SingleServerSystems
LeonidasGeorgiadis
HighPerformanceComputingandCommunications
IBMT.J.WatsonResearchCenter,YorktownHeights,NY10598
IoannisViniotis1
DepartmentofElectricalandComputerEngineeringCenterforCommunicationsandSignalProcessingNorthCarolinaStateUniversity,Raleigh,NC27695
supportedbyIBM,whiletheauthorwasavisitingscientistattheIBMT.J.Watson
ResearchCenter.
1Work
Abstract
WeconsideramulticlassGI|G|1queueingsystem,operatingunderanarbitrarywork-conservingschedulingpolicyπ.WederiveaninvariancerelationfortheCesarosumsofwaitingtimesunderπ,whichdoesnotrequiretheexistenceoflimitsoftheCesarosums.Thisallowsustoincludeinthesetofadmissiblepoliciesimportantclasses,suchastime-dependentandadaptivepolicies.Fortheseclassesofpolicies,ergodicityisnotknownaprioriandmaynotevenexist.Therefore,theclassicalinvariancerelations,involvingstatisticalaveragesdonothold.ForanM|G|1system,wederiveinequalitiesinvolvingtheCesarosumsofwaitingtimes,thatfurthercharacterizetheachievableperformanceregionofthesystem.
1Introduction.
Conservationlaws(i.e.,invariancerelations,)regardingaveragewaitingtimesandaveragenumberofcustomersinthesystemhavebeenknownforalongtime.Mostoftheconservationlawspresentedsofar[13,12],dealwithsingleserver,workconservingsystems,ormultipleserver,stronglyworkconservingsystems[12,6].Roughlyspeaking,insuchsystems,nowork(servicetime)iscreatedordestroyedwithinthesystem(e.g.,customersdonotbalk,theservermaintainsalwaysthesamespeed,etc.)Forsuchsystems,underergodicityassumptions(thatis,undertheassumptionthatlimitsofsampleaveragesofwaitingtimesexistunderaschedulingpolicyπ,)onecanproveinvariancerelationsoftheform(seee.g.,[12],)
NXi=1
ρiWi(π)=F,(1)
whereNisthenumberofclasses,Wi(π)isthelimitofthesampleaveragewaitingtimeforcustomersofclassi,ρiistheutilizationofclassiandFisaconstant,independentoftheschedulingpolicy.Relativelylittlecanbesaidaboutmultipleserversystems[6].
Theequationin(1)constrainstheaveragewaitingtimesunderanergodicschedulingpolicytolieonanN-dimensionalplane.Anumberofinequalities[8]furtherconstrainthesetofachievableaveragewaitingtimes(i.e.,theperformanceregion)tobeaconvexpolygon.Theseinequalitiestaketypicallytheform
X
ρiWi(π)≥F(R),(2)
i∈R
whereR⊂{1,2,···,N}andF(R)isafunctionindependentofthepolicyπ.Forfurtherdetails,thereadermayconsult[8].
Inpractice,workcanbecreatedand/ordestroyed,withinthesystem,inaschedulingpolicy-dependentfashion.Forexample,whenpreemptivepriorityrulesareconsidered,interruptionofalowprioritycustomerintroducesanoverhead.Sincethisoverheaddependsonthepriorityruleinhand,aninvariancerelationisnolongerpossible.Policy-dependentoverheadisalsogeneratedinpollingsystems,whenevertheserverspendsanonzerotimetoswitchfromastation
1
toanother(nonzeroserverwalkingtime.)Forsuchnonwork-conservingsystems,anumberofpseudoconservationlawshaveappeared(seeforexample[2]).Suchlawsexpressarelationbetweenwaitingtimes,akintothatofeq(1),butwithpolicy-dependentrighthandsides.Ergodicityoftheschedulingpolicyusedisakeyassumptionforalltheabovestudies.Infact,manyauthors(anexceptionbeing[12,Theorem11-13])constrainfurthertheclassofwork-conservingpoliciestopoliciesthathaveregenerativestructure[4],[8],[6].However,foralarge(andratherimportantforapplications,)classofpolicies,namelyadaptive[1],andingeneral,policiesthatbasetheirdecisionsontheentirehistoryofthesystem,convenientregenerationpointsmaynotexist.Moreoveritmaynotbeaprioriclearthatlimitsofsampleaveragesexistundersuchpolicies.
