generaldistributionsbyCoxians
TakayukiOsogami
MorHarchol-Balter
February24,2003
CMU-CS-02-178
SchoolofComputerScienceCarnegieMellonUniversityPittsburgh,PA15213
Abstract
AcommonanalyticaltechniqueinvolvesusingaCoxiandistributiontomodelageneraldistribution,wheretheCoxiandistributionagreeswithonthefirstthreemoments.ThistechniqueismotivatedbytheanalyticaltracabilityoftheCoxiandistribution.AlgorithmsformappinganinputdistributiontoaCoxiandistributionlargelyhingeonknowingapriorithenecessaryandsufficientnumberofstagesintherepresentativeCoxiandistribution.Inthispaper,weformallycharacterizethesetofdistributionswhicharewell-representedbyan-stageCoxiandistribution,inthesensethattheCoxiandistributionmatchesthefirstthreemomentsof.Wealsodiscussafewcommon,practicalexamples.Lastly,wederiveapartialcharacterizationofthesetofbusyperioddurationswhicharewell-representedbyan-stageCoxiandistribution.
CarnegieMellonUniversity,ComputerScienceDepartment.Email:osogami@cs.cmu.edu
CarnegieMellonUniversity,ComputerScienceDepartment.Email:harchol@cs.cmu.edu.ThisworkwassupportedbyNSFCareerGrantCCR-0133077,byNSFITRGrant99-167ANI-0081396andbySpinnakerNetworksviaPittsburghDigitalGreenhouseGrant01-1.
Keywords:momentmatching,Coxiandistribution,busyperiod,phase-typedistribution,normalizedmoment,queueing,matrixanalytic
1Introduction
Background
Approximatinggeneraldistributionsbyphase-type(PH)distributionshassignificantapplicationintheanalysisofstochasticprocesses.Manyfundamentalproblemsinqueueingtheoryarehardtosolvewhengeneraldistributionsareallowedasinputs.Forexample,thewaitingtimeforanM/G/cqueuehasnoniceclosedformulawhen
,whilethewaitingtimeforanM/M/cqueueistriviallysolved.Tractability
istoapproximate
byaPH
ofM/M/cqueuesisattributedtothememorylesspropertyoftheexponentialdistribution.Apopularapproachtoanalyzingqueueingsystemsinvolvingageneraldistribution
distribution.APHdistributionisaverygeneralmixtureofexponentialdistributions,asshowninFigure1[19].TheMarkoviannatureofthePHdistributionfrequentlyallowsaMarkovchainrepresentationofthequeueingsystem.OncethesystemisrepresentedbyaMarkovchain,thischaincanoftenbesolvedbymatrix-analyticmethods[20,16],orothermeans.
Whenfittingageneraldistribution
toaPHdistribution,itiscommontolookforaPHdistribution
whichmatchesthefirstthreemomentsofDefinition1Adistributionmoments.
.Inthispaper,wesaythat:
iswell-representedbyadistributionif
and
agreeontheirfirstthree
Ithasbeenshownthatmatchingthreemomentsissufficientforaccuratemodelingofmanycomputersystems[9,23].Matchingfewermomentsislessdesirablesincesomequeueingsystems,e.g.thequeue,haveresponsetimeswhichareheavilydependentonthethirdmomentof
Mostexistingalgorithmsforfittingageneraldistribution
[31,11].
