlygenerated,theheightagainsttimecurveisastraightlineinthehinderedsettlingzone.Whenthesedi-mentsapproachthebottom,theydecelerateduetograininter-actionsuntilthesettlingvelocitiesbecomezero.Inthesus-pension,thebulkdensityrangesfrom1000to1500kg/m3.
Fig.9Measurementofsedimentsheight
123
928Fig.10Heightagainsttimeplotforconstantdensitycurves
Theobservationsobtainedinthisresearchmatchtheanalyt-icalresultsbyTiller[5]well.
Asthegrainsaccumulateatthebottom,thebulkdensitychangesgraduallyfromtheintermediatetodensepackingstate,asrepresentedbythedensitychangebetweenthesus-pension,zonesofintermediatedensityandthetopofrela-tivelydensegrainlayers.Inaddition,thestablesuspension-sedimentinterfacecurvepassesthroughtheintermedi-atedensityregionandisveryclosetothe1,700kg/m3densitycurve,whichsuggeststhatastablesoilstructurecanbeformedwithdensitybeingequaltoorlargerthan1,700kg/m3.
3.3.3ExcessporewaterpressureandeffectivestressDuringthesimulation,theexcessporewaterpressure(u)alongtheparallelepipedisrecordedintheCFDmodel,basedonwhich,theevolutionoftheexcessporewaterpressureatthebottomoftheparallelepipedisobtained(seeFig.11).InFig.11,themeasuredexcessporewaterpressuresarenor-malizedbythehydrostaticpressureofwateratthebottomoftheparallelepiped(p0=ρfgH).Astheparticlesaccelerateimmediatelyaftertheapplicationofgravity,thenormalizedexcessporewaterpressureincreasesquicklytoreachthepeakvalueof0.17at[T]=0.54.Afterthattime,aloosesoilstructurebuildsupatthebottom,andtheexcessporewaterpressuredissipatesgradually.Inthisprocess,alineardissipationperiodisobservedbetween[T]=0.54and[T]=7.2.After[T]=7.2,astablesedimentlayerisformedatthebottomregion,andtheexcessporewaterpressuredissipatesslowlyduetoconsolidationofthesediment.
Consideringthefactthatsomeparticlesaccumulateatthebottomoftheparallelepipedbefore[T]=0.54inFig.11,themeasuredvalueofmaximumnormalisedexcessporewaterpressureshouldbesmallerthantheanalyticalvalue.Aratio-nalestimationofthepeaknormalisedexcessporewaterpres-
123
T.Zhaoetal.
Fig.11Evolutionofporepressureatthebottomofparallelepiped(p0isthehydrostaticpressure)
sureinFig.11canbetheinterceptofthelinearpressurelineontheverticalaxisatpointA,withanormalizedexcessporewaterpressureof0.178.Ontheotherhand,theana-lyticalmaximumnormalisedexcessporewaterpressurecanbecalculatedasthedifferencebetweentotalstressandthehydrostaticwaterpressureofthesystematthebeginningofthesimulation(seeEq.(15)).
unρ_max/p0=
f+(1−n)ρsgH−ρfgH
eρfgH=(1−n)ρs
ρf−1(15)
Basedontheinputparameters,theanalyticalmaximumnor-malisedexcessporewaterpressureofthefluid-solidmixturesystemiscalculatedas0.18whichcanmatchtheestimatedpeakvaluefromFig.11(≈0.178)verywell.
TheisochronesofexcessporewaterpressureatdifferenttimesareillustratedinFig.12a.Asonlywaterexistsintheregionabovethewater-suspensioninterface,theexcessporewaterpressureremainsnilinthatregion.From[T]=0.54,theexcessporewaterpressurebuildsupandvarieslinearlyalongtheparallelepiped.Astimepasses,alineardistributionofexcessporewaterpressureremainsintheupperpartoftheparallelepiped,whileatthebottom,thereisaregionofcon-stantexcessporewaterpressure.Thiscanbeexplainedbythefactthat,oncethegrainsstopmoving,thereisnorelativemotionbetweenparticlesandfluid,andthereforenoexcessporewaterpressuregradientexistsinthesediment.However,inthesuspension,theparticlescansettledownwardscontin-uously,andthus,thelineardistributionpatternremainsunal-teredthere.Aqualitativecomparisoncanbemadebetweenthenumericalresultsofourstudy(Fig.12a)andtheexper-imentalresultsfromBeenandSills[8](Fig.12b).Eventhoughthematerialsusedinthenumericalandexperimen-
InvestigationofgranularbatchsedimentationFig.12Isochronesofexcessporewaterpressurealongtheparal-lelepipedatdifferenttimes.aTheDEM–CFDsimulationresults.bResultsfromBeen[8](thetimehasbeennormalizedbythecharacter-isticsettlingtimeofagrainwithdiameterbeing5μm)
talmodelsarequitedifferent,thegeneralfeaturesoftheisochronesofexcessporewaterpressurepresentedasdimen-sionlessparametersarequalitativelythesame.
