edit svmtrain
>>edit svmclassify >>edit svmpredict
function [svm_struct, svIndex] =
svmtrain(training, groupnames, varargin) %SVMTRAIN trains a support vector machine classifier %
% SVMStruct = SVMTRAIN(TRAINING,GROUP) trains a support vector machine
% classifier using data TRAINING taken from two groups given by GROUP.
% SVMStruct contains information about the trained classifier that is
% used by SVMCLASSIFY for classification. GROUP is a column vector of
% values of the same length as TRAINING that defines two groups. Each
% element of GROUP specifies the group the corresponding row of TRAINING
% belongs to. GROUP can be a numeric vector, a string array, or a cell
__________________________________________________
__________________________________________________
% array of strings. SVMTRAIN treats NaNs or empty strings in GROUP as
% missing values and ignores the corresponding rows of TRAINING. %
% SVMTRAIN(...,'KERNEL_FUNCTION',KFUN) allows you to specify the kernel
% function KFUN used to map the training data into kernel space. The
% default kernel function is the dot product. KFUN can be one of the
% following strings or a function handle: %
% 'linear' Linear kernel or dot product % 'quadratic' Quadratic kernel
% 'polynomial' Polynomial kernel (default order 3)
% 'rbf' Gaussian Radial Basis Function kernel % 'mlp' Multilayer Perceptron kernel (default scale 1)
% function A kernel function specified using @, % for example @KFUN, or an anonymous function
__________________________________________________
__________________________________________________
%
% A kernel function must be of the form %
% function K = KFUN(U, V) %
% The returned value, K, is a matrix of size M-by-N, where U and V have M
% and N rows respectively. If KFUN is parameterized, you can use
% anonymous functions to capture the problem-dependent parameters. For
% example, suppose that your kernel function is %
% function k = kfun(u,v,p1,p2) % k = tanh(p1*(u*v')+p2); %
% You can set values for p1 and p2 and then use an anonymous function: % @(u,v) kfun(u,v,p1,p2). %
% SVMTRAIN(...,'POLYORDER',ORDER) allows you to specify the order of a
__________________________________________________
__________________________________________________
% polynomial kernel. The default order is 3. %
% SVMTRAIN(...,'MLP_PARAMS',[P1 P2]) allows you to specify the
% parameters of the Multilayer Perceptron (mlp) kernel. The mlp kernel
% requires two parameters, P1 and P2, where K = tanh(P1*U*V' + P2) and P1
% > 0 and P2 < 0. Default values are P1 = 1 and P2 = -1. %
% SVMTRAIN(...,'METHOD',METHOD) allows you to specify the method used
% to find the separating hyperplane. Options are %
% 'QP' Use quadratic programming (requires the Optimization Toolbox)
% 'LS' Use least-squares method %
% If you have the Optimization Toolbox, then the QP method is the default
% method. If not, the only available method is LS.
__________________________________________________
__________________________________________________
%
% SVMTRAIN(...,'QUADPROG_OPTS',OPTIONS) allows you to pass an OPTIONS
% structure created using OPTIMSET to the QUADPROG function when using
% the 'QP' method. See help optimset for more details. %
% SVMTRAIN(...,'SHOWPLOT',true), when used with two-dimensional data,
% creates a plot of the grouped data and plots the separating line for % the classifier. %
% Example:
% % Load the data and select features for classification % load fisheriris
% data = [meas(:,1), meas(:,2)]; % % Extract the Setosa class
% groups = ismember(species,'setosa');
% % Randomly select training and test sets
__________________________________________________
__________________________________________________
% [train, test] = crossvalind('holdOut',groups); % cp = classperf(groups);
% % Use a linear support vector machine classifier % svmStruct =
svmtrain(data(train,:),groups(train),'showplot',true); % classes =
svmclassify(svmStruct,data(test,:),'showplot',true);
% % See how well the classifier performed % classperf(cp,classes,test); % cp.CorrectRate %
% See also CLASSIFY, KNNCLASSIFY, QUADPROG, SVMCLASSIFY.
% Copyright 2004 The MathWorks, Inc.
% $Revision: 1.1.12.1 $ $Date: 2004/12/24 20:43:35 $ % References:
% [1] Kecman, V, Learning and Soft Computing, % MIT Press, Cambridge, MA. 2001.
__________________________________________________
__________________________________________________
% [2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B.,
% Vandewalle, J., Least Squares Support Vector Machines,
% World Scientific, Singapore, 2002.
