Optimizationandvalidationofamethodologybasedonsolventextractionandliquidchromatographyforthesimultaneousdeterminationofseveralpolyphenolicfamiliesinfruitjuices
opez-M´arquez,B.Abad-Garc´ıa,L.A.Berrueta∗,D.M.L´
I.Crespo-Ferrer,B.Gallo,F.Vicente
DepartamentodeQu´ımicaAnal´ıtica,FacultaddeCienciayTecnolog´ıa,UniversidaddelPa´ısVasco/Euskal
HerrikoUnibertsitatea,P.O.Box4,E-48080Bilbao,Spain
Received8November2006;receivedinrevisedform27February2007;accepted5March2007
Availableonline16March2007
Abstract
Asolventextractionprocedureoffreeze-driedaliquotsfollowedbytheanalysisofphenoliccompoundsbyreversed-phasehigh-performanceliquidchromatography(RP-HPLC)withphotodiodearraydetection(DAD)hasbeendevelopedfortheanalysisofpolyphenoliccompoundsinfruitjuices.Thismethodologyisfocussedonthecharacterizationoffruitjuices,mainlyforqualitycontrolpurposes.Theeffectsofexperimentalvariables,suchassolventcompositionandvolumeandtimeandtemperatureonextraction,havebeenstudied.Auniquegradientprogramfortheseparationofseveralphenolicclasses(hydroquinones,hydroxybenzoicacids,flavan-3-oles,hydroxycinnamicacids,coumarins,flavanones,flavones,dihydrochalconesandflavonols)hasbeenoptimized,usingstandardsof55commerciallyavailablephenoliccompoundspresentinfruits,aswellasrepresentativerealextractsfromfruitjuices.Allphenoliccompoundsshowedahighrepeatabilitywithin-day(n=5)andbetweendays(n=3)inpeakarea(RSD<8%)andexcellentstabilityoftheirretentiontimes.Highprecisionwasalsoobservedincalibrationslopes(RSD<8%).Detectionlimitsrangedbetween0.005and0.03g/mLforthedifferentdetectedpolyphenols.Completerecoveries(98–100%)wereobtainedforthemajorityofthephenolicstructuresofallrepresentativephenolicfamiliespresentinfruits.Themethodwassuccessfullyemployedtomeasurediversephenolicfamiliesinjuicesfrom18differentfruitsandconsequentlycouldbeusedforevaluatethequalityoffruitjuices.©2007ElsevierB.V.Allrightsreserved.
Keywords:HPLC-DAD;Polyphenols;Flavonoids;Phenolicacids;Strawberry;Apple;Tangerine;Fruitanalysis;Solventextraction;Optimization;Validation
1.Introduction
Polyphenols,widelydistributedinfruits,havegreatimpor-tanceinthenutritional,organolepticandcommercialpropertiesofthesefruitsandtheirderivedproducts(juices,jams,jellies...)throughtheircontributionstosensory-attributesofthesefruits(colour,bitternessandastringency)[1,2].Thus,theyplayanimportantroleinjuicequalitysincetheycanbeinvolvedintheenzymaticandnon-enzymaticoxidationsthatleadtothefor-mationofundesirablebrownpigmentsandcanberesponsibleforhazesandsedimentsinfruitjuices[3,4].Moreover,phenoliccompoundsareverysuitableaschemotaxonomicmarkers,andsomeofthemarecharacteristicofsomespeciesorvarieties[5,6],
∗
Correspondingauthor.Tel.:+34946015505;fax:+34946013500.E-mailaddress:luisangel.berrueta@ehu.es(L.A.Berrueta).
whereasquantitativedifferencesmayoccurdependingonfruitvariety,stagesofmaturity,storageconditions[7–10],andthepresenceofthepeelinfruit-basedproducts[11,12].Forcertainfruits,characteristicphenoliccompoundshavebeensuccess-fullyusedforthedeterminationofadulterationoffruitjuices[13,14],nectars[5,15,16]andjams[17–19]withcheaperfruits.Anotherimportantaspectofphenoliccompoundsisthepositivehealthbenefitsonhumans.Amongthese,antioxidant,antiviral,antiallergic,cardioprotective,andanticarcinogeniceffectshavebeeninvestigated[20–25].Epidemiologicalstudieshaveshownaninverserelationshipbetweentheintakeoffruits,vegetablesandtheirproducts,richinpolyphenols,andthesechemoprotec-tiveeffects[26,27].
Knowledgeoftheprecisecompositionoffruitsandfruitvari-etiesandtheirproductssuchasfruitjuices,whoseconsumptionhaveincreasedsignificantlyinthelastyears,maycontributetoabetterunderstandingoftheirinfluenceinthequalityand
0021-9673/$–seefrontmatter©2007ElsevierB.V.Allrightsreserved.doi:10.1016/j.chroma.2007.03.023
88B.Abad-Garc´ıaetal./J.Chromatogr.A1154(2007)87–96
biologicalpropertiesoftheseproducts/foods.Forthisreason,
characterizationstudiesbasedonthepolyphenolicprofileshavebeencarriedoutwithfruitsandfruitjuices[28–32].However,despitetheextensiveresearchperformedinthisfield,manycom-poundsstillremainunidentifiedinfruitsandtheirproductsandthereisnotaconsensusonthemostappropriateexperimen-talconditionsforthedeterminationofphenoliccompoundsoffoods.
Themethodologyusedtoanalyzethesephenoliccompoundsinfruitsandfruitproducts,generallyincludesaseriesofstepsrangingfromexhaustivesolventextraction,clean-upofextractsandpre-concentrationprocedurestosimplefiltrationandcen-trifugationinliquidsamples;however,inmanyinstances,simplefiltrationisineffectiveinrecoveringabroadrangeofpolyphe-nolsandalternativestrategiesarenecessary[33].
Sampleextractionproceduresareoftenregardedasbot-tlenecksinanalyticalmethods.Moreover,classicalsamplepreparationtechniquesarebothtimeandsolventconsuming,andsamplehandlingcandecreasethequalityoftheanalyti-calresults.Inthissense,thesamplepreparationstepaccountsforatleastone-thirdoftheerrorgeneratedbytheanalyticalmethod[34].Therefore,theimportanceofsamplepreparationinanalyticalmethodsshouldnotbeundervalued.
