您好,欢迎来到微智科技网。
搜索
您的当前位置:首页GSM手机电路

GSM手机电路

来源:微智科技网
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

第二部分 GSM手机电路

张运旺 编辑 2012年2月6日10:05:21

概述 手机的功能电路 ................................................................................................ 错误!未定义书签。 第二章 射频系统 ........................................................................................................ 错误!未定义书签。

第一节 接收机的电路结构 .................................................................................. 错误!未定义书签。 第二节 接收机的功能电路 .............................................................................. 错误!未定义书签。

一、天线及天线电路 .................................................................................... 错误!未定义书签。 二、低噪声放大器 ........................................................................................ 错误!未定义书签。 三、混频电路 ................................................................................................ 错误!未定义书签。 四.中频放大器 ............................................................................................ 错误!未定义书签。 五.解调电路 ................................................................................................ 错误!未定义书签。 六.振荡电路 ................................................................................................ 错误!未定义书签。 七.锁相频率合成器 .................................................................................... 错误!未定义书签。 第三节 发射机的电路结构 .............................................................................. 错误!未定义书签。

一、带发射变换模块的发射机电路 ............................................................ 错误!未定义书签。 二、带发射上变频器的发射机电路 ............................................................ 错误!未定义书签。 三、直接变换的发射机电路 ........................................................................ 错误!未定义书签。 第四节 发射机的功能电路 ................................................................................ 错误!未定义书签。

二、发射变换 ................................................................................................ 错误!未定义书签。 三、TXVCO .................................................................................................. 错误!未定义书签。 四、发射上变频器 ........................................................................................ 错误!未定义书签。 五、功率放大器 ............................................................................................ 错误!未定义书签。 六、功率控制 ................................................................................................ 错误!未定义书签。

第三章 逻辑系统 .......................................................................................................... 错误!未定义书签。

第一节 逻辑控制电路 ........................................................................................ 错误!未定义书签。

—、控制器的组成 ........................................................................................ 错误!未定义书签。 二、CPU ........................................................................................................ 错误!未定义书签。 三、存储器 .................................................................................................... 错误!未定义书签。 四、输入/输出接口 ....................................................................................... 错误!未定义书签。 五、定时器/事件计数器 ............................................................................... 错误!未定义书签。 六、时钟系统 ................................................................................................ 错误!未定义书签。 七、处理单元工作过程简介 ................................................................ 错误!未定义书签。 八、单片机工作过程简介 ............................................................................ 错误!未定义书签。 第二节 逻辑音频电路 .......................................................................................... 错误!未定义书签。

一、逻辑音频处理 ........................................................................................ 错误!未定义书签。 二、接收音频 ................................................................................................ 错误!未定义书签。 三、发射音频 ................................................................................................ 错误!未定义书签。

第四章 电源系统 .......................................................................................................... 错误!未定义书签。

一、开机信号电压 ................................................................................................ 错误!未定义书签。 二、逻辑电路供电电压 ........................................................................................ 错误!未定义书签。 三、射频电路供电电压 ........................................................................................ 错误!未定义书签。 四、SIM卡电路供电电压 .................................................................................... 错误!未定义书签。

1word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 六、显示电路供电电压 ........................................................................................ 错误!未定义书签。 七、其他电路供电电压 ........................................................................................ 错误!未定义书签。 小结: .................................................................................................................... 错误!未定义书签。

概述 手机的功能电路

ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。

数字手机从电路可分为射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的处理单元、数字语音处理及各种存储器电路等,见图1-1所示。

从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。

图 1-1手 机 的 结 构 框 图

注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS与GSM通道公用的。

2word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

第二章 射频系统

射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。

对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。

而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。

第一节 接收机的电路结构

移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,这是难于做到的。超外差接收机则没有这种问题,它将接收到的射频信号转换成固定的中频,其主要增益得自于稳定的中频放大器。

手机接收机有三种基本的框架结构: 一是超外差一次变频接收机, 二是超外差二次变频接收机, 三是诺基亚的直接变换线性接收机。

我们通常讲的手机电路结构主要是指射频电路的结构,不同厂家的手机的射频电路结构有一些差异,但不同手机厂家的手机中的逻辑音频电路结构却大都一致,同一手机厂家出品的手机的射频电路也基本土是一致的。

超外差变频接收机的核心电路就是混频器,我们可以根据手机接收机电路中混频器的数量来确定该接收机的电路结构。

一、超外差一次变频接收机

接收机射频电路中只有一个混频电路的,属于超外差一次变频接收。超外差一次变频接收机的原理方框图如图⒍2所示.在看手机的接收机射频方框图时,应注意该接收机中有几次频率变换(混频电路),如图1-2所示。

3word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-2 超外差一次变频接收框图

摩托罗拉手机(包括数字手机和模拟手机)的接收机基本上是图1-2所示的框架结构。 摩托罗拉的接收射频结构除从图1-2能明显看出来的特点外,还有一个特点,那就是用于解调的接收中频VCO都是接收中频信号的2倍频。对超外差一次变频接收机可以这样描述:天线感应到的无线信号经天线电路和射频滤波电路进入接收机电路,接收到的信号首先由低噪声放大器进行放大;放大后的信号再经射频滤波后,被送到混频电路;在混频电路中,射频信号与接收VCO信号进行混频,得到接收中频信号,中频信号经中频放大后,在中频处理模块内迸行RXI/Q解调,解调所用的参考信号来自接收中频VCO。该信号首先在中频处理电路中被二分频,然后与接收中频信号进行混频,得到67.707kHz的RXI/Q信号。 RXI/Q信号在逻辑音频电路中经GMSK解调、去分间插入、解密、信道解码、PCM解码等处理,还原出模拟的话音信号,推动受话器发出声音。

二、超外差二次变频接收机

若接收机射频电路中有两个混频电路,则该接收机是超外差二次变频接收机。超外差二次变频接收机的方框图如图1-3所示。

与一次变频接收机相比,二次变频接收机多了一个混频器及一个VCO,这个VCO在一些电路中被叫做IFVCO或VHFVCO。诺基亚手机、爱立信手机、三星、松下和西门子等手机的接收机电路基本上都属于这种电路结构。在这种接收机电路中,若RXI/Q解调是锁相解调,则解调用的参考信号通常都来自基准频率信号。

4word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-3超外差二次变频接收机框图

在图1-2、图1-3中,解调电路部分也有VCO,该处的VCO信号是用于解调,作参考信号。而且该VCO信号通常来自两种方式:

一是来自基准频率信号,如诺基亚的8110手机第二接收中频是13MHz,基准频率信号13MHz也提供给解调器用于解调;

另一种是来自专门的中频VCO,如摩托罗拉GSM328手机的接收中频是153MHz,该VCO是306MHz,,306MHz的VCO信号在中频处理电路中被二分频得到153MHz用于接收机解调。

接收电路将天线感应到的高频己调信号放大,经两级(或一级)变频将频率很高的射顿信号转变成频率较低的带调制信号的固定中频信号,然后解调出原来的调制音频信号或数据信号,并将其送到音频处理电路或者逻辑电路,以完成相应的各种功能。

对超外差二次变频接收机可以这样描述:

天线感应到的无线蜂窝信号经天线电路和射频滤波电路进入接收机电路,接收到的信号首先由低噪声放大器进行放大;放大后的信号再经射频滤波后,被送到混频电路;在混频电路中,射频信号与接收VCO信号进行混频,得到接收第一中频信号;接收第一中频信号被送到接收第二混频电路,与接收第二本机振荡信号混频,得到接收第二中频(接收第二中频来自VHF VCO电路);接收第二中频信号经中频放大后,在中频处理模块内进行RxI/Q解调,(解调所用的参考信号来自接收中频VCO,该信号首先在中频处理电路中被二分频,然后与接收中频信号进行混频,得到67.707MHz的RXI/Q信号;RXI/Q信号在逻辑音频电路中经GMSK解调、去分间插入、解密、信道解码、PCM解码等处理,还原出模拟的话音信号,推动受话器发出声音。

三、直接变换的接收机

5word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 早期的手机接收机电路结构基本上都分别属于上述两种电路结构形式,但随着新型手机的面世,出现了一种新的信号接收机电路结构——直接变换的线形接收机(Direct Conversion Linear Receiver),如诺基亚的8210手机。这种接收机的电路结构如图1-4所示。

图 1-4直接变换的接收机方框图

从一次变频接收机和二次变频接收机的方框图可以看,RXI/Q信号都是从解调电路输出的,但在直接变换线形接收机中,混频器输出的就是RXI/Q信号了。

不管电路结构怎样变,都可以看到它们的一些相似之处:信号是从天线到噪声放大器,再到频率变换单元,最后到语音处理电路。

所以在手机接收机电路中,主要有以下几个不同的功能电路,组合而成: 接收天线(ANT):作用是将高频电磁波转化为高频信号电流。

双工滤波器:作用是将接收射频信号与发射射频信号分立,以防止强的发射信号对接收机造成影响。双工滤波器包含一个接收滤波器和一个发射滤波器,它们都是带通射频滤波器,但是他们的中心频率有差别,带宽不一样。对于GSM:

接收滤波器:高收925~960 MHz 发射滤波器:低发880~915 MHz

天线开关:作用同双工滤波器,由于GSM手机使用了TDMA技术,接收机与发射机间歇工作,天线开关在逻辑电路的控制下,在适当的时隙内接向接收机或发射机通道。

射频滤波器:是一个带通滤波器,只允许接收频段的射频信号进入接收机电路。

低噪声放大器(LNA): 作用是将天线接收到的微弱的射频信号进行放大,以满足混频器对输入信号幅度的需要,提高接收机的信噪比。

混频器(MIX):是一个频谱搬移电路,它将包含接收信息的射频信号转化为一个固定频率的包含接收信息的中频信号,它是接收机的核心电路。

中频滤波器:中频滤波器在电路中只允许中频信号通过,它在接收机中的作用比较重要。中频滤波器防止邻近信道的干扰,提高邻近信道的选择性。

中频放大器:中频放大器主要是提高接收机的增益,接收机的整个增益主要来自中频放大。 射频VCO:在不同的手机电路中的英文缩写不同,常见的有RXVCO(诺基亚、爱立信及其他部分手机常见)、PFVCO(三星手机常见)、UHFVCO(诺基亚手机常见)、MAINVCO(摩托罗拉手机常见)等。它给接收机提供第一本机振荡信号;给发射上变频器提供本机振荡信号,得到最终发射信号;给发射交换模块提供信号,经处理得到发射参考中频信号。

