2 / 9个人收集整理资料, 仅供交流学习, 勿作商业用途 因为二极管具有单向导电性。或者将两个有一定对称性的NPN和PNP三极管的基极分别和TDA2030的两个电源输入端相连。最后在输出端,还要加一个大电容来保证电路的低频性良好。在接有感性负载扬声器时还要加入一个电阻和一个电容来减少电路的自激振荡,确保高频稳定性。 ②元器件选择:
如下面的系统原理图所示,C2为输入耦合电容,应选取较小的电解电容;R1、R2、R3和C7的作用是组成运放TDA2030的输入偏置电路,取R1=R2=R3,可计算得TDA2030正向输入端的电压为0.5VCC,而电容C7的作用是可以稳定这个电位。另外,R3是为了防止输入信号被C7短接到地而设的。C6是高频退耦电容,应选用较小的陶瓷电容或独石电容;C3是滤波电容,应选用较大的电解电容。C4、R4、和R11构成交流负反馈,控制交流增益,对于音频信号,可以近似地认为C4短路,所以功放的增益为1<<1+R11<有效部分)/R4<<1+100/3.3=31.3。对于直流信号,可认为C4断路,所有输出信号反馈到反向输入端,所以直流增益为1。取R6=R8和C8可起着保证TIP31和TIP32的基极电压相等,从而减少了推挽电路的交越失真。而R7和C5可以滤除TDA2030输出的高频信号。二极管D1、D2保护运放免受扬声器的感应电压而造成损害。电容C1是输出耦合电容,能够改善电路的低频特性,要用容值较大的电解电容。C9和R10能对扬声器的相位进行补偿,能够较少电路的自激振荡,确保高频稳定性。运放TDA2030内含各种保护电路,需要外接元件非
3 / 9
个人收集整理资料, 仅供交流学习, 勿作商业用途 常少,且电路的频带宽较宽,并能在最低±6V最高±22V的电压下工作。另外,它输出功率较大,在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%,所以选用TDA2030能够实现电路的要求。而TIP31C和TIP32C是一对互补性较好的NPN和PNP三极管,集电极和发射极之间所承受的电压也可以高达100V,集电极的电流为3A左右,每只管的功耗也只有40W左右而已,所以用它们来搭建OTL电路比较合适。
⑷系统的电路总图:
元件清单如下: 标号 R7 R6、R8 R10 R4 型号 RJ14 RJ14 RJ14 RJ14 大小 1 1.5 22 3.3k 4 / 9
封装形式 AXIAL0.4 AXIAL0.4 AXIAL0.4 AXIAL0.4 数量 1 2 1 1 个人收集整理资料, 仅供交流学习, 勿作商业用途 R1、R2、R3 RJ14 R11 B100K C1 25V-2200uf C3 25V-100uf C4、C7 50V-10uf C2 50V-2.2uf C5、C8 224 C6、C9 104 1n4001 — TIP31C — TIP32C — TDA2030 — 总计 — 100k 100 k 2.2mf 100uf 10uf 2.2uf 220nf 100nf — — — — — AXIAL0.4 — — — — — — — DO-35 TO-220 TO-220 PENTAWATT — 3 1 1 1 2 1 2 2 2 1 1 1 23 4、电路调试过程与结果:
①测试频带宽:
调节电位器R11的阻值,经过测试可得其中一个电路的下限截止频率为fL=6.41Hz,上限截止频率为fH=127.481kHz。当然在50HZ~20kHZ频率范围内电路输出不失真,这满足条件“频带宽50HZ~20kHZ,输出波形基本不失真”的要求。在实验室里也经过测量,显示可以在50HZ~20kHZ频率范围内电路输出不失真。 ②测量输出电压放大倍数:
5 / 9
个人收集整理资料, 仅供交流学习, 勿作商业用途 测试条件:直流电源电压19v,输入信号峰峰值为100mv,输入频率为1KHz,电位器R11的有效阻值为66k,负载电阻8。输入和输出的波形如下图所示:
输出电压峰峰值为:Uo=Ui*【1+R11(有效部分>/R4】 放大倍数:Ao=1+R11<有效部分)/R4=1+66/3.3=21 仿真数据和实测数据比较:
6 / 9
个人收集整理资料, 仅供交流学习, 勿作商业用途 Ui<峰峰值) 100mv 400mv Uo<峰峰值)<仿真) Uo<峰峰值)<实测) 2.1v 2.0v 8.4v 8.3v 由上表可知,实际上输出电压放大倍数:Au≠21
误差分析:因为元件的实际数据大小与理论的大小存在差异,譬如金属膜电阻的阻值误差为1%或5%,电容的容值误差也有5%~20%。实际上1n4001、TIP31、TIP32等元器件跟仿真软件所表现出来的特性不是完全一样的。同时,音频集成放大芯片发热量比较大,比较容易受到周围环境温度的影响,从而也导致了一定的误差。另外,在实测中读数时会产生误差。 ③测量最大不失真功率: 根据理论可得最大不失真功率为
,Uo为输出电压峰峰
值。经过测试,在19V的直流电源,8负载作用下,调节电位器R11,使其允许的最大不失真输入信号为Ui=600mv,其最大不失真功率为:Po=8.4w>8w。也满足“电路输出功率大于8W”条件。
④测量输入灵敏度为100mV时的输入阻抗:
在信号输入端接上两个万用表,分别测量输入端的电压和电流,得Ui≈70 .71mV,Ii≈716.48nA,所以输入阻抗为
Ri=Ui/Ii=98.69K>>47K,明显也满足“输入灵敏度为100mV,输入阻抗不低于47K”的条件。
5、总结和体会: 方案和作品的优点为:
7 / 9
个人收集整理资料, 仅供交流学习, 勿作商业用途 ①焊接板排版较为缜密,焊接没有跳线;
②作品所用元器件较少,电源输入要求较低,频带宽6.41HZ~127.481kHZ,输出波形基本不失真,电路输出功率大于8W,输入灵敏度为100mV,输入阻抗高于47K,能够基本实现设计的任务要求;
③电路中有TDA2030的保护电路,另外在输出部分能对扬声器的相位进行补偿,从而能够较少电路的自激振荡,确保高频稳定性; ④作品用了TIP31C和TIP32C组成的推挽放大电路,能够较少TDA2030的功耗,使TDA2030的发热量减少; ⑤电位器R11能够实现电路增益的调整。 缺点有:
①功率不是很高,最大输出功率只有8.4W;
②TIP31C和TIP32C的功耗都比较大,集电极电流输出不是很大; ③2.2mf的电解电容存在电感,电路的低频特性不是很好; ④电路的电源输入由于没有保护电路,若在调试时正负电源接反可能会把芯片烧坏。
针对4个缺点各自的改进方案:
缺点1:采用双电源供电的OCL电路或者用LM1875或TDA2050等运放和元器件搭建的电路;
缺点2:2SA1444、2SC3694的功耗只有30W左右,而集电极的输出电流可达15A,每只管的耐压值也为100V,可用这两只管代替TIP31C和TIP32C。
8 / 9
个人收集整理资料, 仅供交流学习, 勿作商业用途 缺点3:把电路换成OCL电路;
缺点4:在电源接入端加上二极管保护电路<下图),这样即可以保证正负电源接反时不导通,又可以在直流电源电错接成交流电时起整流桥的作用。
9 / 9