Themorebroadlyappliedextractionprocedureissolventextractionusingextractantssuchasmethanol,ethanolandace-toneormixturesofthesewithwater[35]fortherecoveryofawiderangeofpolyphenolsofdiversephenolicstructures.Antioxidantssuchastert-butylhydroquinone,2,6-di-tert-butyl-4-methyphenol(BHT),ascorbicacidorsulfitesareaddedtoextractionsolventtoprotecttheanalytesfromoxidation[36].Thisextractionprocedureisusuallyfollowedbyclean-upofextractsbysequentialextractionorliquid–liquidextractionand/orsolidphaseextraction(SPE)[33]andpre-concentration.Differentextractiontechniquessuchassupercriticalfluidextrac-tion(SFE),whichuseseitherpureormodifiedCO2[37],andmicrowave-assisted[38]extractionhavealsobeenused.Themethodsbasedonthesetechniquesofferbettercontroloftheextractionconditionscomparedwithconventionalalternatives,thusallowingtheextractiontobecarriedoutwithinrelativeshorttimesandinaselectiveway.Aftertheextractionproce-dures,thephenoliccompoundsarecharacterizedandquantified.Variousanalyticalmethodshavebeenpublishedforthedeter-minationofthesecompoundsinfoodsamples.Themostwidelyusedarebasedonreversed-phasehigh-performanceliquidchro-matography(RP-HPLC)coupledwithUV–visdetectionand/ormassortandemmassspectrometry.Theselattermethods,liquidchromatography–massspectrometry(LC–MS)[39–42]andliq-uidchromatography–tandemmassspectrometry(LC–MS/MS),havebecomethebestalternativeforseparation,identifica-tionandquantificationofthesecompoundsinfruitsandtheirderivedproducts[43,44];however,thenumberofpublishedstudiesdealingwithLC–MSandLC–MS–MStechniquesandthepossibilityofaccesstothesetechnologiesformostlab-oratoriesaresofarlimited.Accordingtothemostrelevantbibliography,DADisanindispensabletoolfortheprovisionalidentificationofthemainphenolicstructurespresentinfoods[45,46].Generally,inpublicationsaboutnaturalproductsin
plants,suchasthoseaboutdeterminationofpolyphenolsinfruitsandtheirderivedproducts,littleinformationisgivenabouttheoptimizationproceduresoftheanalyticalmethodsused,andfrequently,thesemethodshavenotbeenexhaustivelyvali-dated;moreover,theirapplicabilityislimitedtoafewphenolicstructures.
Inthepresentwork,amethodologytoseparate,identifyandquantifysimultaneouslythemostrepresentativephenoliccompoundsinfruitjuices,suchashydroquinones,hydroxyben-zoicacids,flavan-3-oles,hydroxycinnamicacids,coumarins,flavanones,flavones,dihydrochalconesandflavonols,usingasolventextractionassistedbysonicationandfollowedbyRP-HPLCanalysiscoupledwithaphotodiodearraydetector(DAD)isreported.Thismethodwasoptimizedandcarefullyvali-datedbyevaluatingtheselectivity,thelinearrange,thelimitsofdetectionandquantification,theaccuracy,therepeatabilitieswithin-dayandbetweendays,therobustnessandthepolyphenolstabilitiesduringanalysis.2.Experimental
2.1.Reagents,solventsandstandardphenolics
Methanol(RomilChemicalLtd,Heidelberg,Germany)wasofHPLCgrade.WaterwaspurifiedonaMilli-QsystemobtainedfromMillipore(Bedford,MA,USA).Glacialaceticacid,providedbyMerck(Darmstadt,Germany),ascorbicacid,byPanreac(Barcelona,Spain)andsodiumfluoride,byFluka(Steinheim,Germany),wereofanalyticalquality.Allsolventsusedwerepreviouslyfilteredthrough0.45mnylonmembranes(Lida,Kenosha,WI,USA).
Polyphenolsstandardsweresuppliedasfollows:ellagicacid,procyanidinB1,procyanidinB2,(−)-epicatechingallate,arbutin,eriodictyol-7-O-rutinoside,eriodictyol-7-O-neohesper-idoside,naringenin-7-O-rutinoside,hesperetin-7-O-rutinoside,hesperetin-7-O-neohesperidoside,isosakuranetin-7-O-rutin-oside,ferulicacid,sinapicacid,quercetin-3-O-galactoside,quercetin-3-O-glucoside,quercetin-3-O-rhamnoside,kaempf-erol-3-O-glucoside,kaempferol-3-O-rutinoside,kaempferol-7-O-neohesperidoside,kaempferol-3-O-robinoside-7-O-rhamno-side,isorhamnetin-3-O-glucoside,isorhamnetin-3-O-rutino-side,myricetin,scopoletin,luteolin-7-O-glucoside,luteo-lin-6-C-glucoside,luteolin-8-C-glucoside,luteolin-3,7-di-O-glucoside,luteolin-4-O-glucoside,diosmetin-7-O-rutinoside,apigenin-7-O-glucoside,apigenin-6-C-glucoside,apigenin-8-C-glucoside,apigenin-7-O-neohesperidoside,apigenin-7-O-rutinosideandsinensetinbyExtrasynth`ese(Genay,France);whereasgallicacid,(+)-catechin,(−)-epicatechin,phloretin-2-O--glucoside,naringenin,5-caffeoylquinicacid,caffeicacid,p-coumaricacidandquercetin-3-O-rutinosidewereprovidedbySigma–AldrichChemie(Steinheim,Germany);caftaricacid,apigenin-8-C-glucoside-4-O-rhamnoside,quer-cetagetin,quercetin-3-O-glucopyranoside,kaempferol-3-(p-coumaryl)glucoside,tangeretinandnobiletinbyChromadex(SantaAna,CA,USA);andnaringenin-7-O-neohesperidoside,quercetindihydratedandapigeninbyFlukaChemie(Steinheim,Germany).
B.Abad-Garc´ıaetal./J.Chromatogr.A1154(2007)87–96
Allstockstandardsolutions(inconcentrationsrangingfrom
250to2500g/mLdependingoneachpolyphenol)werepre-paredinmethanol,exceptforhesperitin-7-O-rutinosidethatwasdilutedwithwater–dimethylformamide(80:20,v/v),andallwerestoredat4◦Cindarkness.2.2.Fruitsamples
Samplesofstrawberries(FragariaxananassaDuch.),apples(MalusdomesticaBorkh.)andtangerines(Citrusreticulata)oftheCamarosa,GoldenDeliciousandClemenulevarieties,respectively,werepurchasedfromalocalmarket.Tangerineswerepeeledseparatingtheflavedoandthealbedofromthepulp,whereasappleswerecored.1kgoffruit(strawberries,applesortangerines)wassqueezedandthecollectedjuiceaftermeasuringitsvolume,wasmixedwith50mLofanaqueoussolutioncon-tainingascorbicacid0.2g/mLandsodiumfluoride0.2g/mL,inordertoinactivatepolyphenoloxidasesandpreventpheno-lic◦degradation[47],andcentrifugedat6000×gfor15minat4C.Aliquotsof1mLweresampled,storedat−20◦Candlyophilizedlater.Thefreeze-driedmaterialwasstoredatroomtemperatureandindarknessinadessiccatoruntilanalysis.Thesethreefruitswereselectedinordertocoverallpolyphenolclassesandwereconsideredasrepresentativesduringtheoptimizationprocess.