中频VCO:通常被称为IFVCO或VHFVCO,若接收有第二混频器的话,给接收机的第二混频器提供

6word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

本机振荡信。在一些手机电路中,给RXI/Q解调电路提供参考振荡信号。

语音处理部分:语音处理部分包含几个方面,首先RXI/Q信号在逻辑电路中进行GSMK解调,然后进行解密、去分间插入等处理,然后将这个信号进行PCM解码,还原出模拟的话音信号(参见接收音频)。

第二节 接收机的功能电路 一、天线及天线电路

话机本身的天线一般为螺旋鞭状天线或短鞭状天线。移动台的天线具有足够宽的工作频带,它工作于全部的收发信道,基本上所有的蜂窝话机都可使用内接和外接天线。

天线分为发射天线与接收天线,将高频电流转化为高频电磁波传送出去的导体被称为发射天线;将高频电磁波转化为高频信号电流的导体被称为接收天线。

在一些蜂窝电话机中,天线进来常采用双工滤波器(选频电路),天线和双工器都是无源器件。双工器包括发射滤波器和接收滤波器,它们都是带通滤波器,双工器有3个端口——公共端天线接口、发射输出端及接收输入端。天线及双工滤波器与接收机发射机的连接如图1-15所示。

发射信号总是比接收信号强,而强信号对弱信号有抑制作用,会使接收电路被强信号阻塞,使接收的弱信号被淹没,引起接收灵敏度下降。

为什么收发射频率有不一样?接收滤波器就是阻止发射信号串人接收电路,并拒收天线接收到的接收频段以外的信号;而发射滤波器则拒绝接收频率段的噪声功率及发射调和信号等。当然,也有一些话机使用接收与发射分立的滤波器。

图1-15

图1-16所示的是一个带开关电路的双工滤波器。图中VC1与VC2是控制端;GSM-TX、GSM-RX分别代表GSM的接收、发射端口;DCS-TX、DCS-RX分别代表1800MHz收发信机的接收、发射端口。

7word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-16

从上面的内容可以看到,在手机电路中寻找天线电路,比较重要的就是天线的图形符号Y和天线的表示字母“ANT”。

在天线电路中,除了双工滤波器,还有天线开关电路,模拟手机中的天线开关电路用于内接天线与外接天线的转换。由于数字手机采用了TDMA技术,它以不同的时段来区分用户,且GSM手机的接收机与发射机是间隙工作的,所以在数字手机中,天线开关通常用于接收射频信号与发射射频信号通道的转换。在一些双频手机中,天线开关还用于GSM信号和DCS信号的切换。8210手机的双工滤波器中就包含了开关电路,VC1和VC2为控制信号。

—些手机的天线电路只采用天线开关,滤波器被分别放在接收射频电路和发射射频电路当中,如GD90的天线开关和cd928的天线开关电路如图1-18所示。

在图1-17,9脚接天线,5、7脚输出射频信号到接收机电路,1、11脚的信号来自发射机功率放大器。

用示波器在天线开关的控制端可检测到控制信号的脉冲波形。控制天线开关的信号来自逻辑电路,同时这些信号也控制发射机、接收机电路。

图 1-17 GD90 的 天 线 开 关 电 路

8word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

二、低噪声放大器

低噪声放大器(LNA)被用来将天线收到的微弱的无线蜂窝信号,放大到混频器所需要的幅度。如果低噪声放大器损坏,通常会造成手机接收信号差的故障。

低噪声放大器通常又称为前置射频放大器,前置射频放大器是移动通信接收机最常用的一种小信号放大器,由于此类放大器常用低噪声器件来实现,故又称为低噪声放大器。

在第一级高频放大电路设置低噪声放大器可以改善接收机的总噪声系数,同时高频放大器可防止RXVCO信号从天线路径辐射出去。图1-18所示的是一般LNA的两种形式(参见三极管部分)。

图 1-18

双工滤波器的输出信号被送人低噪声放大器放大。Q1、Q2与周边元件构成一低噪声放大器,这是一个带负反馈的共发射极电路,又是一个宽带放大器,它用以对微弱的射频信号进行放大并弥补射频滤波器带来的插入损耗。在图1-18中,Q1的发射极旁路电容C3对该放大器的增益影响很大,它可减小R4对信号的负反馈影响。该电路中,Q1的直流工作点主要由R1和R2决定,属固定分压偏置。在图1-18中,Q2的直流工作点由R6、R5决定,为集电极反馈偏置,同时R5也是负反馈元件,C5和R7的作用与图中的C3、R4一样。实际上,Q1、Q2电路是宽带高频小信号放大器。

对这一位置的高频放大器中的三极管,要求其截止频率高,放大倍数大,噪声系数小。第一级信号很小,工作点通常设得比较低,同时加人电流负反馈,则可以减小噪声。

前面我们讲到的是一些分立元件的低噪声放大电路。在实际工作中,还常会遇到低噪声放大电路被集成在一块芯片中的情况。

诺基亚6110、6150手机的低噪声放大器就是被集成起来的,它们一个是单频手机,一个是双频手机,但我们也能很容易找到低噪声放大器的输人端:一是从天线电路去找,看信号通过交流通道到集成电路的什么端口;另一个较为快速的方法,就是查看集成电路各引脚的标号(英文缩写),如图1-19所示。

9word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-19 手机的射频处理模块

图1-19是6110手机的射频处理模块,N500的25脚上标有“LNA IN”的字。.LNA就是低噪声放大器(Low Noise Amplifier)的英文缩写,IN表示输入。所以我们断定N500的25脚线路就是LNA的输人,同时,也可找到LNA的控制信号端一-26脚,26脚上标有“LNA AGC”,LAN表示低噪声放

10word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

大器,AGC表示自动增益控制(Auto Gain control)。

在进行低噪声放大电路的查找分析时,应注意一个信号——启动控制信号(RX-ON或RX-EN)。RX-EN是接收机启动控制信号,TX-EN是发射机启动控制信号。从前面的系统知识我们知道,数字手机由于采用了TDMA技术,故接收机和发射机不同时工作,RX-EN和TX-EN信号是符合TDMA规则的脉冲控制信号,当RX-EN为高电平时,TX-EN为低电平,接收机工作;当RX-EN为低电平时,TX-EN为高电平,发射机工作。

这一信号通常供给低噪声放大器的输入端,以作为低噪声放大器的偏压,如cd928中的Q410的基极偏压,实际上就是来自RX-EN。由于手机集成度越来越高,故在看电路寻找RX-EN时也会有一定的难度。爱立信788手机的RX-ON信号就是送到射频处理模块U100的11脚。在诺基亚手机电路中,通常看不到RX-ON或RX-EN,它是以另外一种标识出现——RXPWR。在低噪声放大器的输入端,通常用示波器可测到上述的控制信号,其波形如图1-20所示。

在观察接收启动控制信号时,会发现其波形在待机状态下有一定的规律:当该信号稳定时,手机的工作电流通常在80mA左右;当该信号闪烁时,手机的工作电流通常在20~50mA之间变化;当无该信号时,手机工作电流通常在8~12mA之间。

图 1-20 有关资料:

放大器中的噪声是由放大器中的元器件(包括管子、电阻等),内部载流子的不规则运动引起的。它主要是电路中电阻的热噪声和三极管(或场效应管)内部噪声,这些噪声实际上是杂乱的无规则的变化电压或电流,故称为起伏噪声,起伏噪声的频率成分非常丰富,它的能量连续分布在很宽的频率范围内。而放大器内部噪声主要有热噪声、散弹噪声、分配噪声和闪烁噪声等。

三、混频电路

混频电路又叫混频器(MIX)是利用半导体器件的非线性特性,将两个或多个信号混合,取其差频或和频,得到所需要的频率信号。在手机电路中,混频器有两个输入信号(一个为输入信号,另一个为本机振荡),一个输出信号(其输出被称为中频IF)。在接收机电路中的混频器是下变频器,即混频器输出的信号频率比输入信号频率低;在发射机电路中的混频器通常用于发射上变频,它将发射

11word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

中频信号与UHFVCO(或RXVCO)信号进行混频,得到最终发射信号。混频器是超外差接收机的核心电路,如接收机的混频器出现故障,则无接收中频输出,造成手机无接收信号、不能上网等故障。

变频器的原理方框图如图1-21所示。

图 1-21

当变频器的输出为信号频率与本振信号之和,且比信号频率高时,所用的变频器被称为上边带上变频。如摩托罗拉8200系列的发射变频器,其发射中频为88MHz,以60信道为例,本机振荡信号为814MHz。变频后得到902MHz的最终发射信号。

当变频器的输出信号为本振信号与信号频率之差,且比信号频率高时,所用的变频器被称为下边带上变频。如诺基亚8110的发射变频器,其发射中频信号为116 MHz,其本机振荡信号为1 018MHz(60信道为例),变频后得到902MHz的最终发射信号。

混频器包括晶体管混频器、场效应管混频器、肖特基势垒二极管混频器以及集成混频器等。 1.晶体管混频器

晶体管混频器有多种电路形式。其中双极型晶体管混频器可在共发射极电路基础上构成,信号和本振信号由基极输入,或信号由基极输人、本振信号由发射极输人。两信号由基极输人的电路输入阻抗高,对本振而言,负载轻。摩托罗拉双频手机cd928系列的接收混频器便为这种混频器。如图1-22所示:

12word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-22 2.二极管混频器

二极管混频器尽管存在损耗,但其噪声及杂波输出比晶体管混频器要少.诺基亚的GSM手机多采用这种混频器。如8110的第一接收、发射混频器,该混频器的输人输出信号路径如图1-23所示(参见8110射频电路)。

图 1-23 3.集成混频器

在早期的手机中,有的混频器单独使用一个集成组件,如今手机中的混频器多被集成在一个复合的射频处理或中频处理模块中。集成混频器如诺基亚233的接收第一混频器为集成双平衡混频器,它由阻抗匹配网络、滤波器及混频管等组成,为双端平衡输人输出。

13word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图1-24

在1-24中,低噪声放大器输出的射频信号,经一个平衡—不平衡转换,得到两个信号从N8的7、8脚输人;本机振荡信号则从N8的4、5脚输人;混频后得到的中频信号从N8的1、2脚输出。