Duringthesimulation,thetotalstressactingonthebot-tomoftheparallelepipediscalculatedfromtheporewaterpressureandcontactforces,as:σ=ps+u+
FS
(16)
wherepsisthehydrostaticpressure;uistheexcessporewaterpressure;Fisthecontactforceexertedbygrainsonthebottomoftheparallelepiped;Sisthecrosssectionareaoftheparallelepiped.
Figure13showsthatthetotalstressmeasuredatthebot-tomoftheparallelepipedisalmostconstantthroughoutthesimulation.Theconstanttotalstressindicatesthattheperi-
929
Fig.13Totalstressatthebaseofthebottom
Fig.14Stressdistributionalongtheparallelepipedat[T]=3.6
odicboundaryconditionemployedinthesimulationhaveeffectivelyreducedtheinfluenceofwallfrictionontheover-allsettlingbehaviourofparticles.
AccordingtoBeen[16],thetotalstressofthesuspensionalongtheparallelepipedcanbeevaluatedbyintegratingthedensityprofiles,whiletheeffectivestressiscalculatedbysubtractingthemeasuredporewaterpressurefromthetotalstress.Figure14illustratesthedistributionofporewaterpres-sureandtotalstressalongtheparallelepipedat[T]=3.6.Atthistime,theparticlesinitiallylocatedintheupperregionoftheparallelepiped(abovepointA)havealreadysettled,suchthatonlywaterexiststhere.Thus,theporewaterpressureisequaltothetotalstress.Inthesuspension(betweenthepointsAandB),grainscaneithersettleataconstantveloc-ity(nearPointA)orcollidewitheachother,formingaloosesoilstructure(nearPointB).Theweightofparticlesispartlyorwhollysupportedbythefluidviscousdragandhydrosta-
123
930T.Zhaoetal.
ticforces.Thus,theprofileofporewaterpressuredeviatesgraduallyfromthetotalstresscurve,indicatingthateffectivestressoccurswithinthesample.Inthesedimentzone(belowpointB),thedensesoilstructurecansustaintheoverlyingloadsandarelativelylargeeffectivestressoccursthere.Therelationshipbetweenvoidratioandnormalizedeffec-tivestress(σ)withinthesoilsampleatdifferentsettlingtimesisshowninFig.15.Inthisfigure,threedistinctzonescanbeidentified:settling,transitionandconsolidationzones.Thesettlingzoneappearswhenthenormalizedeffectivestressissmallerthan0.01.Inthiszone,thevoidratiovarieswidelyfrom4.0to14,indicatingthatthesoilisextremelycompressible.Inthetransitionzone,aloosesoilstruc-turebeginstobuildupandthenormalisedeffectivestressincreasesfrom0.01to0.05,whilethevoidratiodecreasesfrom5.0to0.5gradually.However,nouniquerelationshipbetweenvoidratioandeffectivestressisobserved,whichis
closetotheobservationreportedinBeenandSills[8].Intheconsolidationzone,thecompressibilityofsoilislowandthevoidratiovariesverylittle.3.3.4Forcechains
Duringthesedimentation,thesedimentsaccumulategradu-allyatthebottomoftheparallelepipedtoformastructuredsoillayer,whichcanbevisualizedbyplottingthecontactforcechainsofthewholegranularassembly.Straightlinesareusedtoconnectthecentresofeachpairofparticlesincon-tact.Thewidthoftheselinesisproportionaltothemagnitudeofcontactforces,whiletheorientationalignswiththecon-tactforcevectors.Byplottingallthecontactforcesasstraightlines,agraphofforcechainsofthesamplecanbeobtained.AsshowninFig.16,thecontactforceisnormalizedbythecharacteristichydrostaticforceactingonthecrosssectionofaparticle(e.g.thediameterisD)atthebottomoftheparallelepiped:
F[F]=ρs−ρfgHiD2
(17)
Atthebeginningofthesimulation,thesedimentlayerisverythin,sothatthecontactforcesbetweengrainsaresmall.Asthesoilstructurebuildsup,themagnitudeofcontactforceismainlycontrolledbytheself-weightofparticles.Duetoconsolidation,thecontactforcesatthebottomregionofthemodelincreasegradually.Thestrongforcechainsofthefinalstablesoilstructurepreferablyorientvertically,indicatingthattheself-weightofsoilhasasignificantinfluenceonthedistributionofcontactforces.