2.3.Analyticalprocedures
2.3.1.Solventextractionoffreeze-driedsamples
Aliquotsoffreeze-driedjuice(1mL)weresubmittedtodirectsolventextractionwithanappropriateextractionsolventundernon-oxidativeconditions(inthepresenceofascorbicacid(HAs)at0.2%(w/v)inanultrasonicbath(Selecta,Barcelona,Spain)duringacertainperiodoftime.Thisconventionalextractionpro-cedurewasoptimizedinordertoobtainaquantitativeextraction.Thecriticalparametersunderstudyontheextractionprocedurewerethesolventchoice,thevolumeoftheextractionsolvent,andtheextractiontimeandtemperatureintheultrasonicbath.Inthiscase,thetestedsolventswereaqueousmixturesofmethanolacidifiedwithaceticacid(1%,v/v).
Theextractsobtainedineachoneoftheoptimizationexper-imentswerefilteredthrough0.45mPTFEfiltersandstoredinglassvialsat4◦C(Waters,Milford,CA,USA)priortotheirinjectionintotheHPLCsystem.
2.3.2.Reversed-phaseHPLCanalysis
ChromatographicanalysiswasperformedonaShimadzu(Kyoto,Japan)liquidchromatograph,equippedwithavacuumdegasserDGU-14A,aquaternarypumpLC-10DVP,ather-mostattedautosamplerSIL-10ADVP,athermostattedcolumncompartmentandaDADdetectorSPD-M10AVP,andcon-trolledbyCLASS-VPsoftware.AreversedphaseLunaC18(150×4.6mmi.d.,3m)column(Phenomenex,Torrance,CA,USA)andaNova-PakC18(10×3.9mmi.d.,4m)guardcolumn(Waters,Barcelona,Spain)wereused.Solventsthatcon-stitutedthemobilephasewereA(aceticacid–water,0.5:99.5,v/v)andB(methanol).Theappliedelutionconditionswere:
0–2min,0%Bisocratic;2–6min,lineargradientfrom0%to15%B;6–12min,15%Bisocratic;12–17min,lineargradientfrom15%to20%B;17–35min,20%Bisocratic;35–90min,lineargradientfrom20%to35%B;90–136min,35%Biso-cratic;andfinally,washingandreconditioningofthecolumnwasdone.Theflowratewas0.8mL/minandtheinjectionvol-umewas50L.Thecolumnwasoperatedat30◦Candsamplevialsontheinjectorwerepreservedat4◦C.Hydroxybenzoicacidsweremonitoredandquantifiedat254nm,flavan-3-ols,dihydrochalcones,flavanonesandhydroquinonesat280nm,hydroxycinnamicacidsat320nm,andflavonols,flavonesandcoumarinsat370nm.
2.3.3.Identificationandquantitationofpolyphenoliccompounds
Theidentificationofphenoliccompoundsforwhichstan-dardswereavailablewascarriedoutbycomparisonoftheirretentiontimeandtheirUV–visiblespectrawiththoseobtainedbyinjectingstandardsinthesameconditions,whilethepres-enceofothercompoundswasconfirmedbycomparisonofUV–visiblespectrawiththoseofstandardsofthesamepolyphe-nolicfamilyandbibliographicdata.
Quantitationwasperformedbyintroducingthemeasuredintegrationareasinthecalibrationequationofstandardsmoresimilartopolyphenolquantified.Thus,flavan-3-olesandprocyanidinswerequantifiedas(+)-catechin;dihy-drochalconesasphloretin-2-O--glucoside;flavanonesasnaringenin-7-O-rutinoside;theunknownapigeninderivateasapigenin-7-O-glucoside;5-caffeoylquinicacidwithitself;p-coumaricacidderivateandtheunknownellagicacidderivatesasp-coumaricacidandellagicacid,respectively;andknownandunknownquercetin,isorhamnetin,kaempferolglycosidesasquercetin-3-O-rutenoside,isorhamnetin-3-O-rutenosideandkaempferol-3-O-rutenoside,respectively.3.Resultsanddiscussion
3.1.Optimizationofsolventextractionprocedure
Theoptimizationofthesolventextractionwasperformedusingfreeze-driedstrawberry,appleandtangerinejuices,threedifferentrepresentativematricesthatcontainthemostimportantpolyphenolfamiliesinfruits.Thus,theoptimalconditionsfoundforstrawberry,appleandtangerinejuicecouldbeappliedtojuicesofotherfruits.
Themostinfluentialexperimentalvariablesontheextractionprocedure,thepercentageofmethanolinthesolvent(mixturesofmethanol–water–aceticacid,v/v/v,containing1%ofaceticacidandascorbicacid(HAs)0.2%w/v),thesolventvolume,theextractiontimeandthetemperatureintheultrasonicbath,wereevaluatedtoincreasetheextractionefficiencyinthethreedifferentmatrices.
Theresultsshowedthatanincreaseinthepercentageofmethanolinfluencespositivelyontheextractionefficiency(Fig.1),followingasimilartendencyforallthesevenclassesofphenoliccompounds.Thisfactcouldbeattributedtomethanolwhichhasasuitablepolaritytoextractpolyphenolsbesides
90B.Abad-Garc´ıaetal./J.Chromatogr.A1154(2007)87–96
Fig.1.Relativeefficienciesofextractionforeachpolyphenolicclassinstraw-berry(A),apple(B)andtangerine(C)juicesasafunctionofthepercentageofmethanolintheextractantsolvent.Polyphenolicclasses:HBZ,hydroxybenzoicacids;FA,flavan-3-oles;HCA,hydroxycinnamicacids;FVL,flavonols;DHC,dihydrochalcones;FVNN,flavanones;andFVN,flavone.
toreducepolyphenoloxidase(PPO)activity.Solventscontain-inglowpercentagesofmethanoldonotinactivatetheenzymecompletely,resultinginlowextractionefficiencies[33].How-ever,asignificantdecreaseontheresolutionofchromatographicpeakswasobservedwhenvolumeshigherthan10Lofextractswith99%ofmethanolwereinjected.Incontrast,volumesashighas50Lcouldbeinjectedwhenextractswithlowmethanolpercentages,suchas30%,wereused,gettingglobalincreasesinsensitivityinspiteofhavinglowerextractioneffi-ciencies.Somelossesofmethodprecisioncanbeexpectedbythischoice,buttheaimoftheproposedmethodwasnotonlythequantitation,butalsotheidentificationofthehighestnum-berandclassesofpolyphenoliccompounds.Thus,amixtureofmethanol–water–aceticacid(30:69:1,v/v/v)wasselectedastheextractant.
Ontheotherhand,differentextractionvolumesweretestedtocometotheconclusionthatthebestvolumewas2mL,whichallowsextractionofallpolyphenolspresentinstudiedfruitjuiceswithoutsolventsaturation.Onstudyingtheextractiontimeinthethreematrices,itwereobservedthattheamountsofextractedanalyteswerenearlyconstantduringthedifferentperiodsoftimeexamined:10,15,20and30min.However,atimeof15minwaschosentowarranttheruptureofcellmembranesandenhancetheextractionofendocellularmaterialsinfruitjuicesduringthesonificationprocess.