图 1-25

14word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 如今,越来越多的手机电路中的混频单元被集成在复合电路中,如诺基亚6110和三星SGH-500的接收混频器,如图1-25所示。

要寻找混频电路就需掌握手机框架结构, 在手机接收机电路中,如看到射频信号与VCO信号输人到同一个电路,则这个电路应是混频电路(这就要求能辨别RXVCO电路)。同时掌握MIX等英文缩写(如图1-25所示),以便于识别电路。参见诺基亚6110、三星SGH-500、诺基亚6150射频电路。

四.中频放大器

接收机的中频放大器主要是将混频器输出的信号进行大幅度提升,以满足解调电路的需要。接收机的主要增益也来自中频放大器,中频放大器损坏常会造成手机接收差的故障。

移动通信接收机均要使用中频放大器。中频放大器最主要的作用是:

1.获取高增益:与射频放大部分相比,由于中频频率固定,并且频率较低,可以很容易地得到较高的增益,因而可以为下一级提供足够大的输人。

2.提高选择性:接收机的邻近频率选择性一般由中频放大器的通频带宽度决定。

对于中频放大器,不仅需要得到高的增益、好的选择性,还要有足够宽的通频带和良好的频率响应、大的动态范围等。而接收机的邻近信道选择性一般由中频放大器的通频带宽度决定,由于中频信号为单一的固定频率,其通频带可最大限度地做得很小,以提高相邻信道选择性。在实际工程上,一般采用多级放大器,并使每级实现某一技术要求,就电路形式而言,第一级中频放大器多采用共发射极电路,最后一级中频放大器多采用射极输出电路。不论接收机采用一次或二次变频技术,中频放大器总是位居下变频(即混频)之后。

为避免镜频干扰,提高镜频选择性,接收机通常采用降低第一本机振荡频率、提高第一中频频率和多次变频的方法,使信号频谱逐渐由射频搬移到较低频率上。

分立元件的中频放大器电路形式与低噪声放大器的电路形式很相似,也是一个共发射极电路,只是它们工作的频点不一样。

摩托罗拉手机中通常使用分立元件的中频放大器,其他手机的中频放大器通常都是在一个集成电路中。图1-26是cd928手机的中频放大器。

图 1-26 cd 928中频放大器

15word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 中频放大器的电路形式与低噪声放大器的电路形式差别不大,但它们工作的频段不同。低噪声放大器是一个宽带放大器,而中频放大器是一个窄带放大器。中频放大电路的信号通路和偏压、电源的查找与低噪声放大器的方法一样,读者可自行分析。

在集成的中频放大器中查找信号通道等相对困难些,它不是一个单一的电路,通常存在于一个复合电路中,尽管如此,它总是有规律可寻的。图1-27(一)所示的是GD90的中频电路,从手机的电路结构知识可以知道:中频放大器总是置于混频后,所以只要掌握混频电路,则较容易找到中频放大器。请仔细观察图1-27(一)和图1-27(二)中的黑色方块。

图 1-27(一)

16word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-27(二)

图1-27(一)所示的是GD90的中频放大器查找示意图。根据手机电路结构可知,中频放大器位于混频器之后(输出端后);我们知道,混频器的英文缩写是MIX。那么,在图1-27(一)中,可以看到集成电路的42、43脚有MIX OUT的字样,MIX代表混频器,OUT表示输出,结合前面提到的知识,则中频放大器可以从这个集成电路的42、43脚开始查找。跟着线路,可以发现,集成电路29、30脚上有IF IN的字样(IF代表中频IN是输人),所以29、30脚是中频放大器的输人端。

注:图1-27(一)和图1-27(二)都是集成的中频处理电路,要识别它们就需从手机的电路

结构以及手机电路中的英文缩写去分析(请注意图中所指的英文缩写)。

17word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

诺基亚8810、232中频放大器查找示意图

五.解调电路

接收机的解调电路是把包含在接收中频信号中的语音信息或各种信令信息还原出来,得到中心

18word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

频率为67.707kHz的RXI/Q信号。在接收机电路中,解调电路输出的RXI/Q信号是检修接收机电路的一个关键信号。

在移动通信中,常用的解调技术有锁相解凋器、正交鉴频解调器等。

PLL(锁相环)可以跟踪输人信号,它可以用作解调。图1-28为一个锁相解调器的方框图。摩托罗拉87系列和928系列手机采用的就是锁相解调器。87的锁相解调器中鉴频器的参考频率由216Mz的振荡器提供,而928的锁相解调器的参考信号则来自430MHz的振荡器。鉴相器通过对输入的两个信号的相位比较,输出一跟踪调制信号的低频信号,通过低通滤波器滤去高频噪声,即得到解调输出。

图 1-28

图1-29为正交鉴频器的原理框图。在正交鉴频器中,相移网络将频率的变化变换为相位的变化,乘法器将相位的变化变换为电压的变化。将调频信号与其移相信号相乘,通过低通滤波器将乘法器的输出信号中的高频成分滤出,就得到了解调信号。通常,在现代的通信设备的电路中,除正交线圈外,鉴频器的其他电路均被集成在芯片内。

图 1-29

需注意的是,这里所说的解调,是指接收射频电路中将包含信息的射频或中频信号还原出67.707kHz的基带信号的解调(针对GSM手机而言)。在逻辑音频电路中还有一个解调——GMSK的解调,它是将67.707kHz的信号还原出数码信号。

19word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

诺基亚8850解调查找示意图

图 1-30 不同手机解调查找示意图

摩托罗拉、诺基亚手机与三星等手机电路使用的都是锁相解调。在三星SGH-600手机电路中,接收第二中频是45 MHz,解调用的参考信号来自IFⅤCO信号(540 MHz)的12分频。

接收机的解调电路输出的是接收机基带信号,该信号的中心频率为67.707MHz.摩托罗拉、诺基亚、爱立信等手机的RXI/Q信号都有2条信号线;而GD90等则有4条RXI/Q信号线,所以RX I/Q

20word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

的输出就成了解调电路的标志,参见图1-30。

以上两图是用数字示波器测得的RXI/Q信号。

六.振荡电路

在电子设备中,振荡器的用途极为广泛。振荡电路的种类很多,按其工作原理,可分为反馈型振荡电路、负阻型振荡电路、多谐振荡电路(张弛振荡);按使用元件,又分为IC振荡器、RC振荡器、晶体振荡器等。

按需要,振荡器可产生正弦波、脉冲波等。振荡器以放大器为基础,引入正反馈即可得到振荡电路如图1-31所示。产生振荡的条件有两个:正反馈和环路增益为1。

图 1-31 1.LC荡器

把只由L和C构成的反馈电路称为LC振荡器。LC振荡器有调谐型和三元件型。它们包括集电极调谐型振荡器、基极调谐型振荡器、发射极调谐型振荡器;三点式的有电容三点式振荡器和电感三点式振荡器。

2.RC振荡器

把由R和C构成的反馈电路称为RC振荡器,RC振荡器有电桥式和移相式。移相式又分为HP型和LP。HP是High Pass的缩写,即反馈电路由高通滤波器构成。LP是Low Pass的缩写即指反馈电路由低通滤波器构成。

21word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 图1-32(a)为RC移相振荡电路,通常用于频率需求较低的情况下。无绳电话中的导频的产生、呼叫信号的产生多采用这种电路。可调电阻R5用于调较振荡频率。图1-32(b)为维恩电桥振荡器。

图 1-32 (a) RC移相振荡器 (b)维恩电桥振荡电路

3.晶体振荡器

在移动通信中,以动台需要能够根据实时分配到的话音信道改变自己的工作频率,这就要求必须有足够精度、稳定性好的频率合成器。而且随着通信技术的发展,对频率的稳定性和准确度的要求越来越高。在移动通信中,为了减少移动台之间或与基站间的相互干扰,常常要求频率稳定度优于10。而RC和LC都难达到这个精度。

只有高精度、高稳定性的振荡才可以减小因频率偏移而造成的邻近信道干扰。

石英晶片具有压电效应,能做成谐振器,且晶片本身的固有机械振动频率只与晶片的几何尺寸有关,其振动频率可以做得非常精确稳定。利用石英晶体振荡器可把振荡频率稳定度提高几个数量级。

在石英晶片的两面镀银,引出电极,然后封装在由金属或胶木、玻璃等材料制成的外壳里就得到晶体振荡器。石英晶体可以用人工合成,也可将天然晶体切割成晶片。

晶体用于振荡电路的形式较多。诺基亚2110的DSP(数字语音处理器)时钟振荡器为其中的一种,它构成射极跟随器,也被称为萨巴罗夫电路。

虽然晶体振荡器的振荡频率稳定,但由于某些客观因素的影响,使频率稳定度变差。晶体振荡器的频率稳定度主要受三种因素的影响:

1.负载效应。减小负载效应一般是加隔离器,如射极跟随器等。2110的DSP时钟振荡器为射极输出,其带负载的能力就比较强,但为提高稳定度,其后还加了一级射极输出器,并采用变压器耦合加以隔离。图1-33就是一个射极输出的晶体振荡电路。

-5

22word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-33

2.推频效应。所谓推频效应,即由于供电系统条件发生改变,致使振荡电压源和电流发生改变、振荡器件的工作参数发生改变,最终使振荡器出现频率漂移。所以对其电压源要求较高,在移动电话内一般均使用专门的、比较精确的电源。如摩托罗拉168手机的VCO电源就通过了两次稳压。在诺基亚232和摩托罗拉168手机的发射接收VCO电路中,为了使振荡管具有较稳定的偏置,除了采用高精度的稳压电源外,还采用了固定分压偏置的共发射极电路。

图 1-34

3.温度效应。晶体振荡器受温度的影响比较大,一般采用温度补偿或将振荡器放入恒温环境中来解决,温度补偿法包括模拟温度补偿、数字温度补偿及模拟—数字温度补偿法二大类。温度补偿电路有电容补偿电路及热敏网络补偿电路;电容补偿方法简单,但补偿范围较窄,一般在0~50℃之间,补偿精度一般可达到±5×10。而热敏网络补偿电路则用得较多,其补偿范围宽,在-40~70℃之间,补偿精度可达到±0.2×10。其原理图如图1-34所示。利用热敏网络给变容二极管提供一个随晶体工作环境变化的反向偏压,通过变容二极管电容的变化来补偿晶体振荡器因温度而导致的频率漂移。

