教学内容
本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析和解决实际问题。分析实际问题中的数量关系并用一元一次方程表示是始终贯穿这些内容的主线,而且始终渗透着“数学建模”和“化归”的思想方法。
通过丰富实例,从算式到方程建立一元一次方程,展开方程是刻划现实生活的有效数学模型;通过观察、归纳引出不等式的两条性质,为进一步讨论较复杂的一元一次方程的解法准备理论依据;从实际问题出发,运用等式的性质解方程,归纳“移项”、“合并”、“去括号”等法则,逐步展现求解方程的一般步骤;运用方程解决实际问题,通过探究活动,加强数学建模思想,提高学生分析问题和解决问题的能力。
本教案对列方程解决实际问题的内容作了较集中的归类讨论。教学目标
〔知识与技能〕
1、理解一元一次方程及有关概念和等式的基本性质;
2、熟练掌握一元一次方程的解法(数字系数)并学会运用一元一次方程解决简单的实际问题。
〔过程与方法〕
经历解一元一次方程和列一元一次方程解决实际问题的过程,明确解一元一次方程和列一元一次方程的基本步骤,初步树立数学建模思想和体会化归思想的运用。
〔情感、态度与价值观〕
在解决实际问题中,体会数学的应用价值,激发学习数学的欲望,提高分析问题和解决问题的能力。
重点难点
一元一次方程的解法和运用是重点,列一元一次方程解决实际问题是难点。
课时分配
3.1 从算式到方程………………………………………… 2课时3.2 解一元一次方程的讨论(一) ………………………… 3课时3.3 解一元一次方程的讨论(一) ………………………… 4课时3.4 实际问题与一元一次方程 ………………………… 3课时本章小结 ………………………………………… 2课时
第1课时
3.1.1一元一次方程
[教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。
[重点难点]一元一次方程和方程的解的概念是重点;怎样列方程解决实际问题是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]
一、自学导钢
含有未知数的等式叫做方程。方程把问题中的未知数与已知数的联系用等式的形式表示出来。研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数。
怎样根据问题中的数量关系列出方程?怎样解方程?二、怎样列方程
问题 汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。王家庄到翠湖的路程有多远?
地 时 名间
王家庄 10:
00
青 13:
山00
秀 15: 水00
50千米
70千米
王家庄青山
翠湖秀水x千米
1、汽车从王家庄行驶到青山用了多少时间?从青山到秀水用了多少时间?
2、请你用算术方法解决这个问题。
3、如果设王家庄到翠湖的路程为x千米,那么王家庄距青山多少千米?王家庄距秀水多少千米?
4、由于汽车是匀速行驶,可知各段路程的车速相等。你能据此列出方程吗?
列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含未知数的等式——方程。列方程的过程可以表示如下:实际问题一元一次方程
设未知数,列方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
三、一元一次方程的概念
例1 根据下列问题,设未知数并列出方程:
(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
解:(1)设正方形的边长为x厘米,可列方程4x=24 ①(2)设x月后这台计算机的使用时间达到规定的检修时间。1700+150 x=2450 ②
(3)设这个学校的学生人数为x人,那么女生人数是多少?男生人数是多少?
女生人数为0.52 x人,男生人数为(1-0.52)x人。0.52 x -(1-
0.52)x=80 ③
观察方程①②③,它们有什么共同的特点?只含有一个未知数;未知数的次数是1。
只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。
思考:下列式子中,哪些是一元一次方程?
①2x+3;②2×6=12;③1/2x-3=2;④1/x+3x=5;⑤y=0.
四、方程的解
列方程是解决实际问题的一种方法,利用方程可以解出未知数。想一想:(1)x等于多少时,方程①的左右两边相等?(2)x=5能使②的左右两边相等吗?
能使方程左右两边相等的未知数的值,叫做方程的解。思考:x=2是方程3x-1=2x+1的解吗?为什么?
五、课堂练习
课本82面1、2、3题。
六、课堂小结
1、怎样列方程?怎样解决实际问题?
解决实际问题就是把实际问题抽象成数学问题,通过解决数学问题来解决实际问题.