toaPHdistribution,restricttheirattention
toasubsetofPHdistributions,sincegeneralPHdistributionshavesomanyparametersthatitisdifficulttofindtime-efficientalgorithmsforfittingtothem[30,13,12,26,18].ThemostcommonlychosensubsetistheclassofCoxiandistributions,showninFigure2.CoxiandistributionshavetheadvantageofbeingmuchsimplerthangeneralPHdistributions,whileincludingalargesubsetofPHdistributionswithoutneedingadditionalstages.Forexample,foranyacyclicPHdistributiondistribution
,thereexistsaCoxian
withthesamenumberofstagessuchthat
and
havethesamedistributionfunction
[5].InthispaperwewillrestrictourattentiontoCoxiandistributions.MotivationandGoal
WhenfindingaCoxiandistribution
whichwell-representsagivendistribution
,itisdesirablethat
beminimal,i.e.,thenumberofstagesinbeassmallaspossible.Thisisimportantbecauseitminimizes
theadditionalstatesnecessaryintheresultingMarkovchainforthequeueingsystem.Unfortunately,itis
1
p00p04p03p02p01Expp14p13p12p21µ1Expp24p23p32Expµ2µ3p34p43Expµ4p40p30p31p41p42p20p10Figure1:A4-stagePHdistribution.Therearestates,wherethethstatehasexponentially-distributedservicetimewithrate.Withprobabilitywestartinthethstate,andthenextstateis
thatitwillbethelaststate.Thevalueofthestatewithprobability.Eachstatehasprobability
distributionisthesumofthetimesspentineachofthestates.
p11−p1µ1p21−p2µ2p31−p3pnµnFigure2:An-stageCoxiandistribution.Observetherecursivedefinition:withprobabilityvalueiszero,andwithprobability,thevalueisanexponentialrandomvariablewithratebyan-stageCoxiandistribution.
,the
followed
notknownwhatistheminimalnumberofphasesnecessarytorepresentagivendistributiondesignoffittingalgorithmsopen-ended.
byaCoxian
distribution.Thismakesitdifficulttoevaluatetheeffectivenessofdifferentalgorithmsandalsomakesthe
Theprimarygoalofthispaperistocharacterizethesetofdistributionswhicharewell-representedbyan-stageCoxiandistribution,foreach
.
Definition2Let
denotethesetofdistributionsthatarewell-representedbyan-stageCoxiandis-tributionforpositiveinteger.Ourcharacterizationof
willallowonetodetermine,foranydistribution
,theminimal
numberofstagesthatareneededtowell-representbyaCoxiandistribution.Suchacharacterization
willbeausefulguidelinefordesigningalgorithmswhichfitgeneraldistributionstoCoxiandistributions.Anotherapplicationofthischaracterizationisthatsomeexistingfittingalgorithms,suchasJohnsonandTaaffe’snonlinearprogrammingapproach[13],requireknowingthenumberofstages
intheminimal
,whichisnotpositiveforallpossiblechoicesof
.
2
Coxiandistribution.Thecurrentapproachinvolvessimplyiteratingoverallchoicesforourcharacterizationwouldimmediatelyspecify.
[13],whereas
Asecondarygoalofthispaperistospecifythenecessaryandsufficientnumberofstagesneededtowell-representbusyperioddurationsbyCoxiandistributions.FittingbusyperioddurationstoCoxiandis-tributionshasbecomerelevantrecentlyinthesolutionofcommoncomputersystemsproblemsinvolvingcyclestealing,see[9,23].In[9,23],transitionsbetweenstatesinaMarkovchainrepresentbusyperioddurations,whicharemodeledviaCoxiandistributionsfortractability.Inadditiontostandardbusyperiods,itisalsocommontomodelthebusyperiodstartedby
jobs.Thispaperwillspecifythenumberofstages
doesnotalwaysimme-
neededtowell-representsuchbusyperiodsbyCoxiandistributions.
Providingsufficientandnecessaryconditionsforadistributiontobein
diatelygiveoneasenseofwhichdistributionssatisfythoseconditions,orofthemagnitudeofthesetofdistributionswhichsatisfythecondition.Athirdgoalofthispaperistoprovideexamplesofpracticaldistributionswhichareincludedin
forparticularintegers.
Infindingsimplecharacterizationsof,itwillbeveryhelpfultostartbydefininganalternativeto
thestandardmoments,whichwerefertoasnormalizedmoments.Definition3Letsecondmoment
beadistributionandof
bethe-thmomentof
for
.Thenormalized
andthenormalizedthirdmoment
of
aredefinedtobe
Noticethecorrespondencetothesquaredcoefficientofvariability,
,andtheskewnessfactor,:
and
Ourresults
Whilethegoalofthepaperistocharacterizethesetofthekeyideasinthepaperisthatthereisasetthat
,thischaracterizationturnsouttobeugly.One
whichisverycloseto
insize,such
hasaverysimplespecificationvianormalizedmoments.Thus,muchoftheproofsinthispaper
revolvearound.