Themotivationtostudyexistenceofinvariancerelationswithoutergodicityassumptionscamefromtheapplicationstudiedin[1].Briefly,theproblemconsideredin[1]isthefollowing:requestsbelongingtoNclassesarriveforserviceatasingleserverqueue.Witheachclass,thereisanassociatedresponsetimeobjectivegi.Thegoalistodetermineaschedulingpolicyπsuchthat
P∆¯k(π)=limsupk→∞kWm=1Wim(π)/k,whereWim(π)istheresponsetimeofthemthserved
¯k(π)isthecustomerfromclassi,iskeptbelowtheobjectivegi.Notethatforanergodicpolicy,W
limitofthesampleaverageofthewaitingtimesofcustomersfromclassi.Noaprioriknowledgeofsystemstatisticswasassumed.Thisrestrictionexcludedrandomizedpolicies[8]andleadtothedesignofanadaptivepolicy.Inaddition,inthisframework,thequestionarosewhetherbyusingnonergodicpoliciesonecanimprovetheperformanceofthesystem.Thisquestionraisestheissueofwhatequalities/inequalitiesthesampleaveragesofwaitingtimesundergeneralnonpreemptivework-conservingpoliciesmaysatisfy.Usingtheresultsofthecurrentpaper,itwasshownthat,withinthewholeclassof(bothergodicandnonergodic)nonpreemptive,work-conservingpolicies,thepolicyproposedin[1]achievedtheabovementionedgoal.
Thepaperisorganizedasfollows:inSection2wedefinetheGI|G|1modelforwhichtheconservationlawholdsandspecifytheclassofadmissiblepolicies.InSection3weproveaconservationlawfortheGI|G|1systemandprovideacounterexampletotheclaimthatlimits
2
ofsampleaveragesofwaitingtimesalwaysexistwhentheinterarrivaltimesareexponentiallydistributed.InSection4,wederiveinequalitiesthatimposefurtherconstraintsonthesampleaveragesofwaitingtimesfortheM|G|1system.
2Systemmodelandadmissiblepolicies
Inthesequel,weusethefollowingmodel.(Thismodelhasbeenusedin[15]aswell.)SystemModel:WeconsiderasingleserverqueuewithNclassesofcustomers.Thetimeintervalbetweenthekthandk+1starrivingcustomer(k≥1)isdenotedbyTk.Weassumethatthefirstarrivaloccursattimet=0.Witheacharrivalthereisanassociatedrandomvariable,Ck,whichdenotestheclasstowhichthearrivalbelongs;thatis,ifCk=i,i=1,···,N,thenthekthcustomerbelongstoclassi.Ifthektharrivingcustomerbelongstoclassi,itsservicetimeisarandomvariableSik.Therefore,Sk,theservicetimeofthektharrivingcustomerisgivenby
Sk=
NXi=1
I{Ck=i}Sik,
(3)
whereI{A}denotestheindicatorfunctionoftheeventA.Weassumethat{Tk,k≥1},{Ck,k≥1}and{Sik,k≥1},foreachi=1,···,N,areindependentsequences.Eachsequencecontainsi.i.d.randomvariables.Itfollowsfrom(3)that{Sk,k≥1}isasequenceofi.i.d.randomvariablesindependentof{Tk,k≥1}.Wedefinethetotalarrivalrateasλ=1/ET1andthearrivalrateofclassiasλi=P(C1=i)/ET1.Toavoidunnecessarycomplications,weassumethatλ>0,P(T1=0)=0,P(S1=0)=0andP(C1=i)>0,i=1,···,N.
FortheconservationlawofTheorem1inSection3,thedistributionof{Tk,k≥1}isarbitrary.However,fortheinequalityrelationsofTheorem2inSection4weneedtoassumethattherandomvariables{Tk,k≥1}areexponentiallydistributed.ThenthisisequivalenttotheassumptionthatthearrivalinstantsofeachclassconstituteaPoissonprocesswithrateλi=P(C1=i)/ET1,independentofthearrivalprocessesoftheotherclasses.