2、什么叫一元一次方程?
3、什么是方程的解?你怎样知道某个未知数的值是方程的解?作业:
课本84面1、2;85面5、6、10(2)题。
七、板书设计:
一元一次方程
一、提出问题 二、一元一次方程的概念 三、方程的解 四、例题
八、课后反思:
第2课时
3.1.2等式的性质
〔教学目标〕1、了解等式的概念;2、利用天平的经验分析得出等式的性质;3、会利用等式的性质解方程。
〔重点难点〕等式的性质和运用是重点;利用天平经验抽象出等式的性质是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕多媒体设备
〔教学过程〕
一、自学导钢
我们知道未知数的某个值是方程的解,但怎样才能知道方程的解是什么呢?方程是含有未知数的等式,我们先来看看等式有什么性质。
二、等式及其性质1、等式
用等号表示相等关系的式子叫等式。如:m+n=n+m,x+2x=3,3×3+1=5×2,3x+1=5y,等等。
注意:等式中一定含有等号。
我们可以用a=b来表示一般的等式。2、等式的性质
观察天平的变化,你能发现了什么?+——
在平衡天平的两边都加上(或减去)同样的量,天平还保持平衡。如果把天平看成等式,球和正方体看成数或式,那么你能得到什么结论?
等式性质1 等式两边加上(或减去)同一个数(或式子),结果仍相等。
用字母表示为:如果a=b,那么a±c=b±c×3÷3
观察天平的变化,你能发现了什么?
把平衡天平的两边都扩大(或缩小)相同的倍数,天平仍保持平衡。
同样地,如果把天平看成等式,球和正方体看成数,那么你能得到什么结论?
等式性质2 等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。
用字母表示为:如果a=b,那么ac=bc;如果a=b,那么a/c=b/c(c≠0)。
注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。
思考:回答下列问题:
(1)从a+b=b+c,能否能到a=c,为什么?(2)从a-b=b-c,能否能到a=c,为什么?(1)从ab=bc,能否能到a=c,为什么?(1)从a/b=c/b,能否能到a=c,为什么?(1)从xy=1,能否能到x=1/y,为什么?
三、例题
例1 利用等式的性质解下列方程:
(1)x+7=26; (2)-5x=20; (3)-1/3x-5=4.
分析:解方程的结果就是将方程转化为x=a的形式,为此,解方程就要将未知项移到一边,常数项移到另一边。
解:(1)将常数项移到右边,得 x=26-7
化为x=a的形式,得 x=19。(2)化为x=a的形式,得x=20/-5 于是x=-4。(3)将常数项移到右边,得-1/3x=4+5即-1/3x=9化为x=a的形式,得
x=9×(-3)于是x=-27。
四、课堂练习
课本84面练习(1)~(4)。
五、课堂小结
1、等式和等式的性质。2、运用等式的性质解方程。
作业:课本85面3、4、7、8。
六、板书设计: 等式的性质一、等式及其性质二、例题 三、练习
七、课后反思:
第3课时
3.2.1解一元一次方程——合并同类项
[教学目标]1、会利用合并同类项解一元一次方程; 2、通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。
[重点难点] 利用合并同类项解一元一次方程是重点;列一元一次方程解决实际问题是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]
一、问题导入
约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁文译本取名为《时消与还
原》。“对消”与“还原”是什么意思?我们先讨论下面的问题,然后再回答这个问题。
二、探索合并同类项解一元一次方程
问题 某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的2倍。前年这个学校购买了多少台计算机?
设前年购买计算机x台。那么去年购买计算机多少台?今年购买计算机多少台?
去年购买计算机2x台,今年购买计算机4x台。问题中的相等关系是什么?
前年购买量+去年购买量+今年购买量=140台依题意,可得方程
x+2x+4x=140
这个方程怎么解呢?我们知道,解方程的最终结果是要化为x=a的形式,为此可以作怎样的变形?把左边合并同类项。可得
7x=140
系数化为1,得 x=20
所以前年这个学校购买了20台计算机。
注意:本题蕴含着一个基本的等量关系,即总量=各部分量的和。思考:上面解方程中“合并同类项”起了什么作用?