Definition4Forintegers,let
denotethesetofdistributionswiththefollowingpropertyon
theirnormalizedmoments:
and
:
(1)
Themaincontributionofthispaperisaderivationofthenestedrelationshipbetweenalloffor
and
for
.ThisrelationshipisillustratedinFigure3andproveninSection3.Therearethreepointsto
observe:(i)
isapropersubsetof
forallintegers
,andlikewise
isapropersubset
;(ii)
iscontainedin,where
andcloseto
insize;providingasimplecharacterization
;(iii)
isalmostcontainedin
forallintegers(moreprecisely,wewillshow
isthesetofdistributionswell-representedbyanErlang-ndistribution).
Thisresultyieldsanecessarynumberandasufficientnumberofstagesforagivendistributiontobewell-representedbyaCoxiandistribution.Additionalcontributionsofthepaperaredescribedbelow:
Withrespecttothesettobein
,wederivetheexactnecessaryandsufficientconditionforadistribution
asafunctionofthenormalizedmomentsof
.ThisextendstheresultsofTelekandHeindl,
denotethe
.
whoanalyzed,whichisasubsetof
.(SeeSection2).
WenextinvestigatethefittingofM/G/1busyperiodsbyCoxiandistributions.LetdurationofanM/G/1busyperiodwhere
isanarbitrarydistributionwithfinitethirdmomentandwhere
thesizeofthejobstartingthebusyperiodisin.Weprovethatanysuch
hasdistributionin
Thisissurprisinginthatthenumberofstageswhichsufficetorepresentthebusyperiodisdeterminedsolelybythefirstjobstartingthebusyperiod,whichmaybeasimplesetupcost,anditisnotrequiredtoconsiderthedistributionsoftheotherjobsinthebusyperiod.Furthermore,letanM/G/1busyperiodwhereperiodisstartedby
denotethedurationof
isanarbitrarydistributionwithfinitethirdmomentandwherethebusy
jobswithservicetimedistributionin
where
isthenumberofPoissonarrivals
duringarandomvariablewithdistributionin.Weprovethatanysuchisin
.(SeeSection4).
Lastly,weprovideafewexamplesofcommon,practicaldistributionsincludedintheset
.Alldistributionsweconsiderhavefinitethirdmoment.TheParetodistributionandtheBounded
Paretodistribution(asdefinedin[7])havebeenshowntofitmanyrecentmeasurementofjobservice
4
SvSSS(4)(3)(2)(2)
Sv
(3)(4)
Sv
Figure3:Themaincontributionofthispaper:asimplecharacterizationofby.Solidlinesdelineate(whichisirregular)anddashedlinesdelineate(whichisregular–hasasimplespec-and.isclosetoinsizeandiscontainedinification).Observethenestedstructureof
.isalmostcontainedin.
requirementincomputingsystems,includingHTTPrequests[3,4],UNIXjobs[17,8],andthedurationofFTPtransfers[24].WeshowthattheBoundedParetowithhighvariabilityisinconditionsunderwhichtheParetoanduniformdistributionsarein
.Wealsoprovide
foreach
.(SeeSection5).
2Fullcharacterizationof
TheTelekandHeindl[29]resultmaybeexpressedintermsofnormalizedmomentsasfollows:Theorem1(Telek,Heindl)
iff
isinthefollowingunionofsets:
denotesset
Sinceonlyanoutlineofaproofisgivenin[29],wederiveourownproofofTheorem1in[21]forcompleteness.WenowshowasimplercharacterizationofTheorem2
:
iff
isinthefollowingunionofsets:
.
AsummaryofTheorems1and2isshowninFigure4.Figure4(a)illustrateshowcloseinsize.Figure4(b)showsthedistributionswhicharein
m3and
are
butnot
.
(2)(2)*m3SV3(2)3SSS(2) (2)SV23/22m223/22m2Figure4:(a)Thethicksolidlinesdelineate.Thedashedlines(stripedregion)showAgain,thethicksolidlinesdelineate.Theshadedareashowstheregion.