% [3] Scholkopf, B., Smola, A.J., Learning with Kernels,
% MIT Press, Cambridge, MA. 2002. %
% SVMTRAIN(...,'KFUNARGS',ARGS) allows you to pass additional
% arguments to kernel functions. % set defaults plotflag = false; qp_opts = []; kfunargs = {};
setPoly = false; usePoly = false; setMLP = false; useMLP = false; if ~isempty(which('quadprog')) useQuadprog = true; else
useQuadprog = false;
__________________________________________________
__________________________________________________
end
% set default kernel function kfun = @linear_kernel; % check inputs if nargin < 2
error(nargchk(2,Inf,nargin)) end
numoptargs = nargin -2; optargs = varargin;
% grp2idx sorts a numeric grouping var ascending, and a string grouping
% var by order of first occurrence
[g,groupString] = grp2idx(groupnames);
% check group is a vector -- though char input is special...
if ~isvector(groupnames) && ~ischar(groupnames) error('Bioinfo:svmtrain:GroupNotVector',... 'Group must be a vector.'); end
% make sure that the data is correctly oriented. if size(groupnames,1) == 1 groupnames = groupnames';
__________________________________________________
__________________________________________________
end
% make sure data is the right size n = length(groupnames); if size(training,1) ~= n if size(training,2) == n training = training'; else
error('Bioinfo:svmtrain:DataGroupSizeMismatch',...
'GROUP and TRAINING must have the same number of rows.') end end
% NaNs are treated as unknown classes and are removed from the training % data
nans = find(isnan(g)); if length(nans) > 0 training(nans,:) = []; g(nans) = []; end
ngroups = length(groupString);
__________________________________________________
__________________________________________________
if ngroups > 2
error('Bioinfo:svmtrain:TooManyGroups',...
'SVMTRAIN only supports classification into two groups.\\nGROUP contains %d different groups.',ngroups) end
% convert to 1, -1. g = 1 - (2* (g-1));
% handle optional arguments if numoptargs >= 1
if rem(numoptargs,2)== 1
error('Bioinfo:svmtrain:IncorrectNumberOfArguments',...
'Incorrect number of arguments to %s.',mfilename); end
okargs =
{'kernel_function','method','showplot','kfunargs','quadprog_opts','polyorder','mlp_params'}; for j=1:2:numoptargs pname = optargs{j}; pval = optargs{j+1};
__________________________________________________
__________________________________________________
k = strmatch(lower(pname), okargs);%#ok if isempty(k)
error('Bioinfo:svmtrain:UnknownParameterName',...
'Unknown parameter name: %s.',pname); elseif length(k)>1
error('Bioinfo:svmtrain:AmbiguousParameterName',...
'Ambiguous parameter name: %s.',pname); else
switch(k)
case 1 % kernel_function if ischar(pval)
okfuns = {'linear','quadratic',... 'radial','rbf','polynomial','mlp'};
funNum = strmatch(lower(pval), okfuns);%#ok if isempty(funNum) funNum = 0; end
switch funNum %maybe make this less strict in the future case 1
__________________________________________________
__________________________________________________
kfun = @linear_kernel; case 2
kfun = @quadratic_kernel; case {3,4}
kfun = @rbf_kernel; case 5
kfun = @poly_kernel; usePoly = true; case 6
kfun = @mlp_kernel; useMLP = true; otherwise
error('Bioinfo:svmtrain:UnknownKernelFunction',...
'Unknown Kernel Function %s.',kfun); end
elseif isa (pval, 'function_handle') kfun = pval; else
error('Bioinfo:svmtrain:BadKernelFunction',... 'The kernel function input does not appear to be a function handle\\nor valid function name.')
__________________________________________________
__________________________________________________
end
case 2 % method
if strncmpi(pval,'qp',2) useQuadprog = true;
if isempty(which('quadprog'))
warning('Bioinfo:svmtrain:NoOptim',...
'The Optimization Toolbox is required to use the quadratic programming method.') useQuadprog = false; end
elseif strncmpi(pval,'ls',2) useQuadprog = false; else
error('Bioinfo:svmtrain:UnknownMethod',... 'Unknown method option %s. Valid methods are ''QP'' and ''LS''',pval); end
case 3 % display if pval ~= 0
if size(training,2) == 2 plotflag = true; else
__________________________________________________
__________________________________________________
warning('Bioinfo:svmtrain:OnlyPlot2D',...