它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。
三、例题
例1 解方程7x-2.5x+3x-1.5x=-15×4-6×3解:合并同类项,得
6x=-78
系数化1,得 x=-13
注意:如果方程中有同类项,一定要合并同类项。
四、课堂练习
课本面(1)~(4);补充题:
足球表面是由若干黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?
五、课堂小结
1、合并同类项解一元一次方程。
通过合并同类项把方程化为ax=b(a≠0,a、b是常数)的形式。从而简化方程。
2、列一元一次方程解实际问题。
(1)找等量关系是关键,也是难点;
(2)注意抓住基本等量关系:总量=各部分量的和。作业:
93面1;3(1)、(2);4;5。
六、板书设计:
3.2.1解一元一次方程——合并同类项
一、问题导入 二、探索合并同类项解一元一次方程三、例题 四、练习
七、课后反思:
第4课时
第三章第一阶段复习3.1-3.2.(1)
一、双基回顾
1、方程、方程的解和解方程
含有 的 叫做方程;使方程 相等的 的值叫做方程的解。 的过程叫做解方程。〔1〕x=-3是不是方程2x=5x+9的解,你是怎么知道的.2、一元一次方程
只含有 未知数,并且未知项的次数 的方程叫做一元一次方程。
〔2〕指出下列各式中哪些是一元一次方程?并说明理由。
(1)2x-y=3; (2)x=0; (3)x2-2x+1=0; (4)x+3=2x-1.3、等式的性质
性质1 等式两边 同一个数(或 ),结果仍相等。
若a=b,则 .性质2 等式两边 同一个数,或 的数,结果仍相等。
若a=b,则 ; 若a=b,则 .〔3用适当的数字或式子填空,使所得的结果仍是等式,并说明理由。
(1)如果3x+8=6,那么3x=6[ ]; (2)如果-5x=25,那么x=[ ];
(3)如果2x-3=5,那么2x=[ ]; (4)如果x/4=-7,那么x=[ ]
4、合并同类项解一元一次方程
如果方程中有同类项,可以先合并同类项变成ax=b(a≠0)的形式,再求解。
〔4〕解方程:-3x+2x=5-1二、例题导引
例1 下列说法中正确的是〔 〕
1 若x=y,则x/m2=y/m2; ②若x=y,则mx=my; ③若x/m=y/m,则x=y; ④若x2=y2,则x3=y3
例2 已知方程(m-2)x︱m︱-1+3=m-5是关于x的一元一次方程,求m的值。
例3 已知x=1/2是关于x的方程4+x=3-2ax的解,求a2+a+1的值。例4 小明去商店买练习本,回来后和同学说,店主告诉我,如果多买一些就给我8折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本价格是多少?(请你列出方程,并用等式的性质求解。)
三、练习提高
夯实基础
1、下列各式中,是方程的有〔 〕
①2x+1; ②x=0; ③2x+3>0;④x-2y=3; ⑤1/x-3x=5;⑥x2+x-3=0.A、3个 B、4个 C、5个 D、6个2、下列方程中,解为1/2的是〔 〕
A、5(t-1)+2=t-2 B、1/2x-1=0
C、3y-2=4(y-1) D、3 (z-1) =z-23、下列变形不正确的是〔 〕
A、若2x-1=3,则2x = 4 B、若3x = -6,则x =2C、若x+3=2,则x =-1 D、若-1/2x=3,则x=-、已x=y,下列变形中不一定正确的是〔 〕
A、x-2=y-2 B、-2x=-2y
C、ax=ay D、x/c2=y/c25、下列各式的合并不正确的是〔 〕
A、-x-x = -2x B、-3x+2x = -x C、1/10x-0.1x = 0 D、0.1x-0.9x = 0.8x6、若x2a-1+2=0是一元一次方程,则a= .7、某班学生为希望工程捐款131元,比每人平均2元还多35元。设这个班的学生有x人,根据题意列方程为 .8、将等式3a-2b=2a-2b变形,过程如下:因为3a-2b=2a-2b,所以3a=2a所以3=2
是述过程中,第一步的依据是 ,第二步得出错误结论,其原因是 .9、解下列方程:
(1)6x-5x=-5 (2)-1/2x+3/2x=4(3)2/3y-y=-3+1 (4)2x-7x=19+31
10、某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
设前年购买了计算机x台,可以表示出:去年购买计算机 台,今年购买计算机 台。根据问题中的相等关系:前年购买量+去年购买量+今年购买量=140台,列得方程 .解这个方程。
11、从30㎝长的木条上零截出两段长度相等的木条后,还剩6㎝长的木条,求截去的每一段木条的长是多少?