Wespecifynextthesetofadmissibleschedulingpolicies(i.e.,allpoliciesunderwhichthe
3
∆
∆
∆
systemmayoperate.)Thisistheclassofnonpreemptive,work-conservingpolicies.Weplacenoergodicityrestrictiononanadmissiblepolicy.Thus,anyadaptiveortime-dependentpolicyisamemberofthisclass.Arigorousdefinitionofthisclassisgivenin[9].Roughlyspeaking,awork-conservingpolicydoesnotidletheserverwhilecustomersarewaitinginthequeue,doesnotaffecttheamountofservicetimegiventoacustomerorthearrivaltimeofacustomerandisnonanticipative(thatis,theschedulingdecisionsdonotdependonfutureinterarrivaltimes,futureservicetimesortheservicetimesofcustomersthatarepresentinthesystematthetimewhenaschedulingdecisionismade.)Underanonpreemptivepolicy,acustomerinthequeuemaynotreplaceacustomerwhoisbeingservedbeforeitsservicerequirementsarecompleted.Underanonpreemptive,work-conservingpolicy,theservicetimesofthedepartingcustomersfromclassiarei.i.d.r.v.,identicallydistributedto{Sik,k≥1}.Moreover,theservicetimeofthekthdepartingcustomerfromclassiisindependentofitswaitingtime(timethecustomerwaswaitinginqueuebeforeitsservicestarted)andofthewaitingtimesofthecustomersfromclassithatwereservedbeforethekthcustomer.ThesepropertiesarecrucialfortheresultsinthenextsectionsandarestatedformallyinLemma1below.AlthoughtheassertionsofLemma1arefairlyintuitive,theproofrequiresamoreprecisedefinitionoftheclassofadmissiblepoliciesaswellassometechnicalargumentswhicharepresentedin[9].
¯ikitsserviceForthekthdepartingcustomerfromclassi,letWikdenoteitswaitingtimeandStime.Fori=1,2,···,N,andk≥2,let
Fi1=σ(Wi1)
∆
∆¯in,1≤n≤k−1),Fik=σ(Win,1≤n≤k;S
whereσ(X)denotestheσ-fieldgeneratedbythesetofrandomvariablesX.
Lemma1Underanynonpreemptive,work-conservingpolicythefollowingstatementsaretrue:¯ikisindependentofFik,foreveryk≥1.1.S
4
¯ik,k≥1}and{Sik,k≥1},areidentically2.Forafixedi,1≤i≤N,thesequences{Sdistributed.
Remark:NotethatthesecondstatementofLemma1isnottruefortheservicetimesof
¯kistheservicetimeofthekthdepartingthesuccessivedepartingcustomers.Inotherwords,ifS
customer(irrespectiveofitsclass,)itisnottrueingeneralthatunderanonpreemptivework-¯k,k≥1}isidenticallydistributedto{Sk,k≥1}.conservingpolicy,{S
3Theconservationlaw
ThekeytothemainresultofthissectionistheStrongLawofLargeNumbersforMartingaleswhichispresentedinLemma2.Itsproofcanbefoundin[11].AswillbeseenintheproofofTheorem1,thecorollarytothislemma,Corollary1,willallowustostatetheconservationlawwithouttheneedtoassumetheexistenceoflimitsofsampleaveragesofwaitingtimes.
Lemma2Let{Xk,k≥1}beasequenceofrandomvariablesand{Fk,k≥1}anincreasingsequenceofσ-fields,withXkmeasurablewithrespecttoFk,foreachk.LetZbearandomvariableandletcbeaconstantsuchthatE(|Z|·max{0,log|Z|})<∞andP(|Xk|>x)≤c·P(|Z|>x)foreachx≥0andk≥1.Then
k
1X
[Xm+1−E(Xm+1|Fm)]=0a.e.lim
k→∞km=1
ThenextcorollaryfollowseasilyfromLemma2.
Corollary1Let{Wk,k≥1},{Sk,k≥1}besequencesofrandomvariablesand{Fk,k≥1}beanincreasingfamilyofσ-fields.SupposethatWkisFk-measurableforallk≥1andthatSk−1isFk-measurableforallk≥2.SupposealsothatSkisindependentofFk,forallk≥1.LettherebearandomvariableZ,aconstantδ>1,andaconstantcsuchthatE|Z|δ<∞and
5
P(|WkSk|>x)≤cP(|Z|>x)foreachx≥0andk≥1.Then
k→∞
lim
ÃPk
m=1
WmSm
−
kPk
m=1
WmESmk!
=0a.e.(4)
Proof:LetX1=0,Xk=Wk−1Sk−1,
∆∆
k≥2.Clearly,XkisFk-measurableforallk≥
1.Also,sinceSkisindependentofFkandWkisFk-measurable,wehavethatfork≥1,
E(Xk+1|Fk)=E(WkSk|Fk)=WkESk.Sinceδ>1,theconditionE|Z|δ<∞impliesthatE(|Z|max{0,log|Z|})<∞.Equation(4)followsnowbyapplyingLemma2tothesequence
2
{Xk,k≥1}.