Whentheextractiontemperaturewasexamined(18,25and
40◦C),
itwasfoundthatthisparameterhadnoinfluenceon
theefficiencyoftheprocessprovidedthattheextractiontimewaslessthan15min,exceptforhesperetin-7-O-rutinosideandanunknownflavanone(XVI)oftangerinejuice,forwhichhigherrecoverieswasobservedat40◦Cbecauseofthesig-nificantincreaseintemperatureofthelowsolubilityoftheselow◦polarpolyphenolsintheextractant.Temperaturesabove40Cproducedanextractionyielddecreaseduetoapossibledegradationofpolyphenoliccompounds,causedbyhydrolysis,internalredoxreactionsandpolymerisations[48].Takingintoaccountthesefacts,25◦Cwasthetemperatureselectedastheoptimum.3.2.Liquidgradientoptimizationstrategy
Thedevelopmentofanuniqueliquidgradientforagreatnumberofpolyphenolicclassescouldconstituteaninterestingandquicksolutionforthestudyoftheprofileofphenoliccom-poundsfocussedonthecharacterizationoffruitjuicesmainlyforqualitycontroloftheseproductspriortotheircompletechar-acterization.Consequently,afterreviewingbibliographyaboutthemainpolyphenolspresentinfruit,fourstandardmixturesof55commerciallyavailablepolyphenoliccompoundsrepresenta-tiveofallfruitswereusedforoptimizationofchromatographicmethod,andextractsfromrealstrawberry,appleandtangerinejuiceswereinjectedasthefinaltesttoevaluatetheperfor-manceofthechromatographicseparation.Differentgradientsandsolvents(methanolandacetonitrile,andaqueousphos-phoricandaceticacidofdifferentpHvalues)weretestedtocometotheconclusionthatthebestmobilephasewascon-stitutedbymethanolasanorganicmodifier,whichshowedthehighestselectivityandagoodresolutionof55phenoliccompounds(resultswithothermodifiersarenotshowed)andaceticacid–water0.5:99.5(v/v),whichwasvolatileandmassspectrometry-compatible.Thus,theoptimizedmobilephasecouldbedirectlyappliedtoLC–MSforfurtherpolyphenoliden-tification.Otherparametersstudiedwereflowrate,timeandgradientsteps.Thefinalchromatographicseparationneededtocombinefourisocraticandthreegradientstepstoachieveaccept-ableresolutionofthehighernumberofphenoliccompoundsofdifferentphenolicfamiliesreportedinfruits.Fig.2showsthechromatogramsobtainedfromthefourmixturesofcommer-ciallyavailablephenoliccompoundsandTable1listsretentiontimes,includingstandarddeviation(SD)forthreeinjectionscar-riedoutondifferentdaysaswellasUVabsorptionmaximaofeachpeak,obtainedbyDADfromthestandardmixturesof55phenoliccompounds.Theseparameterswerelateremployedforprovisionalidentificationofunknownphenoliccompounds.Theresultsshowedthefollowingelutionorder:hydroquinones,hydroxybenzoicacids,flavan-3-ols≈hydroxycinnamicacids,coumarins,flavanones,dihydrochalcones,flavonols,flavonesandpolymethoxylatedflavones,accordingtothatreportedbyRobardsetal.[49].Hydroquinones,coumarins,flavan-3-olsanddihydrochalconeswerenotmentionedbythisauthor.Frombibli-ographicaldata[14,50–53],certaintendencieswithinthesamepolyphenolfamilythatcharacterizetheseparationinreversed
B.Abad-Garc´ıaetal./J.Chromatogr.A1154(2007)87–9691
Table1
PhenoliccompoundsandtheirchromatographicandspectroscopicparametersemployedintheoptimizationofthegradientmethodandintheprovisionalidentificationofphenolicsinthefruitjuicesCompoundno.1234567101112131415161718192021222324252627282930313233343536373839404142434445474849505152535455
Phenoliccompounda
ArbutinGallicacidProcyanidinB1(+)-CatechinCaftaricacidProcyanidinB2
5-CaffeoylquinicacidCaffeicacid(−)-Epicatechinp-CoumaricacidScopoletinFerulicacid
(−)-EpicatechingallateSinapicacid
Luteolin-8-C-glucosideEriodictyol-7-O-rutinosideLuteolin-6-C-glucoside
Eriodictyol-7-O-neohesperidosideApigenin-8-C-glucosideLuteolin-3,7-di-O-glucoside
Apigenin-8-C-glucoside-4-O-rhamnosideApigenin-6-C-glucosideNaringenin-7-O-rutinosideLuteolin-7-O-glucosideQuercetin-3-O-galactosideQuercetagetin
Quercetin-3-O-glucopyranosideQuercetin-3-O-glucoside
Kaempferol-3-O-robinoside-7-O-rhamnosideNaringenin-7-O-neohesperidosideQuercetin-3-O-rutinosideEllagicacid
Hesperetin-7-O-rutinosidePhloretin-2-O--glucosideMyricetin
Apigenin-7-O-glucoside
Hesperetin-7-O-neohesperidosideApigenin-7-O-rutinoside
Kaempferol-7-O-neohesperidosideQuercetin-3-O-rhamnosideKaempferol-3-O-glucosideLuteolin-4-O-glucoside
Apigenin-7-O-neohesperidosideDiosmetin-7-O-rutinosideKaempferol-3-O-rutinosideIsorhamnetin-3-O-glucosideIsorhamnetin-3-O-rutinosideQuercetinNaringenin
Isosakuranetin-7-O-rutinoside
Kaempferol-3-(p-coumaryl)glucosideApigeninSinensetinNobiletinTangeretin
Synonyms
PhenolicstructureHydroquinone
HydroxybenzoicacidFlavan-3-olFlavan-3-ol
HydroxycinnamicacidFlavan-3-ol
HydroxycinnamicacidHydroxycinnamicacidFlavan-3-ol
HydroxycinnamicacidCoumarin
HydroxycinnamicacidFlavan-3-ol
HydroxycinnamicacidFlavoneFlavanoneFlavoneFlavanoneFlavoneFlavoneFlavoneFlavoneFlavanoneFlavoneFlavonolFlavoneFlavonolFlavonolFlavonolFlavanoneFlavonol
HydroxybenzoicacidFlavanone
DihydrochalconeFlavonolFlavoneFlavanoneFlavoneFlavonolFlavonolFlavonolFlavoneFlavoneFlavoneFlavonolFlavonolFlavonolFlavonolFlavanoneFlavanoneFlavonolFlavoneFlavoneFlavoneFlavone
tR±SD(min)7.638.8515.2519.2820.6321.7523.3525.7030.0940.6842.4549.4149.9354.0060.1162.2163.9867.7968.5469.1572.8577.4377.2477.7679.0581.8181.7181.6882.6082.9182.9482.9486.9688.9090.01.2491.6393.1093.55.9497.2297.7098.7299.3699.45100.80104.40123.21123.21124.75143.31144.15145.21146.08146.80
±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±0.040.060.260.150.690.050.070.130.200.190.250.210.140.230.090.250.020.260.050.090.090.060.370.260.250.050.210.260.060.230.260.260.270.280.250.280.270.080.060.270.330.060.100.360.370.340.440.510.520.110.010.030.010.010.03
UVbands(nm)283271279279328275326323279309
252;344323275323
269;349284
269;349284
268;337268;340269;340270;338283
268;348255;354257;357256;353256;354266;347283
255;354254;365281285
254;372267;339281
267;340265;3257;353265;348268;337267;338277;335265;348254;353254;354255;367288283
267;314267;338332334
270;325
Chlorogenicacid
OrientinEriocitrinHomoorientinNeoeriocitrinVitexin
Vitexin-4-rhamnosideIsovitexinNarirutinHyperosideIsoquercetinIsoquercitrinRobininNaringinRutinHesperidinPhloridzinApigetrinNeohesperidinIsorhoifolinQuercitrinAstragalinRhoifolinDiosminNicotiflorinNarcisin
DidyminTiliroside
MaximumUVbandindicatedinbold.
aForparticularchemicalstructuresseeforexamplereference[58].