第5课时
3.2.2解一元一次方程——移项(2)
[教学目标]1、理解移项的概念;2、会用移项法解一元一次方程;3、经历用方程解决实际问题的过程。
[重点难点]用移项法解方程是重点;移项是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]
一、问题导入
一元一次方程有这样的特点:一边是含有未知数的项,一边是常数项。这样的方程我们可以用合并同类项来解,那么像3x+7=32-2x这样的方程怎么解呢?
二、移项的概念
问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生?
设这个班有x人,那么这批书有多少本?还可以怎么表示?这批书共有(3x+20)本,还可表示为(4x-25)本。因为3x+20与4x-25都表示这批书,所以
3x+20=4x-25
由上节课的学习,你能猜想怎么解这个方程吗?把未知项移一到边,把常数项移到一边。怎样才能做到这一点呢?
由等式的性质,把等式两边同时减去4x,加上20。即-4x-20-4x-20
3x+20 = 4x-25 ①3x-4x=-20-25 ②
比较①、②,方程中的项4x与20发生了怎样的变化?
4x从右边移到了左边,并且改变了符号,20从左边移到了右边,并且改变了符号。
像这样,把等式一边的某项变号后移到另一边,叫做移项。把②合并同类项,得
-x=-45 ∴x=45
所以这个班有45名学生。
注意:表示同一个量的两个不同的式子相等,这是一个基本的等量关系。
思考:上面解方程中“移项”有什么作用?
通过移项,使含未知数的项在等号的一边,常数项在另一边,从而
把方程转化为我们熟悉的类型,这就是化归思想的运用。
解方程经常要合并与移项。前面提到的古老代数书中的“对消”和“还原”,指的就是“合并”与“移项”。
三、例题
现在我们来解前面提到的方程。例1 3x+7=32-2x解:移项,得
3x+2x=32- 7合并同类项,得
5x=25∴x=5
注意:移项要变号。
四、课堂练习
1、下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1)从3x+6=0得到3x=6;(2从)2x=x-1得到2x= 1-x
(3)从2+x-3=2x+1得到2-3-1=2x-x。2、课本91面(1)~(2);
3、甲粮仓存粮1000吨,乙粮仓存粮798吨,现从甲粮仓运一部分到乙粮仓使甲乙两个粮仓的粮食数量相等,那么应从甲粮仓运出多少吨粮食?
五、课堂小结
1、什么叫做移项?移项的依据是什么?2、移项法解一元一次方程要注意什么?
移项要注意变号。
3、我们知道了哪些基本的等量关系?总量=部分量的和;
表示同一个量的两个不同的式子相等.作业:
课本2;3(3)、(4);8;9。六、板书设计:
3.2.2解一元一次方程——移项(2)
一、问题导入 二、探索移项解一元一次方程三、例题 四、练习
七、课后反思:
第6课时
3.2.3一元一次方程的应用(一)
[教学目标]1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。
[重点难点]运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。
教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]一、自学导钢
前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。
二、例题
例1 有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?
分析:从符号与绝对值两方面观察,这列数有什么规律?
符号正负相间;后者的绝对值是前者绝对值的3倍。即后一个数是前一个数的-3倍。
如果设其中一个数为x,那么后面与它相邻的两个数你能用x表示出来吗?