RecallthatWim(orWim(π),whendependenceonthepolicyneedstobeemphasized,)denotesthewaitingtimeofthemthdepartingcustomerfromclassiwhenpolicyπisusedand¯ikdenotestheservicetimeofthekthdepartingcustomerfromclassi.WeshalluseCorollaryS
¯ik.Toverifytheconditionsof1inTheorem1below,byreplacingWkwithWikandSkwithS
Corollary1inthiscase,weneedthelemmathatfollowsandsomeconditionsonthemomentsoftheservicetimes.Letsi
∆
(m)∆
=ESim1denotethemthmomentoftherandomvariableSi1.Let
si=ESi11anddefineρi,theutilizationofclassi,asρi=λisi.Lemma3Supposethat
PN
i=1ρi<1andthatforsomeconstantγ>2,si
(γ)
<∞,i=
1,···,N.Thenunderanynonpreemptive,work-conservingpolicy,thereexistsaconstantciandanonnegativerandomvariableZisuchthatEZihavethat
¯ik>x)≤ciP(Zi>x).P(Wik(π)S
TheproofofLemma3isgivenin[9].Themainideaistousethefactthatunderanywork-conservingpolicy,thewaitingtimeofacustomerisboundedbythelengthofthebusyperiodinwhichthecustomerarrived,aquantitywhichisindependentofthepolicy.Thedetailsoftheproofarebasedonrenewalargumentsandareomittedforthesakeofbrevity.
WearenowreadytostateandprovetheconservationlawfortheGI|G|1queueingsystem.Foranadmissibleschedulingpolicyπ,letV(π)(t)denotetheworkinsystem(i.e.,thesumof
6
γ/2
<∞,andforeachx≥0andk≥1,we
remainingservicetimesofallcustomersinthesystemattimet,)whenpolicyπisused.LetusalsodenotebyFIFOthepolicythatservescustomersinFirstInFirstOutorder.Itiswellknownthatforthispolicy
1ZT(FIFO)
V(t)dt=V∗=constanta.e.lim
T→∞T0
Theorem1Supposethat
PN
i=1ρi<1andthatforsomeconstantγ>2,si
(γ)
<∞,i=
1,...,N.Then,forallwork-conserving,nonpreemptivepolicies,wehavethat
k→∞
lim
NXi=1
ρi
ÃPk
m=1
Wim(π)
k
!
N1X(2)
=V−λisia.e.
2i=1
∗
Proof:Letπbeanadmissiblepolicy.Sincetheadmissiblepoliciesarenonidling,theworkinsystemattimetisindependentofthepolicy,[13],andtherefore,forallt≥0,
V
(π)
(FIFO)
NXi=1
(t)=
Vi(t),
(π)
(5)
whereVi(t)istheworkinsystemattimetduetocustomersfromclassionly.
LetKimdenotethenumberofclassicustomersservedduringthemthbusyperiodandKm=
thatEK1<∞,[5].UsingtheStrongLawofLargeNumbers,wehavethatlimk→∞Mik/k=P(C=i)EK1andlimk→∞Mk/k=EK1.Therefore,
MikMik/kλi
=lim=P(C1=i)=lim
k→∞Mkk→∞Mk/kλ
From[3,Theorem6]wehavethat
kN1Xλi(2)V∗1Xa
WkSk=−silim
k→∞kλ2λm=1i=1
PN
i=1Kim.LetalsoMik=
Pk
m=1KimandMk=
Pk
m=1Km.Since
PN
i=1
ρi<1,wehave
a.e.(6)
a.e.,(7)
a
whereWkdenotesthewaitingtimeofthektharrivingcustomer.Takingthelimitin(7)over
thesubsequenceMkandrearrangingterms,wehavethat
NMikX1X
¯im=Wim(π)Slim
k→∞Mk
i=1m=1
Mik
limk→∞
i=1Mk
N
V∗1Xλi(2)=−s
λ2i=1λi
NX
PMik
m=1
¯imWim(π)S
Mika.e.
(8)
7
In(8),thesumsum
PMik
m=1
Wim(π).ItisherewhereCorollary1isused.Towardsthisend,letusdefine,
rik=
∆
PMik
m=1
¯imappears,whilefortheconservationlawweneedonlytheWim(π)S
PMik
PMik
¯W(π)SWim(π)imimm=1
−sim=1.