4Conclusions
Fig.15Thevoidratioagainstnormalizedeffectivestressatvarioussimulationtime
Fig.16Forcechainofthesedimentsatdifferenttimes
ThispapersetsouttoinvestigategranularsedimentationviaDEM–CFDcoupledsimulations.Abenchmarksimulation
123
Investigationofgranularbatchsedimentationofthesedimentationofasinglesphericalparticleinfluidwasusedtovalidatethenumericalmodel.Inthistest,thesettlingvelocitymatchestheavailableanalyticalsolutionswell.CriteriaforassessingtheaccuracyoftheDEM–CFDcouplingcalculationsareprovided,i.e.thesizeratiobetweenfluidmeshsizeandparticlediametershouldbelargerthan5.Itisalsoshownthattheuseofperiodicboundariesinthelateraldirectionsofthefluidmodelcaneffectivelyreducethefluidboundarywallfrictioneffects.
Duringbatchsedimentation,progressivesegregationofparticlescanbevisualizedbycurvesoftheparticlesizedis-tributionatdifferentlocations.Segregationissignificantneartheupperregionofthemodel,whileitisnotsoevidentinthemiddleandbottomregions.Inthisprocess,thecoarsegrainsaccumulateatthebottom,leavingthefineronestosettleontothesurfaceofthedeposit.Asaresult,thebulkdensityofthefluid-solidmixturedecreasesgraduallywiththeheight.Attheendofthesimulation,thebulkdensityofsedimentsisaconstantvalue(i.e.1,965kg/m3).Thecurvesdescribingtheverticaldownwardtrajectoryofthefluid–suspensioninter-faceandtheincreaseofsuspension–sedimentinterfaceareinagreementwiththetheoreticalresultsproposedbyKynch[4].Asparticlescontinuouslysettledownwards,formingalooselayeratthebottomoftheparallelepipeddomain,sed-imentsconsolidateslowlyundertheweightoftheoverlyinggrains.Duringthisprocess,excessporewaterpressurebuildsupthendissipatesslowly.Thenormalizedmaximumexcessporewaterpressureofthesuspensionis0.178,whichisveryclosetotheanalyticalvalue.TheisochronesoftheexcessporewaterpressureexhibitaqualitativeagreementwiththeexperimentalresultsbyBeenandSills[8].
Inthispaper,aDEM–CFDcouplingformulationispre-sentedfortheinvestigationofgrainsedimentationinflu-ids.Manyotherapplicationsoftheformulationarepossible,e.g.submarinelandslides,mudflowsandriverscouring.ThecomputationalefficiencyofthenumericalmodeldependshighlyonthenumbersofparticlespresentandthesizeofthemeshcellsintheCFDmodel.
AcknowledgmentsThisworkofthefirstauthorissupportedbyMarieCurieActions-InternationalResearchStaffExchangeScheme(IRSES).“geohazardsandgeomechanics”,GrantNo.294976.