后面两数分别是-3x,9x。问题中的相等关系是什么?三个相邻数的和=-1701。
由此可得方程 x-3 x+9x=-1701解之,得x=-243。
所以这三个数是-243,729,-218。
注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。这一点要注意学习。
例2 根据下面的两种移动电话计费方式表,考虑下列问题。
方式方式一二
30元/
月租费0元
月本地的通话0.300.4费元/分元/分
(1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢?
(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?
分析:(1)按方式一在本地通话200分钟需要交费多少元?350分钟呢?
通话200分钟需要交费:30+200×0.3=90元;通话350分钟需要交费:30+350×0.3=135元.
按方式二在本地通话200分钟需要交费多少元?350分钟呢?通话200分钟需要交费:200×0.4=80元;通话350分钟需要交费:350×0.4=140元.
(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元?
按方式一要收费(30+0.3t)元;按方式二要收费0.4t元.问题中的等量关系是什么?方式一的收费=方式二的收费.由此可列方程 30+0.3t=0.4t解之,得 t =300
所以,当一个月内通话300分钟时,两种计费方式的收费一样多.引申:你知道怎样选择计费方式更省钱吗?当t=400时, 30+0.3t=30+0.3×400=150元; 0.4t=0.4×400=160元.当时间大于300分钟时,方式一更省钱.
三、一元一次方程解实际问题的基本过程
将实际问题转化为数学问题即建立数学模型,通过解决数学问题来
解决实际问题。
四、课堂练习
学校办了储蓄所,开学时,李英存了200元,王建存了140元,以后李英每月存20元,王建每月存35元,经过几个月,李英、王建的存款数相等?
五、课堂小结
本节课我们研究了通过列一元一次方程,把实际问题抽象成数学问题即建立数学模型,再通过解一元一次方程即解决数学问题来解决实际问题的具体方法,这是解决实际问题的一般思想方法。
作业:
课本94面6、7、10。六、板书设计:
3.2.3一元一次方程的应用(一)
一、问题导入 二、探索一元一次方程解实际问题的基本过程三、例题 四、练习
七、课后反思:
第7课时
3.3.1解一元一次方程-去括号(1)
[教学目标]1、掌握含有括号的一元一次方程的解法;2、经历运用方程解决实际问题的过程,进一步体会方程模型的作用。
[重点难点]含有括号的一元一次方程的解法是重点;括号前面是负号时去括号是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]一、自学导入
前面我们已经学会了运用移项、合并同类项来解一元一次方程,但
当问题中的数量关系较复杂时,列出的方程也会较复杂,解方程的步骤也相应更多些,如下面的问题。
二、探索去括号解一元一次方程
问题 某加工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电150万度,这个工厂去年上半年每月平均用电多少度?
分析:问题中的等量关系是什么?
上半年用电度数+下半年用电度数=1500000。
设去年上半年平均用电x度,那么下半年每月平均用电多少度?上半年共用电多少度?下半年共用电多少度?
下半年每月平均用电(x-2000)度;上半年共用电6 x度;下半年共用电6(x-2000)度。
由此可得方程:
6 x+6(x-2000)=1500000
这个方程中含有括号,怎样才能转化为我们熟悉的形式呢?去括号。
去括号,得6 x+6x-12000=1500000
解得 x=13500
所以这个工厂去年上半年每月平均用电13500度。思考:你还有其它的解法吗?设去年下半年平均用电x度,则
6x+6(x+2000)=1500000解之,得x=11500
所以去年上半年每月平均用电11500+2000=13500度。
三、例题
例1 解方程:3x-7(x-1)=3-2(x+3)解:去括号,得
3x-7x+7=3-2x-6
合并,得-4x+7=-2x-3移项,得-4x+2x =-3-7
-2x =-10 ∴x =5
注意:括号外面是负号时,去括号后,括号内的每一项的积都要变号。
四、课堂练习
1、课本97面(1)、(2)。
2、初一某班同学准备组织去东湖划船,如果减少一条船,每条船正好坐9名同学,如果增加一条船,每条船正好坐6名同学,问这个班共有多少名同学?