92B.Abad-Garc´ıaetal./J.Chromatogr.A1154(2007)87–96
Fig.2.Chromatogramsat280nmobtainedforthestandardphenoliccompoundsemployedintheoptimizationofchromatographicmethod.Foridentificationof
peaksseeTable1.
phasewereobserved:(a)theretentiontimedecreasethemorehydroxylgroupshasthepolyphenol;(b)ifchemicalstructuresofpolyphenoliccompoundsincludesugars,thepolyphenolselutebeforetheircorrespondingaglycones;(c)compoundswithapo-larsubstituents,suchasmethoxygroups,elutelaterthantheirnoalkylestersequivalentsduetotheirmoreapolarcharacter;(d)inthesamewaytheacylatedphenoliccompounds,whoseretentiontimeishigherthantheirnoacylderivatesand(e)C-glycosideselutebeforeO-glycosidesandwithinC-glycosides8-Cbefore6-Cisomers.
Extractsofstrawberry,appleandtangerinejuicewereana-lyzedaftertheoptimizationprocessinordertoprovetheefficiencyofthechromatographicseparation.Theproposedgra-dientelutionmethodallowedagoodseparationofphenoliccompoundspresentinfruitjuicesinallcasesandenabledtheidentificationandquantificationofthephenoliccompoundsinallsamplesstudied.Fig.3showsthechromatogramsobtainedfromstrawberry,appleandtangerinejuices.Tables2–4summa-rizethephenolicclassandcompoundsidentifiedinthesamples.Inrelationtotheidentificationofunknownpeaks,thiswasperformedasindicatedinSection2.3.3.ThepeaksI,IIandIVwereassignedtohydroxycinnamicacidstructures,sincetheirspectrawereidenticaltothatofp-coumaricacid.PeaksVandXVIexhibitedspectralcharacteristicsidenticaltothoseoffla-vanones.PeakVIwascharacterizedasanapigeninderivate[54]andpeaksXIIIandXIVasellagicacidderivates,sincetheirspectrawereidenticaltothoseofapigenin-7-O-glucosideandellagicacid,respectively.PeakXIIwasidentifiedasaphloretinderivate.Thespectrumindicatedthattheaglyconewasphloretin,andtheretentiontimeindicatedamorepolarcompoundthanphloretin-2-O-glucoside.Thiscompoundhasbeenidentifiedasphloretin-2-xyloglucoside[55–57].PeakXVintheapplejuicewascharacterizedasquercetin-3-O-arabinosideaccordingtoitschromatographicandspectroscopiccharacteristicsandbibliog-raphy[40].Inadittion,tangerinejuiceshowedthepresenceofsixunknownflavonolsthatelutedbeforetheirmonoglycosidederivatesandareprobablytri-ordiglycosides.Basedontheirspectracharacteristics,peaksIII,IXandXwereassignedto
Table2
Provisionalidentification,accuracyandprecisionofphenoliccompoundsinstrawberryjuicesPeakno.a
PhenolicchemistrystructuresandcompoundsPhenolics
Phenolicclass
ProvisionalidentificationparameterstR±SD(min)
UV(nm)
AccuracyRecovery(%)
Repeatabilitywithin-dayConc.±SD(g/mL)1327693.910.511.66.0
±±±±±±±1240.30.60.70.3
BetweendaysConc.±SD(g/mL)1428683.910.111.76.1
±±±±±±±1230.20.60.40.4
34III31XIIIXIVProcyanidinB1(+)-Catechin
p-Coumaricacidderivatep-CoumaricacidderivateQuercetin-3-O-rutenosideEllagicacidderivateEllagicacidderivateFlavan-3-olFlavan-3-ol
HydroxycinnamicacidHydroxycinnamicacidFlavonol
HydroxybenzoicacidHydroxybenzoicacid15.3419.2521.8623.4181.4081.9084.68±±±±±±±0.100.010.060.100.080.030.04278279315312
255;354251;366254;366100
98.4±0.198.7±0.398.6±0.498.7±0.2100100
MaximumUVbandindicatedinbold.
aRomannumbersfornon-availablecommerciallypolyphenolstandards;arabicnumbersforavailablecommerciallypolyphenolstandards.
B.Abad-Garc´ıaetal./J.Chromatogr.A1154(2007)87–9693
Fig.3.Chromatogramsofstrawberry(A),apple(B)andtangerine(C)juiceextractsat254,280,320y370nm.Compoundspresentinthestandardmixturesare
numberedasinTable1.UnknownpolyphenolsarelabeledwithRomannumerals.Peaks:(I)p-coumaricacidderivate;(II)p-coumaricacidderivate;(III)quercetinglycoside;(IV)p-coumaricacidderivate;(V)unknownflavanone;(VI)apigeninderivate;(VII)kaempferolglycoside;(VIII)isorhamnetinglycoside;(IX)quercetinglycoside;(X)quercetinglycoside;(XI)kaempferolglycoside;(XII)Phloret´ın-2-O-xyloglucoside;(XIII)ellagicacidderivate;(XIV)ellagicacidderivate;(XV)quercetin-3-O-arabinoside;and(XVI)unknownflavanone.
Table3
Provisionalidentification,accuracyandprecisionofphenoliccompoundsinapplejuicesPeakno.a
PhenolicchemistrystructuresandcompoundsPhenolics
Phenolicclass
ProvisionalidentificationparameterstR±SD(min)
UV(nm)
AccuracyRecovery(%)
Repeatabilitywithin-dayConc.±SD(g/mL)13.620861705612.218.01.4513.63.268.29
±±±±±±±±±±±0.312520.20.30.040.30.080.09
BetweendaysConc.±SD(g/mL)13.220851655311.8181.4313.33.18.2
±±±±±±±±±±±0.7171340.610.070.80.20.5
34679IVXII2834XV40ProcyanidinB1(+)-CatechinProcyanidinB2
5-Caffeoylquinicacid(−)-Epicatechin
p-CoumaricacidderivatePhloretin-2-O-xyloglucosideQuercetin-3-O-glucosidePhloretin-2-O--glucosideQuercetin-3-O-arabinosideQuercetin-3-O-rhamnosideFlavan-3-olFlavan-3-olFlavan-3-ol
HydroxycinnamicacidFlavan-3-ol
HydroxycinnamicacidDihydrochalconeFlavonol
DihydrochalconeFlavonolFlavonol15.2519.2821.23.5930.0940.5680.7181.9888.7793.0396.16±±±±±±±±±±±0.040.070.050.230.231.260.600.350.710.420.44279279279327279311284
255;355284
256;352256;35099.099.199.099.299.199.399.299.099.199.199.1±±±±±±±±±±±0.30.20.20.20.30.30.10.30.20.40.3
MaximumUVbandindicatedinbold.
aRomannumbersfornon-availablecommerciallypolyphenolstandards;arabicnumbersforavailablecommerciallypolyphenolstandards.