.(b)
Proof:[Theorem2]Thetheoremwillbeprovedbyreducingsomedistribution
,where
to
andemployingTheorem1.The
proofhingesonthefollowingobservation:Anarbitrarydistribution
iff
iswell-representedby
withprobabilitywithprobability
forsomeLet
.Itthereforesufficestoshowthat
isinset(2).
bethenormalized-thmomentof
bethenormalized-thmomentof
and
for
.
Observethat
for
and
Thus,
isinthefollowingunionofsets:
(3)
Wewanttoshowthat
isinset(2).Todothis,werewriteset(2)as
(4)
Observethat(3)and(4)arenowinsimilarforms.Wenowprovethatset(3)isasubsetofset(4),andset(4)isasubsetofset(3).ThetechnicaldetailsarepostponedtoAppendixB,Lemma9.1.
conditionsonnormalizedmomentsintermsof
denotessetexample,
denotesthesetofdistributionsthatsatisfytheconditionsforsome.For
s.t.and.
7
m33Sv(2)2E3E2Sv(3)Sv(4)3/2E31Sv1(32)14/33/22m2Figure6:Depictionofsetsforasafunctionofthenormalizedmoments.Theoutermostdottedlines(and)delineatethesetofallthepossiblenonnegativedistributions(thatis,anynonnegativedistributionsatisfiesand)[14].foraredelineatedbydashedlines.
Lemma3.1Lemma3.2
.
.
,thelemmafollowsfrom(1),(5),and
Proof:[Lemma3.1]Theproofproceedsbyinduction.WhenTheorem2.Assumethat
for
.Foranydistribution
,thereexists
a-stageCoxiandistribution
bywhich
iswell-represented,wherecanbeexpressedas
andwherethen
isanexponentialdistributionand
isa
-stageCoxiandistribution.Bytheassumption
ofinduction,
.Weprovethat(i)if
,then
and(ii)if
,
.
.Firstobservethat
(i)Suppose
8
whichisminimizedwhen
.Thus,
Next,weprovethat
forall
isindependentof:
Since
at
at
wherethelastinequalityholdsiff
holdsif
9
since
and
and
for
.
(ii)Suppose
inpart(i).Itisalsoeasyto
seethat
,since
isminimizedwhen
and
.Also,since
bypart(i),andhence
.
:Weneedtoshowthat
stageCoxiandistribution.Wewillprovesomethingstronger:that
iswell-representedbysome-iswell-representedbyadistribution
where
,and
isaparticulartwo-stageCoxiandistributionwithnomassprobabilityat
zeroand
isaparticularErlang-(
)distribution.(Fortheintuitionbehindthisparticularwayof
representing,pleasereferto[22]).Thenormalizedmomentsof
arechosenasfollows:
Themeanofmomentsof
ischosenasfollows:
.Itiseasytoseethatthenormalized
andagree:
where
arethenormalizedmomentsof
,and
.Thefirst
condition,
,canbeshownusing
using
:Weagainmustshowthat
iswell-representedbyan
-stageCoxiandistribution.Wewillshowthat
iswell-representedbyadistribution
:
withprobabilitywithprobability
where
themeanofmomentsof
ischosenasfollows:and
.Itiseasytoseethatthenormalized
agree:
11
where
arethenormalizedmomentsof
,and
,since
Since
,
Finally,
.
WewillnowproveTheorem4andLemma4.1.Proof:[Theorem4]Whenassume
,
,andhencethetheoremistrue.Inthefollowingwe
.Let
.Weprovethat
.
Observethattogethertheseimplytheconditionsin(1).Noticethatthefirstthreemomentsof
are
:
and
where
.Thus,
Proof:[Lemma4.1]Let
.