References
1.Bürger,R.,Wendland,W.L.:Sedimentationandsuspensionflows:historicalperspectiveandsomerecentdevelopments.J.Eng.Math.41(2),101–116(2001)
2.DiFelice,R.:Thesedimentationvelocityofdilutesuspensionsofnearlymonosizedspheres.Int.J.Multiph.Flow25(4),559–574(1999)
3.Komiwes,V.,Mege,P.,Meimon,Y.,Herrmann,H.:Simulationofgranularflowinafluidappliedtosedimentation.Granul.Matter8(1),41–54(2006)
931
4.Kynch,G.J.:Atheoryofsedimentation.Trans.FaradaySoc.48,166–176(1952)
5.Tiller,F.M.:Revisionofkynchsedimentationtheory.AIChEJ.27(5),823–829(1981)
6.Font,R.:Compressionzoneeffectinbatchsedimentation.AIChEJ.34(2),229–238(1988)
7.Richardson,J.F.,Zaki,W.N.:Sedimentationandfluidisation:partI.Chem.Eng.Res.Des.75(Supplement(0)),S82–S100(1954)8.Been,K.,Sills,G.C.:Self-weightconsolidationofsoftsoils:anexperimentalandtheoreticalstudy.Géotechnique31(4),519–535(1981)
9.Tsuji,Y.,Kawaguchi,T.,Tanaka,T.:Discreteparticlesimulationoftwo-dimensionalfluidizedbed.PowderTechnol.77(1),79–87(1993)
10.Shih,Y.T.,Gidaspow,D.,Wasan,D.T.:Hydrodynamicsofsedi-mentationofmultisizedparticles.PowderTechnol.50(3),201–215(1987)
11.Wachmann,B.,Kalthoff,W.,Schwarzer,S.,Herrmann,H.J.:Col-lectivedragandsedimentation:comparisonofsimulationandexperimentintwoandthreedimensions.Granul.Matter1(2),75–82(1998)
12.Batchelor,G.K.,Green,J.T.:Thehydrodynamicinteractionoftwo
smallfreely-movingspheresinalinearflowfield.J.FluidMech.56,375–400(1972)
13.Hinch,E.J.:Anaveraged-equationapproachtoparticleinteractions
inafluidsuspension.J.FluidMech.83,695–720(1977)
14.Batchelor,G.K.:Sedimentationinadilutepolydispersesystemof
interactingspheres.Part1.Generaltheory.J.FluidMech.119,379–408(1982)
15.Batchelor,G.K.,Wen,C.S.:Sedimentationinadilutepolydisperse
systemofinteractingspheres.Part2.Numericalresults.J.FluidMech.124,495–528(1982)
16.Been,K.:StressStrainBehaviourofaCohesiveSoilDeposited
UnderWater.UniversityofOxford,Oxford(1980)
17.Mills,P.,Snabre,P.:Settlingofasuspensionofhardspheres.Euro-phys.Lett.25(9),651(1994)
18.Davis,R.H.,Gecol,H.:Hinderedsettlingfunctionwithnoempiri-calparametersforpolydispersesuspensions.AIChEJ.40(3),570–575(1994)
19.Othmer,D.F.:Fluidization.ReinholdPublishingCorporation,New
York(1956)
20.Ergun,S.:Fluidflowthroughpackedcolumns.Chem.Eng.Prog.
48(2),–94(1952)
21.Wen,C.Y.,Yu,Y.H.:Mechanicsoffluidization.Chem.Eng.Prog.
Symp.Ser.62(62),100–111(1966)
22.DiFelice,R.:Thevoidagefunctionforfluid-particleinteraction
systems.Int.J.Multiph.Flow20(1),153–159(1994)
23.Fitch,B.:Kynchtheoryandcompressionzones.AIChEJ.29(6),
940–947(1983)
24.Kalthoff,W.,Schwarzer,S.,Ristow,G.,Herrmann,H.J.:Onthe
applicationofanovelalgorithmtohydrodynamicdiffusionandvelocityfluctuationsinsedimentingsystems.Int.J.Mod.Phys.C07(04),543–561(1996)
25.Cundall,P.A.,Strack,O.D.L.:Adiscretenumericalmodelforgran-ularassemblies.Géotechnique29(1),47–65(1979)
26.Anderson,J.D.:ComputationalFluidDynamics:TheBasicswith
Applications.McGraw-Hill,NY(1995)
27.Chen,F.,Drumm,E.C.,Guiochon,G.:Coupleddiscreteelement
andfinitevolumesolutionoftwoclassicalsoilmechanicsprob-lems.Comput.Geotech.38(5),638–7(2011)
28.Utili,S.,Crosta,G.B.:Modelingtheevolutionofnaturalcliffs
subjecttoweathering:1.Limitanalysisapproach.J.Geophys.Res.EarthSurf.116(F1),F01016(2011)