在实际的移动电话电路中,目前多使用温度补偿压控振荡器组件(VCTXO)。如诺基亚232的

23word格式支持编辑,如有帮助欢迎下载支持。

6

6

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

14.85MHz振荡器和摩托罗拉168的16.8MHz振荡器,它们被封装在一个金属外壳里,与外界环境隔开。前者为接收发射VCO及PLL锁相环电路提供基准频率;后者既为射频电路提供基准频率,又为逻辑电路提供时钟信号。

七.锁相频率合成器

1.频率合成

在现代的移动通信中,常要求系统能够提供足够的信道,移动台也需能根据系统的控制变换自己的工作频率,这就需提供多个信道的频率信号。然而使用多个振荡器是不现实的,在工程中,通常使用频率合成器来提供有足够精度、稳定性好的工作频率。

将一个或多个基准频率信号变换为另一个或多个所需频率信号的技术称为频率合成,或频率综合技术。移动电话通常使用的是带锁相环的频率合成器。图1-35为一个频率合成器的方框图。

图1-35频率合成器的一般方框图

我们设参考振荡信号为f1,VCO输出信号为f2,分频器输出的信号为f2/N,这整个环路的控制目的就是要使f1=f2/N。

在手机电路中,一个频率合成系统通常包含几个频率合成环路:接收VCO频率合成环路、接收中频VCO频率合成环路、发射中频VCO频率合成环路等,不管是哪一个频率合成环路,其电路结构均如图1-35所示。

(1)参考振荡

参考振荡在频率合成乃至在整个手机电路中都是很重要的。在手机电路中,特别是GSM手机中,这个参考振荡被称为基准频率时钟电路,它不但给频率合成环路提供参考信号,还给手机的逻辑电路提供信号,如该电路出现故障,手机将不能开机。

手机电路中的参考振荡都使用晶体振荡电路。而且,大多数手机中使用的是一个基准频率时钟VCO组件。在GSM手机中,这个组件输出频率是13 MHz,有时它被称为13MHz晶体。事实上它是一个VCO组件,13 MHz晶体及VCO电路中的晶体管及变容二极管等器件被封装在一个频率罩内(参见13MHz晶体振荡器的识别)。

13MHz振荡电路受逻辑电路提供的AFC(自动频率控制)信号控制。由于GSM手机采用时分多址(TDMA)技术,以不同的时间段(Slot,时隙)来区分用户,故手机与系统保持时间同步就显得非常重

24word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

要。若手机时钟与系统时钟不同步,则会导致手机不能与系统进行正常的通信。

在GSM系统中,有一个公共的广播控制信道(BCCH),它包含频率校正信息与同步信息等。手机一开机,就会在逻辑电路的控制下扫描这个信道,从中获取同步与频率校正信息,如手机系统检测到手机的时钟与系统不同步,手机逻辑电路就会输出AFC信号。AFC信号改变13MHz电路中VCO两端的反偏压,从而使该VCO电路的输出频率发生变化,进而保证手机与系统同步。

25word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

26word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-36

图1-36是部分手机电路中的13MHz电路(基准频率时钟电路)。

由手机基准频率时钟电路图我们可以发现,不管是哪个厂家的电路,在13MHz电路中,都可以看到AFC的字样,所以“AFC”是我们寻找13MHz振荡电路的一个关键。

当然,不同手机的基准频率时钟电路也有一些不同的标识,如图1-26所示。 诺基亚8810图中G801的3脚是控制端,1脚是输出端,2脚是电源端。

松下GD90图中,U350是一个VCO组件。其4脚是电源端,3脚是输出端,2脚是接地端,1脚是控制端,Q350电路是一个VCO的缓冲放大器。

诺基亚6150的图中,G650是一个VCO组件。其1脚是输出端,2脚是电源端,3脚是接地端,4脚是控制端,V600是ⅤCO的缓冲放大器。

上图中除cd928中的基准频率时钟电路使用的是一个单一的晶体与集成电路内的电路构成振荡电路外,其他几幅图中的基准频率振荡电路均使用的基准频率时钟振荡组件。这些VCO组件都有4个端口:电源端;接地端;输出端与控制端(参见VCO的识别部分).。读图时应注意图中所指示的一些电路标识。

(2)鉴相器

鉴相器简称PD,是英文Phase Detector的缩写。它是一个相位比较器,是一个相差—电压转换装置,可将VCO振荡信号的相位变化变换为电压的变化。鉴相器输出的是脉动直流信号,这一脉动直流信号经LPF滤除高频成分后去控制VCO电路。

鉴相器是相位比较装置,它对基准信号f1与VCO产生的信号f2进行相位比较,输出反映两信号相位误差的误差电压。鉴相器多种多样,有模拟的,也有数字的。如双D鉴相器、鉴颁鉴相器等。

当采用数字鉴相器时,由于其输出为双端口输出,故在与环路滤波器的连接上很成问题。通常在两者之间加入一个双端输人单端输出,且能将鉴相器输出的相位误差信号正确地反映出来的电路,这一电路被称为电荷泵或泵电路。在摩托罗拉的GSM手机中,其发射频率合成中基本上都使用了泵电路。

在频率合成器中,为了作精确的相位比较,鉴相器均在低频下工作。

在手机电路中,鉴相器通常与分频器被集成在一个专用的芯片中(这个芯片通常被称为PLLIC)

27word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

或被集成在一个复合芯片内(即该芯片包含多种功能电路)。

图 1-37

要查找鉴相器PD在什么地方,就需要先找出VCO电路和低通滤波器电路。参见变容二极管部分内容及“手机电路的识别”。

在诺基亚8810图中,N820的3脚是PD输出端口。通过“1006~1031 MHz”的标识可断定该信号是一个VCO信号;电阻R834、R820、R821及电容C821、C820等构成一低通滤波器;从SDATA等可以断定它所接的是频率合成电路中的程控分频器。参照频率合成的方框图,就可找到PD的输出端口(重要的是找出电阻电容构成的低通滤波器与VCO电路)。

在cd928图中,U220的23脚是PD输出端口。 (3)低通滤波器

低通滤波器简称LPF,是英文Low Pass Filter的缩写。低通滤波器又被称为环路滤波器,它是一个RC电路,位于鉴相器与VCO电路之间。低通滤波器电路基本形式如图所示。

28word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图747中,R834、R820~R822及C820~C822组成的电路是诺基亚8110手机的UHFVCO频率合成环路中的低通滤波器(参见RC电路部分)。

图 1-38

鉴相器的输出不仅有控制信号,还有一些高频谐波成分,这些谐波将影响VCO电路的工作,低通滤波器就是要把这些高频成分滤除。

(4)压控振荡器

压控振荡器简称VCO,是英文Voltage Control Oscillator的缩写。压控振荡器是一个电压—频率转换装置,可将鉴相器PD输出的相差电压信号的变化转化成频率的变化。

VCO电路为电压控制电路。其电压控制功能的完成是通过一个特殊的器件来完成的,这个器件就是变容二极管。

鉴相器输出的相差电压实际上是加在变容二极管两端的,当鉴相器输出发生变化时,变容二极管两端的反偏发生变化,导致变容二极管的结电容改变,VCO振荡回路改变,VCO输出频率也随之改变。在实际应用中,变容二极管为反向偏置使用,其线性好,可控范围大。

在手机电路中,VCO多种多样。有接收机VCO,有发射机VCO等。从电路形式上来说,VCO有分立元件电路与VCO组件(参见VCO组件的识别)。

早期的手机电路中的UHFVCO(或RFVCO、RXVCO等)通常是使用VCO组件,IFVCO(或VHFVCO等)使用的是分立元件的ⅤCO电路;现在手机电路中的VCO基本土都使用了VCO组件。

29word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-39

图1-39是摩托罗拉cd928的接收VCO电路(RXVCO);图1-40是诺基亚8110的接收VCO(UHFVCO)电路。在查找VCO电路时,应抓住VCO电路的一些特点(参见变容二极管、三极管和“手机电路识别”)。

图1-39为摩托罗拉cd928手机的接收VCO电路,其他摩托罗拉87、328的TXVCO与RXVCO基本与它相似;诺基亚6110的232MHz电路等都是这种基本电路形式。而三星SGH600、爱立信788、诺基亚8810等的接收VCO结构均如图1-40所示。随着手机小型化的发展,越来越多的手机使用VCO组件。

图 1-40

VCO在频率合成中相当重要。为了减小负载效应对VCO的影响,通常在VCO的输出端加人缓冲放大器。

压控振荡器在锁相环中比较重要,是频率合成及锁相环路的核心电路。它应满足这样的特性:输出幅度稳定性要好,在整个VCO工作频带内均应满足此要求,否则会影响鉴相灵敏度;频率覆盖范

30word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

围要有余量;电压—频率变换特性的线性范围要宽。

(5)分频器

鉴相器是将VCO输出信号与参考信号进行比较。在频率合成中,为了提高控制精度,鉴相器在低频下工作。而VCO输出频率比较高,这就离不开分频技术。

手机中的频率合成环路多,不同的频率合成环路使用的分频器不同:接收机的第一本机振荡(RXVCO、UHFVCO、RHVCO)信号是随信道的变化而变化的,该频率合成环路中的分频器是一个程控分频器,其分频比受控于手机的逻辑电路;中频VCO信号是固定的,中频VCO频率合成环路中的分频器的分频比也是固定的。

程控分频器受控于频率合成数据信号(SYNDAT、SYNDATA或SDAT)。

分频器通常被集成在PLL电路或一个复合中频模块中。在电路图中查找分频器可从两个方面着手;一是从ⅤCO的输出端去找;二是根据频率合成控制信号去找(参见手机电路的识别)。

注:综述

频率合成环路包含5个基本的功能电路:参考振荡;鉴相器;低通滤波器;压控振荡器;分频器。

参考振荡给频率合成环路提供基准信号,使手机的工作频率与系统保持一致鉴相器是一个相位—电压转换装置,它将信号相位的变化变为电压的变化。显然,这是一个比较器。

低通滤波器滤掉鉴相器输出的高频成分,以防止高频谐波对VCO电路的影响。在鉴相器中,参考信号与VCO分频后的信号进行比较。

VCO是一个电压一频率转换装置,它将电压的变化(鉴相器输出电压的变化)转化为频率的变化。VCO输出的信号通常是一路到其他功能电路;另一路回到分频器作取样信号。

分频器包含程控分频器和一般分频器。程控分频器的分频比是可变的,手机电路中UHFVCO(RXVC0)频率合成环路中的分频器就是一个程控分频器;一般分频器的分频比是固定的,手机电路中VHFVCO频率合成中分频器是固定的。分频器将VCO信号进行分频,得到频率比较低的信号,以提供鉴相器的比较精度(提高频率合成环路的控制精度)。