'The display option can only plot 2D training data.') end end
case 4 % kfunargs if iscell(pval) kfunargs = pval; else
kfunargs = {pval}; end
case 5 % quadprog_opts if isstruct(pval) qp_opts = pval;
elseif iscell(pval)
qp_opts = optimset(pval{:}); else
error('Bioinfo:svmtrain:BadQuadprogOpts',... 'QUADPROG_OPTS must be an opts structure.'); end
case 6 % polyorder
if ~isscalar(pval) || ~isnumeric(pval)
__________________________________________________
__________________________________________________
error('Bioinfo:svmtrain:BadPolyOrder',... 'POLYORDER must be a scalar value.'); end
if pval ~=floor(pval) || pval < 1
error('Bioinfo:svmtrain:PolyOrderNotInt',... 'The order of the polynomial kernel must be a positive integer.') end
kfunargs = {pval}; setPoly = true; case 7 % mlpparams if numel(pval)~=2
error('Bioinfo:svmtrain:BadMLPParams',... 'MLP_PARAMS must be a two element array.'); end
if ~isscalar(pval(1)) || ~isscalar(pval(2)) error('Bioinfo:svmtrain:MLPParamsNotScalar',...
'The parameters of the multi-layer perceptron kernel must be scalar.'); end
kfunargs = {pval(1),pval(2)};
__________________________________________________
__________________________________________________
setMLP = true; end end end end
if setPoly && ~usePoly
warning('Bioinfo:svmtrain:PolyOrderNotPolyKernel',...
'You specified a polynomial order but not a polynomial kernel'); end
if setMLP && ~useMLP
warning('Bioinfo:svmtrain:MLPParamNotMLPKernel',...
'You specified MLP parameters but not an MLP kernel'); end
% plot the data if requested if plotflag
[hAxis,hLines] = svmplotdata(training,g); legend(hLines,cellstr(groupString)); end
__________________________________________________
__________________________________________________
% calculate kernel function try
kx = feval(kfun,training,training,kfunargs{:}); % ensure function is symmetric kx = (kx+kx')/2; catch
error('Bioinfo:svmtrain:UnknownKernelFunction',...
'Error calculating the kernel function:\\n%s\\n', lasterr); end
% create Hessian
% add small constant eye to force stability H =((g*g').*kx) +
sqrt(eps(class(training)))*eye(n); if useQuadprog
% The large scale solver cannot handle this type of problem, so turn it % off.
qp_opts = optimset(qp_opts,'LargeScale','Off'); % X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0,opts) alpha = quadprog(H,-ones(n,1),[],[],...
__________________________________________________
__________________________________________________
g',0,zeros(n,1),inf
*ones(n,1),zeros(n,1),qp_opts);
% The support vectors are the non-zeros of alpha svIndex = find(alpha > sqrt(eps)); sv = training(svIndex,:);
% calculate the parameters of the separating line from the support % vectors.
alphaHat = g(svIndex).*alpha(svIndex);
% Calculate the bias by applying the indicator function to the support
% vector with largest alpha.
[maxAlpha,maxPos] = max(alpha); %#ok bias = g(maxPos) -
sum(alphaHat.*kx(svIndex,maxPos));
% an alternative method is to average the values over all support vectors % bias = mean(g(sv)' -
sum(alphaHat(:,ones(1,numSVs)).*kx(sv,sv))); % An alternative way to calculate support vectors is to look for zeros of
% the Lagrangians (fifth output from QUADPROG).
__________________________________________________
__________________________________________________
%
% [alpha,fval,output,exitflag,t] = quadprog(H,-ones(n,1),[],[],... % g',0,zeros(n,1),inf *ones(n,1),zeros(n,1),opts); %
% sv = t.lower < sqrt(eps) & t.upper < sqrt(eps); else % Least-Squares
% now build up compound matrix for solver A = [0 g';g,H];
b = [0;ones(size(g))]; x = A\\b;
% calculate the parameters of the separating line from the support % vectors.
sv = training; bias = x(1);
alphaHat = g.*x(2:end); end
svm_struct.SupportVectors = sv; svm_struct.Alpha = alphaHat; svm_struct.Bias = bias;
__________________________________________________
__________________________________________________
svm_struct.KernelFunction = kfun;
svm_struct.KernelFunctionArgs = kfunargs; svm_struct.GroupNames = groupnames; svm_struct.FigureHandles = []; if plotflag
hSV = svmplotsvs(hAxis,svm_struct);
svm_struct.FigureHandles = {hAxis,hLines,hSV}; end
__________________________________________________
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务