29.Boon,C.W.,Houlsby,G.T.,Utili,S.:Newinsightsinthe1963
Vajontslideusing2Dand3Ddistinctelementmethodanalyses.Geotechnique(inpress)(2014)
123
932
30.Utili,S.,Crosta,G.B.:Modelingtheevolutionofnaturalcliffs
subjecttoweathering:2.Discreteelementapproach.J.Geophys.Res.EarthSurf.116(F1),F01017(2011)
31.Brennen,C.E.:FundamentalsofMultiphaseFlow.CambridgeUni-versityPress,Cambridge(2005)
32.Weatherley,D.,Boros,V.,Hancock,W.:ESyS-ParticleTutorialand
User’sGuideVersion2.1.EarthSystemsScienceComputationalCentre,TheUniversityofQueensland(2011)
33.Abe,S.,Place,D.,Mora,P.:Aparallelimplementationofthelattice
solidmodelforthesimulationofrockmechanicsandearthquakedynamics.PureAppl.Geophys.161(11–12),2265–2277(2004)34.OpenCFDOpenFOAM—TheopensourceCFDtoolbox,http://
www.openfoam.com/
35.Šmilauer,V.,Catalano,E.,Chareyre,B.,Dorofeenko,S.,Duriez,
J.,Gladky,A.,Kozicki,J.,Modenese,C.,Scholtès,L.,Sibille,L.,Stránský,J.,Thoeni,K.:YadeDocumentation,(TheYADEProject;http://yade-dem.org/doc/)(2010)
36.Iwashita,K.:Rollingresistanceatcontactsinsimulationofshear
banddevelopmentbyDEM.J.Eng.Mech.124(285),285–292(1998)
37.Jiang,M.J.,Yu,H.S.,Harris,D.:Anoveldiscretemodelforgran-ularmaterialincorporatingrollingresistance.Comput.Geotech.32(5),340–357(2005)
38.Belheine,N.,Plassiard,J.P.,Donzé,F.V.,Darve,F.,Seridi,A.:
Numericalsimulationofdrainedtriaxialtestusing3Ddiscreteele-mentmodeling.Comput.Geotech.36(1–2),320–331(2009)
39.Shafipour,R.,Soroush,A.:Fluidcoupled-DEMmodellingof
undrainedbehaviorofgranularmedia.Comput.Geotech.35(5),673–685(2008)
40.Kafui,D.K.,Johnson,S.,Thornton,C.,Seville,J.P.K.:Paralleliza-tionofaLagrangian–EulerianDEM/CFDcodeforapplicationtofluidizedbeds.PowderTechnol.207(1–3),270–278(2011)
123
T.Zhaoetal.
41.Zeghal,M.,ElShamy,U.:Acontinuum-discretehydromechani-calanalysisofgranulardepositliquefaction.Int.J.Numer.Anal.MethodsGeomech.28(14),1361–1383(2004)
42.Drew,D.A.,Lahey,R.T.:Somesupplementalanalysisconcerning
thevirtualmassandliftforceonasphereinarotatingandstrainingflow.Int.J.Multiph.Flow16(6),1127–1130(1990)
43.DEMSolutions:EDEM-CFDCouplingforFLUENT:UserGuide
(2010)
44.Kafui,K.D.,Thornton,C.,Adams,M.J.:Discreteparticle-continuumfluidmodellingofgas-solidfluidisedbeds.Chem.Eng.Sci.57(13),2395–2410(2002)
45.Guo,Y.:AcoupledDEM/CFDanalysisofdiefillingprocess—PhD
Thesis.TheUniversityofBirmingham(2010)
46.Stokes,G.G.:MathematicalandPhysicalPapers.CambridgeUni-versityPress,Cambridge(1901)
47.Choi,H.G.,Joseph,D.D.:Fluidizationbyliftof300circularpar-ticlesinplanePoiseuilleflowbydirectnumericalsimulation.J.FluidMech.438,101–128(2001)
48.Zhang,J.,Fan,L.S.,Zhu,C.,Pfeffer,R.,Qi,D.:Dynamicbehavior
ofcollisionofelasticspheresinviscousfluids.PowderTechnol.106(1–2),98–109(1999)
49.Beetstra,R.,vanderHoef,M.A.,Kuipers,J.A.M.:Dragforce
ofintermediateReynoldsnumberflowpastmono-andbidispersearraysofspheres.AIChEJ.53(2),4–501(2007)
50.DallaValle,J.M.:Micromeritics:TheTechnologyofFineParticles,
2ndedn.PitmanPub.Corp(1948)
51.Brown,P.,Lawler,D.:Spheredragandsettlingvelocityrevisited.
J.Environ.Eng.129(3),222–231(2003)
52.Itasca:CCFD-PFCDocumentaton,1.0vols.ItascaConsulting
GroupInc,Minnesota(2008)
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务