MikMik
(9)
¯ikUsingLemma1andLemma3weseethat(forafixedi,)thesequencesWk=Wik(π),Sk=SandFk=FiksatisfyalltheconditionsofCorollary1.Sincelimk→∞Mik=∞a.e.,weconcludethat
k→∞
limrik=0a.e.(10)
From(8),(9)and(10)wehavethat
lim
NXi=1
k→∞
Ã
Mik
siMk
PMik
N
λi(2)MikV∗1Xm=1Wim(π)−si+rik=
MikMkλ2i=1λ
!
a.e.(11)
Toproceed,weneedtoreplacein(11)thesequenceMik/Mkwithitslimit,λi/λ,andthiscanbedoneifweshowthatforafixedi,thesequence{
almosteverywhere.LetBkdenotethelengthofthekthbusyperiod;{Bk,k≥1}isasequence
2
<∞,ofi.i.d.randomvariables,independentoftheschedulingpolicy.ObservethatsinceES1
22
<∞,EK1<∞,[10],andtherefore,fromSchwartz’sinequalitywehavewehavethatEB1
PMik
m=1
Wim(π)/Mik,k≥1}isbounded
that
221/2
·EB1)<∞.E[K1B1]≤(EK1
¯imdenotethebusyperiodduringwhichthemthcustomerfromclassideparts.SinceLetB
¯im,wehavethatWim(π)≤B
Wim(π)
}≤limsup{limsup{m=1
Mikk→∞k→∞
PMik
Pk
¯Bimm=1m=1BmKim
}=limsupPkMikk→∞m=1Kim
Pk
E[B1K1]m=1BmKm
≤limP=<∞a.e.kk→∞P(C=i)EKK1imm=1
PMik
(12)
Usingnow(6),(11),(10)and(12)wehavethat
lim
NXi=1
k→∞
λisi
PMik
m=1
N
Wim(π)1X(2)∗
=V−λisi
Mik2i=1
a.e.(13)
8
Itremainstoshowthat(13)holdsforallk(andnotjustforthesubsequencesMik).Thisisdonebyusingthestandardargumentsbywhichpartialrewardlimitsareestablishedfromtheknownlimitsofrenewalrewardprocesses,seee.g.[14,Section2.3].
2
WhenthearrivalprocessofeachclassisPoisson,itisstatedin[12,p.432]thatunderanynonpreemptive,work-conservingpolicythelimitsofthesampleaveragesofthewaitingtimesexist.Ifthisstatementwerecorrect,Theorem1wouldbeusefulonlywheninterarrivaltimesarenotPoisson.ItwashintedbyFedergruenandGroenvelt[7],however,thatthestatementmaynotbetrue.WepresentnextacounterexamplethatshowsthattheassumptionofPoissonarrivalprocessesdoesnotguaranteeergodicityoftheschedulingpolicies.Therefore,strongerconditionsonthesepoliciesmustbeimposedtoestablishergodicity.
Counterexample.ConsideranM/G/1queuewithtwoclassesofcustomers.Thetwoclassesarecharacterizedbytheirarrivalrates(denotedasλ1andλ2)andservicerates(denotedasµ1andµ2.)Assumethatthesystemisstable(i.e.,λ1/µ1+λ2/µ2<1),thesecondmomentsoftheservicerequirementsarefinite,andthatλ1/µ1>0,λ2/µ2>0.Defineatime-dependentpolicyπ,asfollows:
Atthebeginningofthenthbusyperiod(n≥1,)policyπgiveshighestpriorityto22k+1≤n≤22(k+1)−1,)πgiveshighestprioritytoclass2customers.
class1customers,if22k≤n≤22k+1−1,forsomek≥0.Otherwise,(i.e.,if
Weshallshowthatunderpolicyπ,limitsofsampleaveragesofwaitingtimesdonotexist.LetWmdenotethewaitingtimeofthemthservedcustomerfromclass1,m≥1.Definethefollowingsets:
H(n)={m:customermbelongstoclass1andisservedduringbusyperiodl,1≤l≤n,in
whichclass1hashighestpriority}
L(n)={m:customermbelongstoclass1andisservedduringbusyperiodl,1≤l≤n,in
whichclass1haslowestpriority}
9
∆∆
hl(resp.Mn)denotethecardinalityofthesetH(n)servedinthefirstnbusyperiods.LetMn
Ofcourse,H(n)∪L(n)={1,2,···,Mn},whereMndenotesthenumberofclass1customers
(resp.L(n).)Finally,leth(n),l(n)denotethenumberofbusyperiodsamongthefirstnbusyperiodsduringwhichclass1hashighestandlowestpriorityrespectively.Clearly,h(n)+l(n)=n.