NoticethattheLaplacetransformofis
momentsof
are
13
.Notethat
.Weprovethat
.Thus,thefirstthree
Itiseasytoseethat
and
.Notethat
where
.Thus,
m3PARETO3BPSv(2)2Sv3/2(4)Sv(8)11UNIFORM/TRIANGULAR4/33/22m2Figure7:AsummaryoftheresultsinSection5.Afewparticulardistributionsareshowninrelationto
.BPreferstotheclassofboundedParetodistributionswithhighvariabilitydescribedinDefinition5.Allofthesearecontainedin.UNIFORMreferstotheclassofalluniformdistributionsdescribedinDefinition6.WefindthatthelargertherangeoftheUNIFORMdistribution,thefewerthenumberofstagesthatsuffices.TRIANGULARreferstothesetofsymmetrictriangulardistributions,describedinDefinition7.TheseinterestinglyhavethesamebehaviorastheUNIFORMdistribution.Finally,PARETOreferstotheclassofPareto()distributionswithfinitethirdmoment,describedinDefinition8.Forthisclass,wefindthatthelowerthevalueofthe-parameter,thefewerthenumberofstagesthatareneeded.
workloadsfordistributedserversconsistingofCrayC90andCrayJ90machines[27].Inthissection,weprovethenecessaryandsufficientconditionforaBoundedParetodistributiontobeinusethefollowingdefinition:Definition5
.Formally,we
isasetofBoundedParetodistributionssatisfying
and
inthedefinitionof
theBPdistribution.Theselinesarederivedfrom(7)and(8).Withthisdefinition,thetheoremproveninthissectionisstated:Theorem6
and
,where
15
isthesetofBoundedParetodistributionsnot
in
and
isanemptyset.
Proof:Let
bethenormalized-thmomentofadistribution
for
.When
,the
momentsoftheBoundedParetoare
ByLemmas9.5-9.8inAppendixB,both
and
gotoinfinity.Thus,thereisafinite
such
.
that
and
.Next,considerthecasewith
or
.Byobservingthat
,itiseasytoseethat
goestoinfinityasdoes.Thus,thereisafinitesuchthat
Next,weconsider
andonlyif
.However,since
Thereisafinitesuchthat
for
,too.
intheregion
andzerootherwise.
Definition7
isthedistributionwithdensityfunctionsoftheform
where
and
.
Definition8
isthedistributionwithdensityfunctionsoftheform
.
Withthesedefinitions,thethreedistributionsareformallycharacterizedasfollows:Theorem7Thenormalizedmomentsofsatisfy
all
and
.
Theorem8Thenormalizedmomentsofsatisfy
forall
and
.
17
,where
for
Theorem9Thenormalizedmomentsofdistributionsin
satisfy
whereminimumof
Thus,
,where
,where
,
.andthenormalizedsecondandthirdmomentsof
are
for
,
isanonincreasingfunctionof.So,the
isgivenbyevaluatingitat
andthemaximumisgivenbyevaluatingitat
.
.
arenearlytight.Thisresulthasseveralpracticaluses:First,indesigningalgorithmswhichfitgeneraldistributionstoCoxiandistributions(fittingalgorithms),thegoalistocomeupwithaminimal(fewestnumberofstages)Coxiandistribution.OurcharacterizationallowsalgorithmdesignerstodeterminehowclosetheirCoxiandistributionistotheminimalCoxiandistribution,andprovidesintuitionforcomingupwithimprovedalgorithms.Wehaveourselvesbenefittedfromexactlythispoint:Inacompanionpaper[22],wedevelopanalgorithmforfindingaminimalCoxiandistributionthatwell-representsagivendistribution.Wefindthatthesimplecharacterizationof
providedhereinisveryusefulinthistask.
inthe
Ourresultsarealsousefulasaninputtosomeexistingfittingalgorithms,suchasJohnsonandTaaffe’snonlinearprogrammingapproach[13],whichrequireknowingapriorithenumberofstagesminimalCoxiandistribution.
Inadditiontocharacterizingthosedistributionsinhavedurationsin
,wealsoconsiderwhichM/G/1busyperiods
.Wefindthatthenumberofstageswhichsufficeforabusyperioddurationtobe
well-representedbyaCoxiandistributionis,surprisingly,determinedsolelybythedistributionofthefirstjobinthebusyperiod.Furthermoreweclassifyafewexamplesofcommonandpracticaldistributionsasbeingsubsetsof
forsome.