94B.Abad-Garc´ıaetal./J.Chromatogr.A1154(2007)87–96
Table4
Provisionalidentification,accuracyandprecisionofphenoliccompoundsintangerinejuicesPeakno.a
PhenolicchemistrystructuresandcompoundsPhenolics
Phenolicclass
ProvisionalidentificationparameterstR±SD(min)
UV(nm)
AccuracyRecovery(%)
Repeatabilitywithin-dayConc.±SD(g/mL)15.231.25.58.18.34.11.592.718710.13.814119.711.133
±±±±±±±±±±±±±±±0.20.70.10.10.20.20.030.270.10.08820.30.26
BetweendaysConc.±SD(g/mL)15.0315.48.08.14.21.612.819010.03.7679.611.038
±±±±±±±±±±±±±±±0.410.30.20.20.20.030.280.10.051100.30.17
IIIVVIVIIVIII16IXX23XI31334547XVIQuercetinglycosideUnknownflavanoneApigeninderivateKaempherolglycosideIsorhamnetinglycosideEriodictyol-7-O-rutinosideQuercetinglycosideQuercetinglycoside
Naringenin-7-O-rutinosideKaempferolglycosideQuercetin-3-O-rutenosideHesperetin-7-O-rutinosideKaempferol-3-O-rutinosideIsorhamnetin-3-O-rutinosideUnknownflavanoneFlavonolFlavanoneFlavoneFlavonolFlavonolFlavanoneFlavonolFlavonolFlavanoneFlavonolFlavonolFlavanoneFlavonolFlavonolFlavanone34.0747.07.7949.7054.5962.3467.9872.3177.4279.3783.4487.0099.96105.00125.69±±±±±±±±±±±±±±±0.680.680.560.500.480.430.310.370.390.330.310.330.370.360.50255;354283
272;338265;339256;354282
257;357256;366283
265;346256;354284
265;348254;35728310083±797.7±0.510010082±210010078±2100
97.7±0.526±2100
98.5±2.144±3
MaximumUVbandindicatedinbold.
aRomannumbersfornon-availablecommerciallypolyphenolstandards;arabicnumbersforavailablecommerciallypolyphenolstandards.
unknownquercetinglycosides,peaksVIIandXItounknownkaempferolglycosidesandfinallypeakVIIItoanunknownisorhamnetinglycoside.3.3.Methodvalidation
Theproposedanalyticalmethodforthedeterminationofpolyphenolsfromfreeze-driedfruitjuiceswascarefullyeval-uatedintermsofselectivity,linearity,precision,accuracy,robutnessandstabilityofphenoliccompoundsfromextractsduringanalysisandfromstockstandardsolutions.
Theselectivityofthemethodwasassessedbycomparingthechromatogramsoftheextractsofrepresentativesamplestothoseofthemethodblank(extractantsolvent)andtoasolutionofstandards.Peakshapes,retentiontimesandspectralpurityofthechromatographicpeakwereconsideredinordertodetectpossibleinterferences.Nointerferingpeakswereobservedintheblankchromatogramsatthequantitationwavelengths(254,280,320and370nm).Inmostcases(peaksinTables2–4),peakpurityanddegreeofmatchwiththestandardspectraweregreaterthan98%,exceptforeriodictyol-7-O-rutinosideinthetangerinejuicewhosepeakpuritywas84%duetoitslowconcentration.
Thelinearitywascheckedbymeansoftheexternalstandardmethod.Thus,standardsolutionswereinjectedinthechromato-graphicsystemfromthelimitsofquantitationuntillevelsofconcentrationofthephenoliccompoundswereusuallypresentinfruitjuices.Severalcalibrationequationsweresetforeachanalyteanddifferentconcentrationintervals.Table5showstheslope,theoriginordinate,thecorrelationcoefficientsandthelimitsofdetectionandquantitationforthepolyphenolsusedforquantification.Thehighestslopewasshownforp-coumaricand5-caffeoylquinicacidat320nmwhile(+)-catechinobtainedthelowestsensitivityat280nm.Thelimitsofdetectionanddeterminationwerecalculatedasthosecorrespondingtosig-naltonoiseratiosof3:1and10:1,respectively.Detectionlimitsrangedbetween0.005and0.03g/mLforp-coumaricacid,andapigenin-7-O-glucoside,isorhamnetin-3-O-rutinosideandellagicacid,respectively.Thedeterminationlimitsrangedfrom0.02to0.1g/mLfornaringenin-7-O-rutinosideandp-coumaricacid,andkaempferol-7-O-rutinoside,isorhamnetin-3-O-rutinosideandapigenin-7-O-glucoside,respectively.Theresultsobtainedforthequantitationlimitsshowthatthepro-posedmethodissensitiveenoughforthedeterminationofthephenoliccompoundsinfruitjuices.