¯n,thesampleaveragewaitingtimeofclass1customersduringthefirstnbusyperiods,Then,Wisgivenby
∆1¯n=W
Mn
nh(n)
Wm=
Mnnh(n)m=1
¯ndoesnotconverge.Considerfirstthesubsequence{nk=(22k−WeshallshownowthatW
Wm,m∈H(n),areidenticallydistributedtothecorrespondingrandomvariablesinaqueueingsystemthatgivesalwaysnonpreemptiveprioritytocustomersinclass1.Similarly,therandomvariablesWm,m∈L(n),areidenticallydistributedtothecorrespondingrandomvariablesinaqueueingsystemthatgivesalwaysnonpreemptiveprioritytocustomersinclass2.LetBk,Ik,k=1,2,···
denotethelengthofthekthbusyperiodandkthidleperiod
1),k≥1}.Observethath(nk)=1(22k−1)andl(nk)=2(22k−1).Therandomvariables33Mn
X
hMn
Pl
nl(n)Mnm∈H(n)Wm+hMnMnnl(n)Pm∈L(n)
lMn
Wm
.(14)
respectively.TherandomvariablesBk+Ik,k=1,2,···areindependent,identicallydistributed.Moreover,theirdistributiondoesnotdependontheschedulingpolicy,sincethepoliciesconsideredarenonidling.LetEB(EI)denotethemeanofBk(Ik.)Then,usingtheStrongLawofLargeNumbersweobtainasintheproofofTheorem1,thatMn/n→λ1(EB+EI).Similarly,
h
/h(n)→λ1(EB+EI)sincelimn→∞h(n)=∞andlimn→∞l(n)=∞,wehavethatMn
l
/l(n)→λ1(EB+EI).Therefore,takinglimitsalongthesubsequencenkin(14)weandMn
concludethat
¯n=1Wh+2Wla.e.,limWk
k→∞33
whereWh(resp.Wl)denotetheaveragewaitingtimeofclass1customers,underthepolicy
whichalwaysgivesstrictnonpreemptiveprioritytoclass1(resp.class2).Similarly,ifwel(¯nk)=(22k+1−2)/3.Therefore,from(14),
nk)=(2·22k+1−1)/3andconsiderthesubsequence{n¯k=22k+1−1,k≥0},wefindthath(¯
2h1l
¯nlimWa.e.¯k=W+Wk→∞3310
SinceWh 2 4InequalityconstraintsforM/G/1Systems Theorem1describesahyperplaneintheN-dimensionalspace,onwhichthelimitofalinearcombinationofthesampleaveragesofwaitingtimesmustlie.Clearly,notallpointsinthishyperplanecanbeobtainedbyemployingsomeworkconservingpolilcy.Theperformancespace(i.e.,thesubsetofpointsthatareachievablebysomeadmissibleschedulingpolicy,)iswellknownforergodicsystems.ForanM|G|1system,weareabletofurthercharacterizetheperformancespace.Asweshallsee,theconstantsF(R)thatappearintherighthandsideoftheinequalitiesinTheorem2arethesameastheonesthatappearwhenonlyergodicpoliciesareallowed.Fortherestofthissection,weassumethattheinterarrivaltimesareexponential.Asin[8,7],thebasicideaistodeterminealowerboundonthetimeaverageoftheworkinsystemduetocustomersthatbelongtoasubsetRoftheclasses. Supposethatthesystemoperatesunderanonpreemptive,work-conservingpolicyπ.ForanysetR,R⊂{1,2,···,N},letVR(t)betheworkinsystemattimet,duetocustomersthatbelongtotheclassesinR,thatis, ∆(π) VR(t)=(π) i∈R X Vi(t). (π) (15) Weareinterestedindevelopingalowerboundforthequantity liminf T→∞ RT 0 VR(t)dt .T (π) (π) (16) In[7],itwasshownthatforallt≥0andforeachsamplepath,VR(t)isminimizedbyapolicywhichgivesnonpreemptiveprioritytoclassesinR.Moreover,sincetheorderofserviceofcustomersfromclassesinRcannotaffectVR(t),itissufficienttoassumethattheorderof 11 (π) serviceofcustomersfromclassesinRisFIFO.ThequestionthatneedstoberesolvediswhethertheorderofserviceofcustomersfromRc,thecomplementofR,canaffectthetimeaveragein(16).Undertheassumptionthatsteadystateexists,itisshownin[8,7]thattheorderofserviceofcustomersinRcdoesnotaffectthetimeaveragein(16).Sincewedonotmakeanyassumptionsabouttheergodicityofthepolicies,however,weneedadifferentapproachhere.Assumethatawork-conservingpolicyπgivesnonpreemptiveprioritytoclassesinR.LetτimbethetimeinstantthemtharrivingcustomerfromaclassiinRcisscheduledforserviceandletτ¯imbethefirsttimeintheinterval[τim+Sim,∞)atwhichtherearenocustomersfromclasses¯imisinRinthesystem.Observethateitherτ¯im=τjlforsomel=1,2,···andj∈Rc,orτtheendofabusycycle.Also,letτkbethefirsttimewithinthekthbusyperiodthatacustomerfromaclassinRcisscheduledforservice.LetΓkdenotethetimeinstantwhenthekthbusyperiodbegins.AttimeT=Γk+1,theintegralin(16)canbewrittenasfollows: ZΓk+1 0 (π) VR(t)dt kZΓm+1X = m=1Γm (π) VR(t)dt = m=1 kX (π)¯m,U (17) R(π)(π)∆Γm+1¯m¯(π),k=1,2,···whereU=ΓmVR(t)dt.WemayrewriteUk intheform (18) ¯(π)Uk where (π)∆ Uim= = (π)Uk + i∈Rc X m=Mi(k−1)+1 MikX Uim, (π) Zτ¯im τim (π) VR(t)dt and (π)∆Uk= Zτk Γk VR(t)dt. (π) (π)(π)¯k¯kwecanshowthatthedistributionofthesequenceU,k≥UsingthisdecompositionofU 1,cannotbeaffectedbyanonpreemptive,work-conservingpolicythatgivesprioritytoclassesinR.Thisisthecontentofthenextlemma. Lemma4Foranynonpreemptive,work-conservingpolicyπthatgivesprioritytoclassesinthe (π)¯k,k≥1}consistsofi.i.d.randomvariables,setRoverclassesinthesetRc,thesequence{U¯kidenticallydistributedtothesequence{U (πf) ,k≥1}generatedbythepolicyπfthatgives12 nonpreemptiveprioritytoclassesinR,servescustomersfromclassinRinFIFOorderandcustomersfromclassesinRcinFIFOorder. Proof:Recallthatπiswork-conserving,thearrivalprocessisPoisson(andindependentoftheservicerequirements,)andtheservicerequirementsareindependentrandomvariables.ObservethatthevalueofVR(t)fort∈[τim,τ¯im)dependsonlyonSimandtheservicetimesandthearrivalprocessofcustomersfromclassesinRinthattimeinterval.Itfollowsthattherandomvariables{Uim,i∈Rc,m≥1}areindependentandalsoindependentof{Uk,k≥1}.Moreover,thedistributionofUimisindependentofthepolicyπ.SinceπisnonidlingandgivesnonpreemptiveprioritytocustomersinR,{Uk,k≥1}isasequenceofi.i.d.randomvariablesandthedistributionof{Uk,k≥1}isindependentofthepolicy.Observealsothatthesummationin(18)includesthesamecustomers,independentofthepolicy.Thisobservationandthefactthat{Uk,k≥1}and{Uim,i∈Rc,m≥1}areindependentsequencesof (π)¯k,k≥1}isasequenceofindependentrandomindependentrandomvariables,implythat{U(π)¯k,k≥1}isthesameforallwork-conservingpoliciesvariablesandthatthedistributionof{U thatgivenonpreemptiveprioritytocustomersinR.Toconcludetheproof,observethatunderthepolicythatservescustomersinRcinFIFOorder,theprevioussequenceconsistsofi.i.d.randomvariables. 2 (π) (π) (π) (π) (π) (π) (π) (π) ThemainresultregardingtheperformancespacefortheM|G|1queueingsystemisgivenbythefollowingtheorem. PN (γ) Theorem2Supposethatwehavethat i=1 ρi<1,andforsomeconstantγ>2,wehavesi i=1,...,N.Thenforanywork-conserving,nonpreemptivepolicyπ,andforallR⊂{1,···,N} liminf k→∞ ≤∞,for i∈R whereF(R)isaconstant,independentoftheschedulingpolicy.Thelimitexistsandequalityisachieved,ifclassesinRhavenonpreemptivepriorityoverclassesinRc. X ρi ÃPk m=1 Wim(π) k! ≥F(R)a.e.,(19) 13 Proof:UsingLemma4andassumingthatcustomersfromclassesinRcareservedaccordingtoaFIFOpolicy,weconcludeasin[8,Chapter6],thatunderanynonpreemptive,work-conservingpolicyπthatgivesprioritytoclassesinR, lim RΓk 0 k→∞ wherew0istheaverageresidualworkofthecustomerinservice.Standardargumentscanbeusednow,toshowthatwhenclassesinRhavenonpreemptivepriority, lim RT 0 XVR(t)dtw0∆¯ =+ρisi=F(R)a.e.,PΓk1−i∈Rρii∈R (π) (20) T→∞ (π) VR(t)dt¯(R)a.e.