Futureworkincludesasimplecharacterizationofthesetofdistributionsthatarewell-representedbygeneral-phasePHdistributions.ItisknownthattheErlangdistributionhasthelowestnormalized
secondmomentamongallthe-phasePHdistributions[1].However,alowerboundonthenormalized
thirdmomentof-phasePHdistributionsisnotknown.
References
[1]D.AldousandL.Shepp.TheleastvariablephasetypedistributionisErlang.CommunicationsinStatistics-StochasticModels,3:467–473,1987.
[2]T.Altiok.Onthephase-typeapproximationsofgeneraldistributions.IIETransactions,17:110–116,1985.[3]M.E.CrovellaandA.Bestavros.Self-similarityinWorldWideWebtraffic:Evidenceandpossiblecauses.
IEEE/ACMTransactionsonNetworking,5(6):835–846,December1997.
[4]M.E.Crovella,M.S.Taqqu,andA.Bestavros.Heavy-tailedprobabilitydistributionsintheworldwideweb.
InAPracticalGuideToHeavyTails,chapter1,pages1–23.Chapman&Hall,NewYork,1998.
[5]A.Cumani.Onthecanonicalrepresentationofhomogeneousmarkovprocessesmodellingfailure-timedistri-butions.MicroelectronicsandReliability,22:583–602,1982.
[6]A.FeldmannandW.Whitt.Fittingmixturesofexponentialstolong-taildistributionstoanalyzenetwork
performancemodels.PerformanceEvaluation,32:245–279,1998.
[7]M.Harchol-Balter.Taskassignmentwithunknownduration.JournaloftheACM,49(2),2002.
[8]M.Harchol-BalterandA.Downey.Exploitingprocesslifetimedistributionsfordynamicloadbalancing.In
ProceedingsofSIGMETRICS’96,pages13–24,1996.
[9]M.Harchol-Balter,C.Li,T.Osogami,A.Scheller-Wolf,andM.Squillante.Taskassignmentwithcyclestealing
undercentralqueue.InToappearinProceedingsof23rdInternationalConferenceonDistributedComputingSystems(ICDCS’03).,May2003.Foracopyseehttp://www.cs.cmu.edu/harchol/.
19
[10]G.Irlam.Unixfilesizesurvey-1993.Availableathttp://www.base.com/gordoni/ufs93.html,
September1994.
[11]M.A.JohnsonandM.F.Taaffe.Agraphicalinvestigationoferrorboundsformoment-basedqueueingap-proximations.QueueingSystems,8:295–312,1991.[12]M.A.JohnsonandM.R.Taaffe.Matchingmomentstophasedistributions:Densityfunctionshapes.Commu-nicationsinStatistics—StochasticModels,6:283–306,1990.[13]M.A.JohnsonandM.R.Taaffe.Matchingmomentstophasedistributions:Nonlinearprogrammingap-proaches.CommunicationsinStatistics—StochasticModels,6:259–281,1990.[14]S.KarlinandW.Studden.TchebycheffSystems:WithApplicationsinAnalysisandStatistics.JohnWileyand
Sons,1966.
[15]R.E.A.Khayari,R.Sadre,andB.Haverkort.Fittingworld-widewebrequesttraceswiththeEM-algorithm.In
ProceedingsofSPIE:InternetPerformanceandControlofNetworkSystemsII,volume4523,pages211–220,2001.[16]G.LatoucheandV.Ramaswami.IntroductiontoMatrixAnalyticMethodsinStochasticModeling.ASA-SIAM,
Philadelphia,1999.
[17]W.E.LelandandT.J.Ott.Load-balancingheuristicsandprocessbehavior.InProceedingsofPerformance
andACMSigmetrics,pages54–69,1986.
[18]R.Marie.Calculatingequilibriumprobabilitiesforqueues.InProceedingsofPerformance1980,
pages117–125,1980.
[19]M.F.Neuts.Matrix-GeometricSolutionsinStochasticModels.JohnsHopkinsUniversityPress,1981.