当VCO处于正常工作状态时,VCO输出一个固定的频率,若某种外界因素如电压、温度导致VCO频率升高,则分频输出的信号f2/N比参考信号f1高,鉴相器检测到这一变化后,其输出电压减小,使变容二极管两端的反偏压减小。这使得变容二极管的结电容增大,振荡回路改变,VCO输出频率降低。若外界因素导致VCO频率下降,则整个控制环路执行相反的过程。

在频率合成器中,基准频率f1是由晶体振荡器产生的信号分频而得。另一方面,程控分频器则将VCO产生的f分成f/N。这两个信号被送到鉴相器(PD,Phase Detector),当信号f/N与基准信号的频率、相位出现误差时,鉴频器输出对应于相位差的信号差电压。该信号经低通滤波器滤除高次谐波成分,去控制VCO的振荡频率。当f/N与基准频率的频率相位相同时,鉴相器的输出为0,VCO以原来的频率f=Nf继续振荡。只要电路工作正常,VCO的输出频率为Nf1,通常把这时的状态称为锁定状态。

31word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 程控分频器可以设定分频比,因此如果改变N,则PLL可以在跟踪范围内改变VCO的输出频率。移动电话的信道切换控制就是逻辑电路通过控制程控分频器的分频比来实现的。

当VCO信号工作在一个信道上并锁定时,f1=f/N,鉴相器PD输出保持不变。若逻辑电路改变N,则f/N发生变化,鉴相器检测到这种变化后,就会改变其输出,直到使f/N= f1。

以摩托罗拉cd928手机为例:

当接收机工作在GSM60信道时(使用摩托罗拉GSM手机测试指令设置。GSM60信道时手机接收频率为947MHz),VCO电路中变容二极管CR202负极电压为2.23V,VCO输出频率为731.996 MHz。

当设置手机工作于GSM的001信道时,逻辑电路控制程控分频器的N减小。这时, f/N大于fl,PD检测到这个变化后,要控制使f/N =fl,其输出电压减小。VCO电路中变容二极管的反偏压也随之减小,变容二极管的结电容增大,从而使VCO的输出频率下降。这时变容二极管负极电压为1,81V,VCO输出频率为720.166MHz;当手机要工作在高于60信道的信道上工作时,例如124信道,整个环路则发生相反的变化(N增大)。变容二极管负极电压为2.59V,VCO输出频率为744.765 MHz。

在移动电话的频率合成器中,其控制信号SYNDAT(频率合成器数据信号)、SYNCLK(频率合成器时钟信号)及SYN EN(频率合成器允许/禁止)均来自于逻辑电路。

2.锁相环PLL

锁相环的种类很多,它包括3个最基本的部件:鉴相器PD、环路滤波器(Loop Filter)和压控振荡器VCO。如图1-41所示。虽然锁相环看起来与频率合成器的框图很相似,但它是不同的两个概念,应注意区分。

鉴相器是相位比较装置,它对基准信号fl与VCO产生的信号f2进行相位比较,产生反映两信号相位误差的误差电压。鉴相器多种多样,有模拟的,也有数字的。如双D鉴相器、鉴频鉴相器等。

当采用数字鉴相器时,由于其输出为双端口输出,故在与环路滤波器的连接上很成问题。通常在两者之间加入一个双端输人单端输出,且能将鉴相器输出的相位误差信号正确地反映出来的电路,这个电路被称为电荷泵或泵电路。在摩托罗拉的GSM手机中,其发射频率合成中基本上都使用了泵电路。

图 1-41

32word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

第三节 发射机的电路结构

所谓通信(Communication),是指如通讯结构示意图所示那样通过传输媒介将发送方的信息传递到接收方。

但声音信号不能直接作为电波在空中发射,为了把需要传送的信号发送出去,就需使用某种方法将声音信号搬移到频率比声音信号高、适合在空中发射的信号上去。如图1-42所示,用信号去调制载波(Carrier),再通过射频电路将信号发送出去。

图 1-42

每一部移动电话都有一个发射机,它包括VCO、发射驱动(TX driver)、功放(PA)及电源调节器(PWR regulator)、功率控制(PA control)等电路。一个完整的移动电话发射机还包括发射音频电路、数字语音处理电路等。

GSM手机的发射电路大致有三种框架结构,常见的有两种,如图1-43所示.

33word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-43

一、带发射变换模块的发射机电路

在发射机电路结构图一所示的发射机结构中,其发射流程如下:

送话器将话音信号转化为模拟的话音电信号,转化后的信号经PCM编码模块将其变为数字语音信号,然后在逻辑电路中进行数字语音处理,如信道编码、均衡、加密以及TXI/Q分立等,分立后的TXI/Q信号到发射机中频电路完成I/Q调制,该信号再在发射变换模块里与发射参考中频(RXVCO与TXVCO的差频)进行比较,得到一个包含发送数据的脉动直流信号,该信号去控制VCO的工作,得到最

34word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

终发射信号经功率放大器放大后,由天线发送出去。

发射变换模块输出的信号是发射VCO电路的控制信号,这个直流电压信号控制VCO电路中的变容二极管的反偏压,使变容二极管的结电容发生变化,从而控制发射VCO的输出信号频率。

二、带发射上变频器的发射机电路

发射机结构图二所示的发射机在TXI/Q调制之前是一样的,其不同之处在于TXI/Q调制后的发射已调信号在一个发射混频器中与RXVCO(或UHFVCO、RFVCO)混频,得到最终发射信号。

无线通信是借助于无线电波的辐射进行通信的,而人们通常能听到的声音频率很低,需借助于高频电波从某一处传到另外的地方,这就需要振荡电路来产生高频信号,图1-43中的VCO即起这样的作用。

在电子电路中,振荡电路多种多样。随着通信技术的发展,对振荡信号频率的稳定度和精确度的要求越来越高,目前移动通信设备中常用的便是以晶体振荡器为基准频率,采用VCO电路的锁相环频率合成器,这在前面曾涉及,不再赘述。

三、直接变换的发射机电路

早期的手机发射机电路结构基本上都是上述两种电路结构形式。但随着新型手机的面世,我们可以看到一种型号的发射机电路结构——直接变换的发射机。如诺基亚的8210手机这种接收机的电路结构如图1-44所示。

图 1-44

不管电路结构怎样变,都可以看到它们的一些相似之处,所以在手机接收机电路中,主要有以下几个不同的功能电路组合而成:

● 话音拾取:为送话器电路,该电路将模拟的声音信号转换为模拟的话音电信号,并通过一个话音频带形成电路,取3000~3400KHz的信号送到音频处理模块;

● PCM编码:是GSM手机中发射机电路的第一级信号处理,它将模拟的话音电信号转换为数字语音信号,是一级A/D转换电珞;

● GMSK调制:经逻辑电路对数字信号进行一系列处理后。将数码信号调制在67.707kHz的信

35word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

号上;

● TXI/Q∶逻辑音频电路输出的发射基带信号,所有GSM手机的TXI/Q信号线都是4条,该信号发送到射频电路中的I/Q调制器去;

● TXI/Q调制:在该电路中,TXI/Q信号调制在一个发射中频信号上,所有GSM手机发射机电路中从话音拾取到TXI/Q调制部分的电路结构都基本相似;

● 发射交换:在这种发射机电路结构中,TXVCO电路产生一个工作在相应信道上的发射射频信号,该信号在一个混频电路中与RXVCO信号混频,得到发射参考中频信号。发射参考中频信号与I/Q调制后的发射已调中频信号进行鉴相,得到一个包含发送数据的脉冲直流信号,该信号对TXVCO信号进行调制,得到最终发射信号;

● 功率放大器:该电路将发射最终信号进行功率放大,以使射频信号有足够的能量从天线辐射出去;

● 发射上变频器:有发射上变频器的发射机电路中就无发射交换电路,反之亦然。在发射上变频器中,TXI/Q调制器输出的发射巳调中频信号与RXVCO信号进行混频,得到最终发射信号。

第四节 发射机的功能电路

一个频率信号的某种特性参数随另一个信号而变化的过程或处理方法称为调制。按载波参数随调制信号变化的不同,调制可分为两大类:连续调制和脉冲调制。

连续调制又分为三种:调幅(AM,Amplitude Modulation)、调频(FM,Frequency Modulation)、调相(PM,Phase Modulation)。

调频电路种类很多,但可分为两大类:

(l)直接调频:用调制信号直接控制载波的瞬时频率。

(2)间接调频:先将调制信号积分,然后再对载波调相,以间接方法实现调频。

在直接调频电路中,常利用变容二极管来实现直接调频。这种电路简单,性能也较好,但其对中心频率的稳定度有一定的影响,而锁相环技术的运用与温度补偿压控晶振的结合减小了这些影响。在相当多的无绳电话电路中,由于没有PLL电路,常采用晶体与变容了极管相结合直接调频。

间接调频不在主振级进行调制,中心频率可获得较高的稳定度,但不容易获得较大的频偏,电路也比较复杂。在蜂窝手机中,常采用锁相调制器,手机中的发射VCO既起到了压控振荡的作用,又起到了调制器的作用。调相分为直接调相和间接调相,在频率调制电路前加一个微分器可实现间接调相。

模拟手机采用的调制技术基本土是调频,数字手机使用了数字调制技术。数字手机之所以被称为数字手机,就是它采用了数字调制技术(GMSK,高斯最小移频键控)。

需注意的是,GSM手机电路中的调制实际上包含几个方面:脉冲编码调制(实际上是一个模拟一数字转换);GMSK调制(实际上是一个数字—模拟信号的转换);射频电路中的调制。我们在讲手机电路时,通常指的是射频电路中的调制。

36word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 在射频电路中,不同发射机电路结构的调制有所不同:

带发射变换模块的发射机电路结构中,67.707kHz的信号首先调制发射中频,得到发射已调中频信号。这是一级调制,我们把它称为TXI/Q调制。

发射已调中频信号在发射变换模块中经处理得到包含发送数据的脉动直流信号。该信号被送到TXVCO电路变容二极管的负极,控制TXVCO输出信号的频率。这实际上又是一级调制。