=F T (π) (21) SinceVR(t)isminimizedbyapolicythatgivesnonpreemptiveprioritytoclassesinR,weconcludethatunderanynonpreemptive,work-conservingpolicy, liminf T→∞ RT 0 VR(t)dt¯(R)a.e.≥FT (π) (22) ThelimitexistsandequalityisachievedifclassesinRhavenonpreemptivepriorityoverclassesinRc.FollowingthemethodologyofTheorem1andusing(22)wehavethat liminf k→∞ i∈R X ρi ÃPk m=1 Wim(π)k ! ¯(R)−≥F 1(2)∆ λisi=F(R)a.e.2i∈R 2 X 5Conclusions. WeconsideredaGI|G|1queueingsystemwithNpriorityclasses.Thesystemoperatesunderaschedulingpolicywhichmaybenonergodicorforwhichergodicitymaynotbeverifiableinadvance.Adaptiveandtime-dependentschedulingrulesrepresentanimportantclassofsuchpolicies.Wehavederivedaninvariancerelationthat“conserves”aweightedsumofappropriateCesarosumsofwaitingtimes.Wehavealsodemonstratedinequalitiesthatcharacterizefurthertheachievableperformanceregion,forthespecialcaseofPoissonarrivals. 14 Acknowledgements Theauthorswishtothanktheanonymousreviewersfortheirhelpfulcomments,whichcon-siderablyimprovedthepresentationofthispaper. References [1]P.P.Bhattacharya,L.Georgiadis,P.Tsoucas,andI.Viniotis.Optimalityandfinite timebehaviorofanadaptivemulti-objectiveschedulingalgorithm.TechnicalreportRC15967,IBMT.J.WatsonResearchCenter,1990.MathematicsofOperationsResearch,toappear. [2]O.J.BoxmaandW.P.Groenendijk.Waitingtimesindiscrete-timecyclic-service systems.IEEETransactionsonCommunications,36:1—170,1988. [3]S.L.Brumelle.Ontherelationbetweencustomerandtimeaveragesinqueues.J.Appl. Prob.,8:508—520,1971. [4]E.G.CoffmanandI.Mitrani.Acharacterizationofwaitingtimeperformancerealizable bysingleserverqueues.OperationsResearch,28:810—821,1980. [5]J.W.Cohen.TheSingleServerQueue,volume8ofAppliedMathematicsandMechan-ics.North-Holland,Amsterdam,1969. [6]A.FedergruenandH.Groenevelt.Characterizationandoptimizationofachievable performanceingeneralqueueingsystems.OperationsResearch,36:733—741,1988.[7]A.FedergruenandH.Groenevelt.M/G/cqueueingsystemswithmultiplecustomer classes:Characterizationandcontrolofachievableperformanceundernonpreemptivepriorityrules.ManagementScience,34(9):1121—1138,1988. 15 [8]E.GelenbeandI.Mitrani.AnalysisandSynthesisofComputerSystems.Academic Press,NewYork,1980. [9]L.GeorgiadisandI.Viniotis.Ontheconservationlawandtheperformancespaceof singleserversystems.TechnicalreportRC15673,IBMT.J.WatsonResearchCenter,1990.OperationsResearch,toappear. [10]S.GhahramaniandR.W.Wolff.Anewproofoffinitemomentconditionsforgi/g/1 busyperiods.QueueingSystems,4:171—178,19. [11]P.HallandC.C.Heyde.MartingaleLimitTheoryanditsApplications.Academic Press,NewYork,1980. [12]D.P.HeymanandM.J.Sobel.StochasticModelsinOperationsResearch,volumeI. McGraw-Hill,NewYork,1982. [13]L.Kleinrock.QueueingSystems,volume2.JohnWiley,1976. [14]R.W.Wolff.StochasticModelingandtheTheoryofQueues.IndustrialandSystems Engineering.PrendiceHall,19. [15]R.W.Wolff.Work-conservingpriorities.JournalofAppliedProbability,7:327—337,1970. 16
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务