Theprecisionstudieswerecarriedoutfromtheevaluationoftheretentiontimesstabilityandrepeatabilitywithin-dayandbetweendaysofthepeakareasusingfruitextractssuitablystored(Tables2–4).Therepeatabilitieswithin-dayofpeakareas(fivereplicates),expressedbymeansofthepercentageofrel-ativestandarddeviation(%RSD(n=5)),werelowerthan8,7and5%andtherepeatabilitiesbetweendays(threereplicates)werelessthan8,8,and5%forstrawberry,appleandtangerinejuices,respectively,exceptforhesperetin-7-O-rutinosideandtheunknownflavanoneXVI(20%and17%,within-day;and23%and19%betweendays,respectively),foundinthetanger-inejuice,duetothelowpolarityofthesephenoliccompoundsthatproduceslowextractionrecoveries.TheRSD(n=3)valuesobtainedforretentiontimeswerelowerthan1%inallcases.Ontheotherhand,changesintheexperimentalvariables:±5%ofmethanolintheextractionsolvent;±5%ofaceticacidintheextractionsolvent(theseexperimentswerecarriedoutinduplicate)aswellasthevariationofthecalibrationslopesatdifferentdayswereusedasameasureoftherobustnessofthemethod.Theresultsobtainedfromthevariationofpercent-agesofmethanolandaceticacidinextractionsolventwerenotsignificantlydifferentfromthoseachievedbythevalidatedmethodandtheRSDobtainedforcalibrationslopesondifferent
B.Abad-Garc´ıaetal./J.Chromatogr.A1154(2007)87–96
Table5
ParametersofthecalibrationcurvesinstandardsolutionsforpolyphenolsusedforquantitationPolyphenola(+)-Catechin
Linearrange(g/mL)0.04–11–1010–2500.04–11–1010–1000.02–11–1010–2500.03–0.10.1–11–1010–1000.02–0.10.1–11–1010–1000.09–11–100.07–11–1010–2500.1–11–1010–1000.1–11–500.1–11–1010–100
Slope±Sb(×10−3)43±0.2±143.0±0.4137±2136±4142±4108±1107±3116±115414315817639020421
±±±±±±±±233341109
Originordinate±Sa(×10−3)−0.7±0.33±7−5±490±1
(1±3)101(−2±2)1020.7±0.79±19
(−3±2)1020.05±0.12±2
(−0.5±2)101(−3±2)1020.02±0.3−0.8±0.8(1±6)101(−2±6)102−5±1−57±280.±0.05(0.5±2)101(−2±1)1021.6±0.53±1
(−2±2)1021.4±0.3−1±40.1±0.30.6±0.8(0.6±1)102
r20.99950.99930.99990.99990.99930.99930.99970.99920.99980.99990.99960.99960.99970.99970.99990.99940.99960.99980.99981.00000.99910.99980.99981.00001.00000.99991.00000.99990.99960.9991
LOD(g/mL)0.01
95
LOQ(g/mL)0.04
Phloretin-2-O--glucoside
0.020.04
Naringenin-7-O-rutinoside0.010.02
5-Caffeoylquinicacid
0.0080.03
p-Coumaricacid0.0050.02
Ellagicacid
Quercetin-3-O-rutenoside
193±1221±383.8±0.187±392.7±0.997.1±0.995.9±0.2105±473.0±0.573.1±0.269.2±0.666±165±2
0.030.02
0.090.07
Isorhamnetin-3-O-rutinoside0.030.1
Kaempferol-3-O-rutinosideApigenin-7-O-glucoside
0.020.03
0.10.1
a
Regressionequation:y=a+bx,whereyisthepeakareaandxtheconcentrationing/mL;r2,correlationcoefficient.
days(n=3)werelowerthan8%,exceptforkaempferol-3-O-rutinosidewhichwaslowerthan11%.Theseresultsprovedthattheproposedmethodwasrobust.
Theabsenceofreferencematerialsandthelackofoffi-cialmethodsforanalysisofphenoliccompoundsmakethetaskofmeasuringaccuracydifficult.Likewise,thecompleteextractionofphenolicsfromcellwallsisnoteasyand,subse-quently,notmuchinformationdealingwithcompleteextractionofphenoliccompoundscanbefoundintheliterature.Toevaluatetheaccuracyofthemethod,consecutiveliquidextrac-tions(threereplicates)wereperformedonthesamesampleundertheoptimizedconditionsuntilnophenoliccompoundwasdetectedbyHPLCanalysis.Therecoveryofeachextrac-tionwascalculatedastheamountextractedrelativetothetotalquantityextractedfromeachsampleinallthesuccessivesextractions.Thenumberofextractionsneededweredependentonphenolicstructureandindependentofthematrix.Recov-eriesof98–100%wereobtainedinthefirststepofextraction(Tables2–4)forflavan-3-ols,hydroxybenzoicandhydroxycin-namicacids,dihydrochalcones,flavonolsandflavonesinthethreestudiedmatrices,whereasrecoverieslessthan83%werefoundforflavanones,beingnecessaryahighernumberofextrac-tionsteps(tenconsecutiveextractions)toobtainquantitativeyield.Hesperitin-7-O-rutinosideandtheunknownflavanoneXVIshowedthelowestrecoveriesinthefirstextractionstep(26%and44%,respectively),whichwasattributedtotheirlowpolarstructures.Thus,themethodaccuracywasadecuatedforallphenolicclassespresentinfruitsexceptforflavanones.Theselesspolarcompoundstendtobemoresolubleinnon-aqueoussolvents.
Thestabilityofphenoliccompoundsoffruitjuicesextractsandstockstandardsolutionswasstudied.Dataobtainedshowedthatextractedphenoliccompoundsfromrealsamplesweresta-bleforatleasttwodaysprovidedthattheywerekeptat4◦Cinthethermostatizedautoinjector,andphenoliccompoundsfromstocksolutionswerestableinmethanolat4◦Candindarknessforatleastsixmonth,exceptfor(+)-catechinand(−)-epicatechin,thatweredegradedabout15%inthattime.Thesepolyphenolswerestableatleastfor1monthunderthementionedconditions.
96B.Abad-Garc´ıaetal./J.Chromatogr.A1154(2007)87–96
4.Conclusion
Theproposedmethodexhibitexcellentprecisionsanddetec-tionlimits,aswellascompleterecoveries(≥98–100%)forthemajorityofthephenolicstructurespresentsinfruits.Therobust-nessofthemethodanditsgoodselectivityallowedthatitssuccessfulapplicationinourlaboratoryformeasurementofphe-noliccompoundsofninedifferentfamiliesinjuicesfrom18dif-ferentfruits(orange,tangerine,lemon,lime,grapefruit,peach,nectarine,plum,apricot,sweetcherry,apple,pear,grape,straw-berry,raspberry,blueberry,redcurrant,blackberry)atthepresenttime.Allthesefactsmadethismethodsuitableforrutineanalysisofphenoliccompoundsforthequalitycontroloffruitjuices.Acknowledgements
ThisresearchwassupportedbytheUniversidaddelPa´ısVasco/EuskalHerrikoUnibertsitatea(projectn◦13468-2001).BeatrizAbadGarc´ıathankstheUniversidaddelPa´ısVasco/EuskalHerrikoUnibertsitateaforaPh.D.grant.References
[1]I.Lesschaeve,A.C.Noble,Am.J.Clin.Nutr.81(2005)330S.[2]B.Bartolom´e,M.L.Bengoechea,I.Estrella,M.T.Hern´andez,C.G´omez-Cordov´es,Z.Lebensm.Unters.Forsch.A206(1998)355.
[3]M.J.Amiot,M.Tacchini,S.Aubert,S.Aubert,J.Nicolas,J.FoodSci.57
(1992)958.
[4]K.Robards,M.Antolovich,Analyst122(1997)11R.
[5]V.Dragovic-Uzelac,J.Pospisil,B.Levaj,K.Delonga,FoodChem.91
(2005)373.[6]F.J.P´erez-Ilzabre,T.Hern´andez,I.Estrella,Z.Lebensm.Unters.Forsch.
192(1991)551.
[7]G.A.Spanos,R.E.Wrolstad,J.Agric.FoodChem.38(1990)817.
[8]G.A.Spanos,R.E.Wrolstad,D.A.Heatherbell,J.AgricFoodChem.38
(1990)1572.
[9]V.K.Joshi,S.K.Chauhan,B.B.Lal,J.FoodSci.Technol.28(1991).[10]G.A.Spanos,R.E.Wrolstad,J.Agric.FoodChem.40(1992)1478.[11]C.Garc´ıa-Viguera,P.Bridle,F.Ferreres,F.A.Tom´as-Barber´an,Z.