在带发射上变频的发射机电路结构中,只有一个67.707 KHz信号调制发射中频的TXI/Q调制级。发射射频信号则来自RXVCO(或UHFVCO)和发射已调中频信号的差频。(参见发射机电路结构)

GSM手机发射信号经上述功能电路,都会发生一些变化。在图1-45中,信号1是送话器拾取的模拟话音电信号,图1-46所示的波形是用示波器在cd928话音放大器输出端所测得的波形。

图 1-45

37word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图1-46

信号2是PCM编码后的数字话音信号,如图1-47所示测量时,可以明显看到有话音输人和没话音输入时PCM编码器输出波形的变化(该信号是将GSM328设置在测试状态下,在PCM编码器测得的)。

图 1-47 信号3是数字波。

38word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-48

信号4是经逻辑电路一系列处理后,分立输出的TXI/Q波形。TXI/Q信号如图1-48所示,这两幅图分别是用100MHz数字示波器与20 MHz示波器所测得的TXI/Q波形,真正的发送信息只是包含在I/Q波形的顶部。

信号5是发射已调中频信号,信号6是发射最终信号。信号5、6需用频谱分析仪才能观察到。 信号7是进行功率放大后的最终发射信号。

只有具有发射变换功能的电路才有信号8。图1-49是在cd928发射变换模块输出端用数字示波器测得的信号,该信号去控制TXVCO的工作(将发送数据调制在TXVCO信号上)。

39word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-49

40word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-50

不论是哪一种发射机电路结构,TXI/Q信号从逻辑音频电路输出后,都进入到射频电路中的发射I/Q调制器中。在TXI/Q调制器中,67.707kHz的TXI/Q信号对发射中频载波进行调制,得到发射已调中频信号。TXI/Q调制器通常都是在一个中频处理模块中,少数的发射机则有一个专门的调制器模块。

41word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 不同结构的发射机电路对TXI/Q调制后的信号的处理有所不同,带发射变换模块的将该信号送到发射交换模块与发射参考中频进行比较,得到调制TXVCO的发送数据;带发射上变频器的则将该信号送到发射上变频器,与RXVCO或UHFVCO等进行混频。

在查找TXI/Q信号线路或TXI/Q调制电路时,通常需注意TXI/Q、MOD等字样。当然,在一些手机电路中并无这些标志,但它总有一些规律可寻(参见手机电路的识别)部分手机中的TXI/Q及调制电路见图1-50。

二、发射变换

判别发射变换电路是区别两种发射电路结构的方法.发射变换电路主要是将发射已调中频信号与发射参考中频信号进行处理。即使同是带发射变换的发射机电路,也有一些具体的区别。摩托罗拉手机的发射机电路中的发射变换电路通常都是由一个专用的发射变换模块构成(需注意的是,少部分摩托罗拉的手机并不是真正的摩托罗拉的产品,而是由其他厂家生产、摩托罗拉购买了冠名权而已,如T2688。所以,在进行这些电路的分析时,不能套用摩托罗拉的电路结构)。

发射变换模块通常完成如下的信号处理:发射已调中频信号来自TXI/Q调制器;在变换电路中,TXVCO信号与RXVCO信号进行混频,得到发射参考中频信号;发射已调中频信号与发射参考中频信号在发射变换模块中得鉴频器进行比较,输出包含发送数据的脉动直流信号,该信号再经一泵电路(一个双端输入,单端输出的转换电路),输出一个包含发送数据的脉动直流控制电压信号。

42word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-51

图1-51是摩托罗拉cd928和松下GD90的发射变换电路图,从而可以看出要确定发射变换电路,必须掌握发射机的电路结构及手机电路的英文缩写。

三、TXVCO

TXVCO电路通常存在于带发射变换电路的发射机中,带发射上变频器的发射机电路中是没有发射VCO的。

TXVCO电路有分立元件的,有VCO组件的。分立元件的VCO电路常见于摩托罗拉以前的GSM手机电路中,摩托罗拉V998、L2000等以及爱立信、三星SGH-600等手机的TXVCO电路都是由TXVCO电路组件构成。分立元件的TXVCO电路与其他如RXVCO、VHFVCO的电路基本相似,只是工作参数不一样。图1-25是cd928的TXVCO电路(注意圈住的几个元件,它们是确定该电路是否是VCO电路的

43word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

关键元器件)。发射变换模块输出的包含发送数据的脉动直流信号经低通滤波器后,到达变容二极管VR354或VR353的负极,通过控制变容二极管的反偏压,完成对TXVCO电路输出频率的控制。

图 1-52

在图1-52电路中,有两个VCO电路,一个工作在GSM模式下,一个工作在DCS模式下。双频切换控制电路通过控制两个三极管的基极偏压来达到切换的目的。

图 1-53

图1-53是L2000的TXVCO电路。它是一个VCO组件,可工作在GSM900、DCS1800和PCD1900频段上。在逻辑电路的频段切换信号控制下,完成工作模式的转换,U350的1脚是输出端;4脚的输人信号来自发射变换电路;其他分别是电源与频段切换的控制端。

TXVCO电路是直接工作在相应的信道上的,例如,若L2000手机工作在GSM的60信道,则TXVCO模块U350输出902MHz的发射信号。TXVCO电路在发射变换模块输出的信号控制下,完成发送信息的调制。

44word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

四、发射上变频器

发射上变频器实际上是一个频谱搬移电路,它存在于带发射上变频的发射机电路结构中。在发射上变频器中,发射中频处理电路输出的发射已调中频信号,与RXVCO或UHFVCO、RFVCO信号进行混频,得到最终发射信号。发射上变频器也是一个混频电路,前面讲混频器时说,混频器有两个输人信号,一个输出信号。发射上变频器也是一样,它的输人信号是发射已调中频信号与UHFVCO(RXVCO、RFVCO),输出信号是最终发射信号。

图 1-54

有的发射上变频器电路结构中,没有发射变换与TXVCO电路。发射上变频器位于发射I/Q调制器之后。图⒎78是诺基亚8110的发射上变频器的方框图(注意图中的黑方块),116MHz的TXIF信号与UHFVCO信号在发射上变频器中混频,得到最终发射信号,送到功率放大电路。

五、功率放大器

手机电路中的功率放大器都是高频宽带功率放大器。

顾名思义,高频功率放大器用于放大高频信号,并获得足够大的输出功率。它广泛用于发射机、高频加热装置和微波功率源等电子设备申。

根据工作频带的宽窄不同,高频功放可分为窄带型和宽带型两大类。所谓频带的宽窄,指的不是绝对频带,而是相对频带,即通频带与其中心频率的比值。

宽带型高频功放是采用工作频带很宽的传输线变压器作为负载的功率合成器,由于采用谐振网络,因此可以在很宽的范围内变换工作频率而不必调谐。

传输线变压器是由绕在高导磁率磁环上的传输线构成的。在一些手机电路中,广泛使用微带线(见手机元件识别)电路。图1-55是诺基亚6150的一个功率放大器,图中的短粗线就是微带线,在手机PCB板上是不同形状的铜线。

45word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 调制后的射频信号经功率放大后,就可以进行传输。我们把这个功率放大器称为发射功率放大器,对于发射功率放大器需能在一给定频率上或频率范围内输出一定的发射功率。发射功率放大器总是工作在大信号状态下。在移动电话中,常采用硅场效应管和砷化镓场效应管作为功率放大管,它们的导热率比锗高许多,而且越来越多的手机使用功率放大器组件(参见功率放大器的识别)。一个完整的功率放大组件通常包括驱动放大、功率放大、功率检测及控制、电源电路等。

对功率放大器的主要要求是输出功率、带宽和效率,其次为输人输出电压驻波比等。 图⒎79~图⒎82是部分手机的功率放大电路。

图 1-55(一)

46word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-55(二)

图1-55(一)中,8脚是射频输人端;9脚是控制端;11~14脚是VBATT电源端与输出端;l、2脚与16脚是VTX电源端。

图1-55(二)中,N702的1、2脚是控制端;8脚是输人端;3、6脚是电源端;4、5脚是输出端。从4、5脚的英文标识来看,它们一个是输出GSM信号,一个是输出DCS信号,可见该功率放大器模块可以工作在GSM/DCS模式下。

47word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-55(三) GD90功放

图1-55(三)中,U104是功率放大器,8脚是信号输人端;1、2脚是控制端;3、6脚是电源端;4、5脚是信号输出端。由4、5脚的英文缩写(POUTGSM、POUTDCS)及天线开关电路的TXGSM、TXDCS可以确定,该手机是双频手机,该功率放大器可工作在GSM与DCS模式下。

图 1-55(四)

图1-55(四)中的功率放大器不太容易查找,但根据手机发射机的电路结构,我们可以知道发射功率放大器的电路位置。在图1-55(四)中,可以找到天线符号,天线符号所接的是天线开关电

48word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

路。在V401的2脚有TX字样,则该引脚是发射信号输入端,那么,从2脚出发,反方向寻找,就可以找到功率放大器(参见图中的示意箭头线)。

六、功率控制

手机的发射功率是可控的,它在不同的地理位置,根据系统的控制指令工作在不同的发射功率级别上。图1-56(a)是一般手机功率控制的原理方框图,(b)是诺基亚6110发射机功率控制的原理方框图。

图 1-56

该控制环路工作原理如下所述:功率放大器放大的发射信号被送到天线转化为高频的电磁波并发送出去。在功放的输出端,通过一个取样电路(一般为微带线耦合器),取一部分发射信号经高频整流,得到一个反映发射功率大小的直流电平。这个电平在比较电路中与来自逻辑电路的功率控制参考电平进行比较,输出一个控制信号去控制功放电路的偏压或电源,从而达到控制功率的目的。

在图1-56中,可以看到AOC(自动功率控制)与PA-CNL(功率放大器控制)。AOC信号是逻辑电路提供的一个功率控制参考电平信号,PA-CNL是功率放大器控制电路输出的一个偏压,给功率放大器提供偏压,通过改变功率放大器的偏压来控制放大器的输出(参见放大电路)。

图7-85、图7-86中的VCTL就是指控制端。VCTL中的CTL是英文Control的缩写,从该引脚

49word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

的缩写可以找到控制电路。

图 1-56

50word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 1-57

第三章 逻辑系统

逻辑电路分为手机系统逻辑电路控制及存储器电路与语音处理电路两大部分,它完成手机各电路的控制及数字与语音信号的处理。

逻辑电路部分通常是由处理器(CPU)或被称为ASIC(专用应用集成电路)的器件,为中心的电路构成。在该电路中,还包含各种存储器电路:SRAM、EEPROM及FLASH电路,这些存储器在手机电路中起着不同的作用。