[20]M.F.Neuts.Matrix-GeometricSolutionsinStochasticModels:AnAlgorithmicApproach.TheJohnsHopkins
UniversityPress,1981.
[21]T.OsogamiandM.Harchol-Balter.Necessaryandsufficientconditionsforrepresentinggeneraldistributions
byCoxians.TechnicalReportCMU-CS-02-178,SchoolofComputerScience,CarnegieMellonUniversity,2002.[22]T.OsogamiandM.Harchol-Balter.Aclosed-formsolutionformappinggeneraldistributionstominimalPH
distributions.TechnicalReportCMU-CS-03-114,SchoolofComputerScience,CarnegieMellonUniversity,2003.[23]T.Osogami,M.Harchol-Balter,andA.Scheller-Wolf.Analysisofcyclestealingwithswitchingcost.InTo
appearinACMSigmetrics2003ConferenceonMeasurementandModelingofComputerSystems(SIGMET-RICS’03).,June2003.Foracopyseehttp://www.cs.cmu.edu/harchol/.
[24]V.PaxsonandS.Floyd.Wide-aretraffic:Thefailureofpoissonmodeling.IEEE/ACMTransactionson
Networking,pages226–244,June1995.
[25]D.L.PetersonandD.B.Adams.FractalpatternsinDASDI/Otraffic.InCMGProceedings,December1995.[26]C.SauerandK.Chandy.Approximateanalysisofcentralservermodels.IBMJournalofResearchand
Development,19:301–313,1975.
[27]B.SchroederandM.Harchol-Balter.Evaluationoftaskassignmentpoliciesforsupercomputingservers:The
caseforloadunbalancingandfairness.InProceedingsofHPDC2000,pages211–219,2000.
[28]D.StarobinskiandM.Sidi.Modelingandanalysisofpower-taildistributionsviaclassicalteletrafficmethods.
QueueingSystems,36:243–267,2000.[29]M.TelekandA.Heindl.Momentboundsforacyclicdiscreteandcontinuousphasetypedistributionsofsecond
order.InProceedingsofUKPerformanceEvaluationWorkshop,UKPEW2002,2002.[30]W.Whitt.Approximatingapointprocessbyarenewalprocess:Twobasicmethods.OperationsResearch,
30:125–147,1982.[31]W.Whitt.Onapproximationsforqueues,iii:Mixturesofexponentialdistributions.AT&TBellLaboratories
TechnicalJournal,63:163–175,1984.
20
AProofofTheorems8and9
Proof:[Theorem8]Thefirstthreemomentsof
are
.
Since
.Also,itiseasytoseethat
and
Proof:[Theorem9]Thefirstthreemomentsof
Also,itiseasytoseethat
and
satisfy
satisfy
are
.
set(4)istheunionofthefollowingthreesets:
Itsufficestoprovethat(i),(ii)immediatefromdefinition.Toprove(i),weprovethat
.WefirstshowthatConsideradistribution
,and(iii).(ii)and(iii)are
and..Letbetheupperboundof:
Then,
and
arebothcontinuousandincreasingfunctionsof
for
byLemmas
9.2and9.3.When
,therangeof
is
andhence
.When
,therangeof
is
.Thus,
andhence.Therefore,.However,sinceand
,cantakeanyvaluebetweenthelowerandupperbounds.Therefore,
arecontinuousfunctionsof
.
isanincreasingfunctionof
for
.Theinequalityholdswhen
Lemma9.3Let
.Then,
Let
andthesecondinequalityfollowsfrom
.
iff
,where
Noticethat
(9)
Thus,
that
.Thus,itsufficestoprove
for
.
where
Lemma9.5
Notethat
Lemma9.6
Notethat
.
Proof:Notethat
,
,and
24
.
isanincreasingfunctionfor
for
.Let
.Then,
for
,since
,
,
,and
.If
,
isadecreasingfunctionfor
.
Proof:Notethat
for,itiseasytoseethat
for
when
,welet
Then,
for
,since
,
,and
,
isanincreasingfunctionfor
.If
for
when
.Toseethat
,
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务