Lebensm.Unters.Forsch.199(1994)433.
[12]M.L.Bengoechea,A.I.Sancho,B.Bartolome,I.Estrella,C.Gomez-Cordoves,M.T.Hernandez,J.Agric.FoodChem.45(1997)4071.
[13]A.Versari,S.Biesenbruch,D.Barbanti,P.J.Farnell,Lebensm.-Wiss.-Technol.30(1997)585.
[14]P.Mouly,E.M.Gaydou,A.Auffray,J.Chromatogr.A800(1998)171.[15]G.G.Pan,P.A.Kilmartin,B.G.Smith,L.D.Melton,J.Sci.FoodAgric.82
(2002)421.[16]B.Fern´andezdeSim´on,J.P´erez-Ilzabre,T.Hern´andez,J.Agric.Food
Chem.40(1992)1531.
[17]B.M.Silva,P.B.Adrade,G.C.Mendes,P.Valentao,R.M.Seabra,M.A.
Ferreira,J.Agric.FoodChem.48(2000)2853.[18]F.Tom´as-Lorente,C.Garc´ıa-Viguera,F.Ferreres,F.A.Tom´as-Barber´an,J.
Agric.FoodChem.40(1992)1800.[19]C.Garc´ıa-Viguera,F.A.Tom´as-Barber´an,F.Ferreres,F.Art´es,F.Tom´as-Lorente,Lebensm.-Unters.Forsch.197(1993)255.
[20]A.DelCaro,A.Piga,V.Vacca,M.Agabbio,FoodChem.84(2004)99.[21]O.Benavente-Garc´ıa,J.Castillo,F.R.Mar´ın,A.Ortu˜no,J.A.delR´ıo,J.
Agric.FoodChem.45(1997)4505.
[22]T.Tanaka,H.Makika,K.Kawabata,H.Mori,M.Kakumoto,K.Satoh,
A.Hara,T.Sumida,T.Tanaka,H.Ogawa,Carcinogenesis18(1997)957.
[23]N.C.Cook,S.Samman,Nutr.Chem.7(1966)66.
[24]L.-T.Lee,Y.-J.Huang,J.-J.Hwang,A.Y.-L.Lee,F.-C.Ke,Biochem.
Pharmacol.67(2004)2103.[25]C.Prouillet,J.-C.Mazi`ere,C.Mazi`ere,A.Wattel,M.Brazier,S.Kamel,
Biochem.Pharmacol.67(2004)1307.
[26]P.C.H.Hollman,J.Sci.FoodAgric.81(2001)842.
[27]E.B.Rimm,M.B.Katan,A.Ascherio,M.J.Stampfer,W.C.Willet,Ann.
Int.Med.125(1996)384.
[28]A.Gliszczynska-Swiglo,B.Tyrakowska,J.FoodSci.68(2003)1844.[29]G.Shui,L.P.Leong,J.Chromatogr.A977(2002).
[30]A.Versari,M.Castellari,G.P.Parpinello,C.Riponi,S.Galassi,FoodChem.
76(2002)181.
[31]R.M.Alonso-Salces,C.Herrero,A.Barranco,L.A.Berrueta,B.Gallo,F.
Vicente,FoodChem.93(2005)113.[32]J.A.DelR´ıo,M.D.Fuster,P.G´omez,I.Porras,A.Garc´ıa-Lid´on,A.Ortu˜no,
FoodChem.84(2000)457.
[33]K.Robards,J.Chromatogr.A1000(2003)657.[34]R.E.Major,LC-GC4(1991)10.
[35]M.Naczk,F.Shahidi,J.Chromatogr.A1054(2004)95.[36]M.T.Escribano-Bail´on,C.Santos-Buelga,in:C.Santos-Buelga,G.
Williamson(Eds.),MethodsinPolyphenolAnalysis,RSC,Cambridge,UK,2003,p.1.[37]M.Palma,Z.Pi˜neiro,C.G.Barroso,J.Chromatogr.A968(2002)1.[38]M.P.Llompert,R.A.Lorenzo,R.Cela,K.Li,J.M.R.B´alanger,J.R.J.Par´e,
J.Chromatogr.A774(1997)243.[39]S.H¨akkinen,S.J.Chromatogr.A829(1998)91.
[40]R.M.Alonso-Salces,K.Ndjoko,E.F.Queiroz,J.R.Ioset,K.Hostettmann,
L.A.Berrueta,B.Gallo,F.Vicente,J.Chromatogr.A1046(2004).
[41]N.P.Seeram,R.Lee,H.S.Scheuller,D.Heber,FoodChem.97(2006)1.[42]M.A.Anagnostopoulou,P.Kefalas,E.Kokkalou,A.N.Assimopoulu,V.P.
Papageorgiou,Biomed.Chromatogr.19(2005)138.
[43]C.Caristi,E.Belloco,C.Gargiulli,G.Toscano,U.Leuzzi,FoodChem.95
(2006)431.
[44]A.Schieber,P.Keller,P.Streker,I.Klaiber,R.Carle,Phytochem.Anal.13
(2002)87.
[45]A.Escarpa,M.C.Gonzalez,Crit.Rev.Anal.Chem.31(2001)57.[46]H.M.Merken,G.R.Beecher,J.Agric.FoodChem.48(2000)577.[47]F.A.Tom´as-Barber´an,M.I.Gil,P.Cremin,A.L.Waterhouse,B.Hess-Pierce,A.A.Kader,J.Agric.FoodChem.49(2001)4748.
[48]R.M.Alonso-Salces,E.Korta,A.Barranco,L.A.Berrueta,B.Gallo,F.
Vicente,J.Chromatogr.A933(2001)37.
[49]K.Robards,P.D.Prenzler,G.Tucker,P.Swatsitang,W.Glover,FoodChem.
66(1999)401.
[50]A.G.H.Lea,G.M.Arnold,J.Sci.FoodAgric.29(1978)478.
[51]J.B.Harborne(Ed.),TheFlavonoids:AdvancesinResearchsince1980,
ChapmanandHall,London,1988,p.53.
[52]C.DaCosta,J.Chromatogr.A881(2000)403.[53]P.Dugo,M.LoPresti,M.Om´an,A.Fazio,G.Dugo,L.Mondello,J.Sep.
Sci.28(2005)1149.
[54]C.Caristi,E.Bellocco,C.Gargiulli,G.Toscano,U.Leuzzi,FoodChem.
95(2006)431–437.
[55]W.Oleszek,C.Y.Lee,A.W.Jaworski,K.R.Price,J.Agric.FoodChem.36
(1988)430.[56]J.P´erez-Ilzarbe,T.Hern´andez,I.Estrella,Z.LebensmUnters.Forsch.192
(1991)551.
[57]E.Delage,G.Bohuon,A.Baron,J.F.Drilleau,J.Chromatogr.555(1991)
125.
[58]D.-J.Macheix,A.Fleuriet,J.Billot(Eds.),Fruitphenolics,CRCPress,
BocaRaton,FL,1990,p.1.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务