51word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

第一节 逻辑控制电路

它主要由核心控制模块CPU、EEPROM、FLASH EPROM、SRAM等部分组成,逻辑系统主要完成手机菜单中的各项设定功能、控制收发信号的正确处理功能等,而且在逻辑系统中,EEPROM和FLASH EPROM内部存储的数据必须完全正确,才能发挥其强大快捷的逻辑控制功能。

—、控制器的组成

图2-1所示是控制器的硬件组成方框图。图中一个最基本的控制器主要由下列几部分组成。

图 2-1

①CPU(处理器)∶这是微控制器的核心。

②存储器:包括两个部分,一是ROM它用来存储程序,二是RAM,它用来存储数据。ROM和RAM两种存储器是有所不同的。

③输人/输出(I/O)接口:这一接口电路分为两种:一是并行输入/输出接口;二是串行输入/输出接口。这两种接口电路结构不同,对信息的传输方式也不同。

④定时器/计数器:微控制器的许多应用中,往往需要进行精确的定时并产生方波信号,这要由定时器/计数器电路来完成。

⑤时钟系统:手机中常见是13MHz和32.768kHz。

微处理器的上述五个基本部件电路之间通过地址总线(AB)、数据总线(DB)和控制总线(CB)连接在一起,再通过输出/输人接口与微处理器的外部电路联系在一起。

52word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

二、CPU

CPU在单片机中起着核心作用,单片机所有操作动作指令的接收和指令的执行、各种控制功能、辅助功能等都在CPU的管理下进行。同时,CPU还要担任各种运算工作。在单片机中,CPU起着指挥中心的作用。

通俗地讲,CPU 相当于“人脑”和“算盘”的作用,其中“人脑”用来指挥单片机的各项工作,“算盘”则用来进各种数据的运算。

三、存储器

存储器的作用相当于“纸张”存储器用来存放单片机中的各种程序和数据。

所谓程序就是根据所要解决问题的要求,应用指令系统中所包含的指令、编成一组有次序的指令的集合。

所谓数据就是单片讯上作过程中的信息、变量、参数、表格等,例如键盘反馈回来的信息。 ①ROM(掉电不丢失)

在手机的单片机系统中,有的程序是同定不变的,如自举程序或引导程序,有的程序则可以进行升级,存储不同的程序。存储器也不应相同,如Flash(闪速存储器)特点是响应速度和存储速度高于一般的EPROM, 可写可编程只读存储器,因为在手机中它存储着系统运行软件和中文资料,所以叫它版本或字库。它容量也更大一些,比如V998的320字库容量为16×32Mbit。

② EEPROM电可擦可写可编程只读存储器,因为在手机中它主要用来存放应用文件、如机身码IMEI、锁相码,所以又俗称码片。不过在现代通信技术日益发展的今天,许多机型已将码片资料和版本资料集成在一起了。

③RAM数据存储器(掉电丢失)

数据存储器是一个随机存储器,是一个读/写存储器(RAM),它可读可写,他分成许多单元。微控制器片内的数据存储器用途很多,主要有下列一些:

A.其中的一部分单元当作CPU的工作寄存器。当单片机中没有专门的寄存器阵列时,可使用数据存储器中的一部分单元。

B.微控制器内有一个大小,地址均为固定的堆栈,设在数据存储器中。 C数据存储器其余的单无是用户的数据区。

四、输入/输出接口

输人/输出接口常用I/O接口表示,I是指输入接口,是英文IN的简写。O是指输出接口,是英文OUT的简写。

输人/输出接口电路是指CPU与外部电路、设备之间的连接通道及有关的控制电路。由于外部

53word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

电路、设备中的电平大小、数据格式、运行速度、工作方式等均不统—,一般情况下是不能与CPU相兼容的(即不能直接与CPU连接)外部电路和设备只有通过输入/输出接口的桥梁作用,才能进行相互之间的信息传输、交流并使CPU与外部电路、设备之间协调工作。

输人/输出接口种类繁多,不同的外部电路和设备需要相应的输人/输出接口电路,可利用编制程序的方法具体确定接口的工作方式、功能和工作状态。

五、定时器/事件计数器

为了提高单片机的实时控制能力,一般单片机内部设有定时器电路。定时器有两种类型:—是增量计数器;二是减量计数器。

当定时器溢出时,增量计数器产生中断并作标志位;当定时器回零时,减量计数器产生中断。 有的定时器还具有自动重新加载的能力,这使得定时器的使用更加灵活方便,利用这种功能很容易产生一个可编程的时钟。

此外,定时器还可作为一个事件计数器,当工作在计数器方式时,可从指定的输入端输人脉冲,计数器对其进行计数运算。

六、时钟系统

这一系统是单片机的重要系统,单片机的工作是按部就班的,按一定规则排列时间顺序的定时,就是由时钟系统控制的。时钟信号把单片机执行指令时要做的操作按先后顺序排好,并给每一个操作规定好固定时间,这样就可以使单片机在某一时刻只作一个动作,实现电路的有序工作。

而它工作的快慢又和手机的状态有关系;大多数的手机在开机时因需要处理的文件多,时间要求短,时钟多为13MHz,而在待机或休眠时有32.768kHz 就足够了。这有点类似于电脑CPU的主频,这也就是为什么手机开机时13MHz频偏一点无所谓,只要有足够的振幅可以传送数据就行了,而人网时才和基站校准的原因之一。

七、处理单元工作过程简介

处理单元简称CPU,CPU是英文Central Processing Unit的缩写。CPU主要由下列三大部分组成:①运算器;②寄存器;③控制器。

关于单片机系统中的CPU主要说明下列几点:

1)CPU的内部和外部通过三种总线与各部件之间进行联系,它们是地址总线、数据总线和控制总线。地址总线用来传送地址信息,它是一种单向传输总线,地址总线在三种总数中的数目最多,通常地址总线用A××表示;数据总线是用来传送数据的总线,它是一种双向总线,它可用来传送CPU的输出数据,也可用来向CPU传送输人数据,一般情况下数据总线数目较多,常用D××表示;控制

54word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

总线用来传送控制信息,它是一种单传输总线,对于CPU来讲,控制总线所传送的控制信号有的是输入信号,有的是输出信号,控制总线的数目要少些,通常用C××表示。

2)单片机中的总线是由许许多多部件所共用的,各部件通过三态门挂在总线上:三态门有一个高阻状态,此状态下该门呈开路状态。与总线脱离。此时对总线而言它就不是一个负载。正是由于三态门的这一特点,可以使许许多多部件同时挂在总线上而不使总线过载。总线在某一时刻只被一对部件使用(即总线一端接的是信号源部件,另一端接的是信号接收部件)。在另一时刻总线又被另一对部件使用,这种由部件轮流使用总线的方法称为分时。

八、单片机工作过程简介

在单片机中,CPU不仅要实现对自身的控制,还担负对单片机芯片内外其他功能部件的控制,完成规定的操作和运算。CPU在实现这些控制功能时,是通过逐步执行指令序列的过程来完成的。

单片机对任何一条指令的执行都必须经历下列三个阶段: ①取指令阶段; ②分析指令阶段; ③执行指令阶段。

关于单片机的工作过程主要说明下列几点:

①单片机执行一条完整的指令必须经过取指令、分析指令和执行指令三个过程:微控制器中的每条指令都存放在专门的存储器(ROM)中。

②程序由指令序列组成。程序的执行过程就是执行指令序列的过程,也就是周而复始地进行取指令、执行指令的过程。

③程序的执行种类分为四种:一是从零地址开始执行;二是从中间某一给定地址开始执行;三是顺序执行;四是非顺序执行。

④程序的执行中需要去控制单片机的外部电路,其控制方式有两种:一是直接控制方式;二是间接控制方式。前者电路结构简单,但不能用来直接控制数目较多的执行部件,因为这会占用单片机的许多输出接口。间接控制方式与直接控制方式相反,它通过一个控制器,由单片机控制这一控制器。再由这一控制器去直接控制执行部件,这样可省去微控制器的许多输出接口,这种间接控制方式能够控制数目很多的外部执行部件。

⑤中断是单片机中的一种重要功能,它能够使单片机的控制功能更加完善。所谓中断,就是在正常执行程序的过程中,暂时停止执行主程序,而转去执行另一个更加紧急的程序。

⑥中断有五个阶段:一是中断请求;二是中断排队;三是中断响应;四是中断处理;五是中断返回。

而手机中的单片机一般是16位微处理器,它与外围某些器件的工作流程如下:

按手机开机键,给维持电源部分供电,同时上电单片机,单片机复位后,再给出控制信号给维持电源部分,这时即使松开开机键也无妨。

55word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 复位后,单片机开始运行其内部的程序存储器,首先从地址0(一般是地址0,也有些厂家CPU不是)开始执行,然后顺序执行它的引导程序,同时从外部存储器(字库、码片)内读取资料.如果此时读取的资料不对,则单片机会内部复位(通过单片机内部的“看门狗”或者硬件复位指令)引导程序,如果顺利执行完成后,单片机才从外部字库里取程序执行,如果取的程序异常,它也会导致“看门狗”复位,即程序又从地址0开始执行。

单片机读取字库是通过并行数据线和地址线,再配合读写控制时钟线W/R,单片机还有一根外部程序存储器片选信号线或称CS、CE,它和W/R配合作用,就能让字库区分读的是数据,还是程序。

第二节 逻辑音频电路

逻辑音频电路在手机电路中占有重要的地位,它是手机系统的心脏。

逻辑音频电路包含无线通信呼叫处理、音频处理、数字语音处理、射频逻辑接口电路、各种射频功能控制、电源管理和用户接口模组等。

任何一部手机的逻辑音频电路部分都包含以上的一些功能电路,只不过手机电路中的逻辑音频电路通常都采用了超大规模的专用集成电路,在具体的电路形式上有所不同而已。

开关机逻辑电路(Power ON&Power OFF); 时钟产生(Clock Generator);

射频控制(提供SYNTHON,TXPWR,RXPWR及TXP等); 时间管理器(Timer); 用户接口; SIM卡控制;