五、课堂小结
1、含有括号的一元一次方程的解法。
当括号外面是负号,去掉括号后,要注意变号。2、解一元一次方程的步骤:
①去括号;②移项;③合并同类项;④系数化为1。
3、例题解法一是求什么设什么,叫直接设元法,方程的解就是问题的答案;解法二不是求什么设什么,叫间接设元法,方程的解并不是问题的答案,需要根据问题中的数量关系求出最后的答案。作业:
课本102面1、2、4、5。
六、板书设计:
3.3.1解一元一次方程-去括号(1)
一、问题导入 二、探索去括号解一元一次方程三、例题 四、练习
七、课后反思:
第8课时
3.3.2解一元一次方程 —— 去括号(2)
[教学目标]1、进一步掌握列一元一次方程解应用题;2、通过分析“顺逆水”和“配套”问题,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。
[重点难点]分析题意、找等量关系和列方程是重点;找出能够表示问题全部含义的相等关系是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]一、复习导入
上节课我们学习了解含有括号的一元一次方程,现在我们来解两道题:
(1)2(x+3)=2.5(x-3);(2)2×1200x=2000(22-x)
怎样运用这样的方程来解决实际问题呢?今天我们就来讨论一下。
二、例题
例1 一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。已知水流的速度是3千米/时,求船在静水中的平均速度。
分析:顺流行驶的速度、逆流行驶的速度、水流的速度、静水中的速度之间有什么关系?
顺流的速度=静水中的速度+水流的速度;逆流的速度=静水中的速度-水流的速度。问题中的相等关系是什么?
顺水行驶的路程=逆水行驶的路程。
设船在静水中的平均速度为x千米/时,那么顺流的速度是什么?逆流的速度是什么?
顺流的速度是(x+3)千米/时逆流的速度是(x-3)千米/时。
由些可得方程
2(x+3)=2.5(x-3)由前面的解答,知x=27
所以船在静水中的速度是27千米/时。
注意:要牢牢记住顺流的速度=静水中的速度+水流的速度;逆流的速度=静水中的速度-水流的速度。
例2 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好
配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
分析:当问题中的量比较多,关系比较复杂时,我们可以把量分成两类列表,从而使条件条理化,如下表所示:
请设未知数,填上表。
问题中的等量关系是什么?
螺母的数量=2×螺钉的数量。由此,可列方程
2×1200x=2000(22-x)
由前面的解答可知x=10
22-x=22-10=12
所以应分配10名工人生产螺钉,12名工人生产螺母。
注意:列表法是列方程解应用题的一种行之有效的方法,有注意学习。
三、课堂练习
在一次美化校园活动中,先安排31人去拔草,18人去植树,后又是增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?
四、课堂小结
通过前面的学习讨论,我们进一步体会到列方程解决实际问题的关键是正确地建立方程中的相等关系;同时知道所列方程的解不一定就是问题的答案,必须检验之后才能确定,这是一个要注意的问题。作业:
课本102面6、7、11。
五、板书设计:
3.3.1解一元一次方程-去括号(2)
一、问题导入 二、探索去括号解一元一次方程三、例题 四、练习
七、课后反思:
第9课时
3.3.3解一元一次方程——去分母(1)
[教学目标]1、掌握含有分母的一元一次方程的解法;2、归纳解一元一次方程的步骤,体会转化的思想方法。
[重点难点]解含有分母的一元一次方程是重点;去分母时适当地添括号是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]一、自学导钢
英国伦敦博物馆保存着一部极其珍贵的文物——纸莎草文书,其中有如下一道著名的末知数的问题:
一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。
设这个数为x,可得方程2/3x+1/2x+1/7x+x=33
当时埃及人如果把问题写成这种形式,它一定是“最早”的方程。这种方程与我们前面学习的方程有什么不同?有些系数是分数。
今天我们就来学习这种含有分数系数方程的解法。
二、含有分母的一元一次方程的解法和步骤1、探索方法
请你用自己的方法试着解上答上面的方程。
学生自主解方程,教师收集不同的解法,比较直接合并同类项和先去分母解法的难易。
显然,通过先去母把方程转化为我们熟悉的形式来解比较简单。现在我们来看一个例子。
例1 解方程:
怎样去分母?去分母的依据是什么?
