您好,欢迎来到微智科技网。
搜索
您的当前位置:首页详解matlab求积分的各种方法

详解matlab求积分的各种方法

来源:微智科技网
详解Matlab求积分的各种方法

一、符号积分

符号积分由函数int来实现。该函数的一般调用格式为:

int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;

int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;

int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。 例:

求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变量

>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式 F2 =

1610027357/6563700-60720/348075*2^(1/2)+14912/41*2^(1/4)+/225*2^(3/4) %给出有理数解

>>VF2=vpa(F2) %给出默认精度的数值解 VF2 =

224.92153573331143159790710032805

二、数值积分

1.数值积分基本原理

求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)•法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。 2.数值积分的实现方法

基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为:

[I,n]=quad('fname',a,b,tol,trace)

基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace)

其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。

例:

求函数'exp(-x*x)的定积分,积分下限为0,积分上限为1。

>>fun=inline('exp(-x.*x)','x'); %用内联函数定义被积函数fname >>Isim=quad(fun,0,1) %辛普生法 Isim =

0.7468241807225

IL=quadl(fun,0,1) %牛顿-柯特斯法 IL =

0.746824133988447

三、梯形法求向量积分

trapz(x,y)—梯形法沿列方向求函数Y关于自变量X的积分(向量形式,数值方法)。

>>d=0.001; >>x=0:d:1;

>>S=d*trapz(exp(-x.^2)) S= 0.7468 或:

>>format long g

>>x=0:0.001:1; %x向量,也可以是不等间距

>>y=exp(-x.^2); %y向量,也可以不是由已知函数生成的向量 >>S=trapz(x,y); %求向量积分 S =

0.746824071499185

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务