系统控制(Systern contFol); 通信控制(Communication Control); 身份确认(ID authentication); 射频监测(RF monitoring);

工作模式控制(Power Up/Down c,ontrol); 附件监测(Accessory Monitoring); 电池监测(Battery Monitoring); SLEEPCLK(睡眠时钟); SIMCLI((SIM卡时钟); LCDCLK(显示器时钟);

数字语音信号处理电路时钟(PCMSCLK,PCMDCLK); 信道编码(Channel codec);

分间插人与去分间插人(Interleaving`Deinterleaving); 计算(Ciphering,GSM的流密码算法等);

56word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 突发脉冲建立(Burst Building);

邻近蜂窝监测(Adjacent cell Monitoring); ADC(模数转换); PCM编译码; 音频路径转换; MIC及SPK放大器; I/Q分立(Separation)。

在看手机的逻辑音频电路时,应重点注意各种控制信号,逻辑电路提供的射频控制信号如:接收启动控制信号(RXON或RXEN);发射机启动控制信号(TXON或TXEN);频率合成控制信号(SYNDAT、SYNCLK等)。

在看不同厂家的手机电路时,应注意一些控制信号的名称可能不同,如发射功率控制信号在诺基亚电路中被称为TXC;而摩托罗拉手机电路中则是PAC或AOC;在爱立信手机电路中为PWRLEV等。

一、逻辑音频处理

由前述GSM系统知识与手机电路结构方面的知识可知,接收机解调得到的接收基带信号被送至逻辑音频电路。

我们常说RXI/Q信号在逻辑音频电路中进行GMSK解调、解密解码等处理,还原出模拟的话音信号。下面以诺基亚8810逻辑音频方框图(图2-2)为例作一说明。

图 2-2

RXI/Q解调电路输出的RXI/Q信号首先送到逻辑音频处理模块COBBA。在COBBA内,RXI/Q信号先经一个RXI/Q相位分离电路,两个RXI/Q信号分离成4个信号。该信号在COBBA中再经处理(2ND

57word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

ORDER S-D MODULAORDER SINC FILTER),由一个数字接口电路将处理后的信号送到无线通信呼叫处理器,通过处理器中的COBBA接口、接收缓冲器、DSP接口,将信号送到DSP。在DSP中,信号先经一个接收滤波器,然后在DSP中进行均衡、同步、去分间插人、卷寄解码、循环冗余码校验、坏帧掩蔽、语音解码等处理,通过一串行总线,将DSP处理后的数字语音信号送到语音处理模块。在语音处理电路中,该信号经PCM解码,将数字信号还原成模拟的话音信号,然后经功率放大,输出到受话器。

二、接收音频

接收音频通道完成的是与发射音频通道相反的过程,它将数码的语音信号进行处理,如去分间插人、解密等,得到数字语音信号。数字式的语音信号经一个D/A转换(PCM解码),得到模拟的话音电信号。如图2-3所示(该图所示的是GMSK解调后的数码语音信号到模拟话音信号之间电路的示意图)。

图 2-3

在寻找接收音频电路咐,应注意查找“SPK”、“EAR”、“EARPHONE”和受话器的图形符号。图2-4所示的就是诺基亚8110的接收音频输出电路,图中的EAR是查找该接收音频的关键。

图 2-4

58word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

三、发射音频

在模拟移动电话中,一般把从解调输出到受话器之间的电路或送话器到调制输入端称为音频处理电路。在数字移动电话电路中,从送话器输入到TXI/Q信号输出或RXI/Q输出到受话器声音输出之间的电路称为音频逻辑电路(参见逻辑电路)。图2-5为一发射音频通道的方框图。接收则执行相反的过程。

图 2-5

在通信中,要将话音信号发送出去,首先需利用电子器件、电路将话音信号转换成模拟电信号,这就是通常所说的话音拾取电路。常用的声-电转换器件为送话器(microphone,又称话筒、微音器等)。

通常,送话器拾取的话音信号是一个频率范围为几十Hz到约20kHz的信号,这将使电路非常复杂。事实证明,人们通常只对频率为270~3400Hz的信号敏感,且能达到一定的清晰度,这个频率范围的话音信号完全能满足一般通信业务。所以,经音频放大器放大后的信号要通过一个带通滤波器以形成话音调制信号的频带。

从有线电话的技术要求知道,对电话手柄的要求较高,以满足对说话者的话音信号的拾取。现在,手机越来越趋向于小型化,送话器与手机使用者的嘴的距离越来越远,这就要求送话器的灵敏度比较高,由此带来一个问题——在某种程度上说背景噪声较大(有时远处的声音也会被发送出去),所以手机电路中发射音频也有其特点,下面几幅图可以说明问题。

59word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 2-6

图2-6是爱立信T18的话音拾取电路。在看该电路时,还应注意话音频带形成和送话器偏压等,如图2-7所示(MIC是送话器;BIAS是偏压)。

图 2-7

送话器需要偏压才能工作,其偏压是直流电压。在讲述放大器时我们曾提到偏压的查找方法:偏压只能通过电阻或电感,所以只要找到MIC或送话器的图形符号,其偏压是容易查找的。如图2-8所示。

60word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

图 2-8

实际上,发射音频处理就是将模拟的话音信号进行数字化处理的过程,如图2-9所示。 模拟的话音信号先经过一A/D转换电路(PCM编码器),将模拟的话音电信号转换为数字信号。数字化的语音信号在语音处理器(通常称其为DSP)中经加密、分间插人等处理,得到数码的语音信号。若就诺基亚8810的发射逻辑音频而言,则:

送话器转换得到的模拟话音电信号首先在音频处理模块COBBA中进行前置放大,放大后的信号在PCM编码器中进行A/D转换,得到数字语音信号。该信号经串行总线将信号送到DSP。在DSP中,

61word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

数字语音信号经话音检测、语音编码、卷积编码、分间插人、脉冲格式化与调制,得到数码语音信号。该信号经无线通信呼叫处理器的DSP接口与COBBA接口,将信号送到COBBA的数字接口电路中。在COBBA中,信号经一个线性分离器及D/A转换,得到67.707KHz的发射基带信号(如图2-10所示)。

图 2-9

图 2-10

62word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

第四章 电源系统

不同系列手机电源部分都有各自的特点,维修时需针对具体的手机电路具体分析。一般手机都是由一个电源模块产生几组电压向接收、发射、逻辑、显示等部分供电,一旦手机电源部分不能正常工作,其相应部分也就会出现某种故障。

一、开机信号电压

手机的开机方式有两种,一种是高电平开机,也就是当开关键被按下时,开机触发端接到电池电源,是高电平启动电源电路开机;一种是低电平开机,也就是当开关键被按下时,开机触发线路接地,是低电平启动电源电路开机。

爱立信、三星手机和摩托罗拉T2688手机都是高电平触发开机。摩托罗拉、诺基亚及其他多数手机都是低电平触发开机。如果电路图中开关键的一端接地,则该手机是低电平触发开机,如果电路图中开关键的一端接电池电源,则该手机是高电平触发开机。

开机信号电压是一个直流电压,在按下开机键后应由低电平跳到高电平(或由高电压跳到低电平)。开机信号电压用万用表测量很方便,将万用表黑表笔接地,红表笔接开机信号端,接下开机键后,电压应有高低电平的变化,否则,说明开机键或开机线不正常。

二、逻辑电路供电电压

逻辑电路供电电压基本上都是不受控的,即只要按下开机键就能测到,逻辑电路供电电压一般是稳定的直流电压,用万用表可以测量,电压值就是标称值。

三、射频电路供电电压

手机的射频电路供电电压比较复杂,既有直流供电电压,又有脉冲供电电压,而且这些供电电压大都是受控的。其目的是为了省电和与网络同步,使部分电路在不需要时不工作,否则,若射频电路都启动,手机功能就会紊乱。但逻辑电路不能采用这种供电方式,因为逻辑电路是手机的指挥中心,在任一时刻失去供电电压,整机就会瘫痪。

射频电路的受控电压一般受CPU输出的接收使能RXON(RXEN)、发射使能TXON(TXEN)等信号控制,由于RXON、TXON信号为脉冲信号,因此输出的电压也为脉冲电压,一般需用示波器测量,用万用表测量结果要小于标称值。

测量接收电路的供电应启动接收电路,测量发射电路的供电应启动发射电路,手机在待机状态下,接收电路是每隔一定时间启动一次,发射电路则不启动,手机拨打电话或“112”时,则接收和发

63word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

射电路可以同时启动,所以,在测量时若测不到供电电压,应检查是否启动了相应的电路。应在手机开机后的30秒内进行检测。

四、SIM卡电路供电电压

手机的SIM卡有6个触点,其中标注为SIM Vcc或Vcc的触点为SIM卡供电端,由于有两种不同工作电压的SIM卡,即3V SIM卡和5V SIM卡,所以在手机内部存在3V SIM卡电路及5V SIM卡电路。测量SIM Vcc电压最好选在开机瞬间用示波器进行测量,图4-1所示是爱立信T28手机所测的SIM Vcc波形。用万用表测量SIM Vcc电压,要远远小于3V或5V。

图 4-1 SIM Vcc电压波形

六、显示电路供电电压

显示电路采用直流供电,手机开机后,即可用万用表方便地进行测量,下面以爱立信T28手机为例进行分析

爱立信T28手机的显示屏通过5个触点和电路相连,如图7-2所示。

图7-2 爱立信T28手机显示触电示意图

图中:

① 脚VLCD为显示屏对比度控制端,电压为6V,无此电压,LCD无显示,太高则LCD发暗; ②脚为显示屏直流供电端,电压为2.8V。这两处电压可方便地用万用表测量。 ③脚为DAT数据输入端,来自CPU; ④脚接地;

⑤脚为时钟输入端,来自CPU。

DAT、CLK两脚需用示波器观察其波形(2.8V的方波),用万用表测量无法判断电路工作是否正常。

word格式支持编辑,如有帮助欢迎下载支持。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

七、其他电路供电电压

其他电路,如听筒电路、振铃电路、振子电路的供电较简单,一般直接由电池电压供电,可方便地用万用表测量。送话器电路一般由音频电路为其提供偏压,亦可方便地用万用表进行测量。

小结:

双频手机的电路通常是增加一些DCS1800M的电路,但其中相当一部分电路是DCS与GSM通道公用的所以在此不再重复讲解。

65word格式支持编辑,如有帮助欢迎下载支持。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务