方程左右两边同时乘以分母的最小公倍数;依据是等式的性质2。下面去分母的结果正确吗?如果不正确,请说明理由。①15x+1-20=3x-2-2x+3;②5×(3x+1)-2=3x-2-(2x+3);③5×(3x+1)-20=3x-2-(2x+3)。
①不正确,原因是去括号后,分子没有加括号;②不正确,原因是漏乘了“-2”这一项;③是正确的。
学生写出解答过程,结果是x=7/16。
注意:去分母时,方程两边的每一项都要乘,不能漏项;去分母后,分子要加上括号。
2、归纳步骤
请大家总结一下,解一元一次方程有哪些步骤?
①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。这些步骤的依据是等式的性质和乘法分配律。
注意:上述步骤不是一陈不变的,要根据方程的特点,灵活处理,如有时可以先合并同类项再移项。
三、例题解方程:
解:去分母,得18x+3(x-1)=18-2(2x-1) 去括号,得18x+3x-3=18-4x+2 合并同类项,得21x-3=20-4x 移项,得 21x+4x=20+3 合并同类项,得25x=23 系数化为1 得x=23/25
四、课堂练习
课本101面(1)、(2)题。补充题:
(3);(4)y-.五、课堂小结
1、解一元一次方程主要是化归思想,通过去分,去括号,合并同类项,系数化为1,一步一步化为最简形式x=a.
2、解一元一次方程的步骤:
①这些步骤的主要依据是等式的性质和运算律;②这些步骤不是一成不变的,要灵活掌握。3、去分母时要注意的问题:①没有分母的项不要漏乘;
②去掉分数线,同时要把分子加上括号。作业:
课本102面3、10、14。
六、板书设计: 3.3.3解一元一次方程——去分母(1)一、问题导入
二、含有分母的一元一次方程的解法和步骤三、例题四、课堂练习
七、课后反思:
第10课时
3.3.4解一元一次方程—去分母(2)
[教学目标]1、进一步掌握利用一元一次方程解决实际问题;2、经历分析“工程问题”中数量关系过程,培养分析问题和解决问题的能力。
[重点难点]工程问题中的工作量、工作效率、工作时间的关系是重点,把全部工作量看作1是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]一、自学导钢
在小学里我们学习过工程问题,知道这类问题中有工作量、工作时间和工作效率这三种量。那么工作量、工作时间和工作效率之间有怎样的关系呢?
工作量=工作时间×工作效率
如果一件工作甲独做a小时完成,那么甲独做1小时可完成多少工作量?
二、例题
例1 整理一批图书,由一个人做要40小时完成。现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应先安排多少人工作?分析:一个人的工作效率是多少?1/40。问题中的等量关系是什么?
增加工人前完成的工作量+增加工人后完成的工作量=1
设先安排x人工作,则x人4小时完成的工作量是多少?4x/40。
增加2人和“他们”(即x人)一起工作8小时完成的工作量是多少?8(x+2)/40。
由此可得方程 4x/40+8(x+2)/40=1学生解方程,得x=2。
答:应先安排2名工人工作4小时。
例2 水池有一个进水管,6小时可注满空池,池底有一个出水管,8小时可放完满池的水,如果同时打开进水管和出水管,那么多少小时可以把空池注满?
分析:问题中的等量关系是什么?注入的水量-放出的水量=1
设x小时可以把空池注满,那么注入的水量是多少?放出的水量是多少?1/6x;1/8x。
由此可得方程 1/6x-1/8x=1解得x=24。
答:24小时可以把空池注满。
三、课堂练习
某地下管道由甲队单独铺设需要3天完成,乙队单独铺设要5天完成,甲队铺设了1/5的工作量后,为了加快进度,乙队加入,从另一端铺设,问管道铺好,乙队做了多少天?
四、课堂小结
工程问题中要善于把握什么是总工作量,总工作量可以看成“1”;工程问题中的等量关系一般是各部分完成的工作量之和等于总工作量“1”。
作业:
课本102面12、8、9。
五、板书设计:
3.3.4解一元一次方程—去分母(2)
一、问题导入二、例题三、课堂练习
六、课后反思:
第11课时
第三章第二阶段复习3.2(2)-3.3
一、双基回顾1、移项
把等式一边的某一项 移到另一边,叫做移项。〔1〕把方程2-2x=3x-1含未知数的项移到左边,常数项移到右边。〔注意〕移项要变号。2、去括号
方法:运用乘法分配律。
〔2〕a+2 (b-c-d)= ; a-3 (b+c-d)= .
3、去分母
方程两边同乘以所有分母的 。〔注意〕①每一项都要乘,不能漏乘;②去掉分数线后,分子要加上括号。
〔3〕解方程时,去分母后正确的是〔 〕
A、4x+1-10x+1=1 B、4x+2-10x-1=1C、4x+2-10x-1=10 D、 4x+2-10x+1=10
4、解一元一次方程的步骤:
(1) ;(2) ;(3) ;(4) ;(5) 。
〔注意〕具体解方程时,这些步骤要灵活处理,不能死搬硬套。5、列方程解应用题的基本过程:
(1) ; (2) ;(3) ;(4) ;(5) ;(6) ; (7) 。二、例题导引例1 解方程:
(1)10y-2(7y-2)=5(4y+3)-2y (2)x-3/2[2/3(x/4-1)-2]=-2. 例2 解方程:
例3 某校一、二两班共有95人,体育锻炼的平均达标率(达到标准的百分率)是60%,如果一班达标率是40%,二班达标率是78%,求一、二两班的人数各是多少?
例4 国外营养学家做了一项研究,甲组同学每天正常进餐,乙组同学每天除正常进餐外每人还增加六百毫升牛奶。一年后发现,乙组同学平均身高的增长值比甲组同学平均身高的增长值多2.01㎝,甲组同学平均身高的增长值比乙组同学平均身高的增长值的3/4少0.34㎝,求甲、乙两组同学平均身高的增长值。
三、练习提高
夯实基础
1、将方程4x+1=3x-2进行移项变形,正确的是〔 〕
A、4x-3x=2-1 B、4x+3x=1-2 C、4x-3x=-2-1 D、4x+3x=-2-12、已知y1=2x+1,y2=3-x,当x= 时,y1=y2.3、将下列各式中的括号去掉:
(1)a+(b-c)= ; (2)a-(b-c)= ;(3)2(x+2y-2)= ; (4)-3(3a-2b+2)= .
4、方程去分母后,所得的方程是〔 〕
A、2x-x+1=1 B、2x-x+1=8 C、2x-x-1=1 D、2x-x-1=85、如果式子(x-3)/2与(x-2)/3的值相等,则x= .6、小明买了80分与2元的邮票共16枚,花了18元8角,若设他买了80分邮票x枚,可列方程为 .7、解下列方程:
(1)5(x+2)=2 (2x+7) (2.)3(x-2)=x-(7-8x)
8、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型
汽车的停车费为4元/辆,现在停车场有50辆中、小型汽车,这些共缴纳停车费230元,问中、小型汽车各有多少辆?
第12课时
3.4.1销售中的盈亏
[教学目标]1、理解商品销售中所涉及的进价、售价、利润和利润率等概念;2、能利用一元一次方程解决商品销售中的实际问题。
[重点难点] 利用一元一次方程解决商品销售中的实际问题是重点;打折和找相等关系是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板[教学过程]一、导入新课
数学源于生活,又服务于生活。方程是解决实际问题的一种很有用的数学工具。本节我们将进一步探究如何用一元一次方程解决实际问题。
二、例题
例1 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
分析:进价、售价和利润之间有什么关系?什么是利润率?利润=售价-进价;利润率=利润/进价×100%.本题看是否盈利还是亏损的依据是什么?依据是看卖出两件衣服盈利与亏损谁大。
现在我们来看卖出盈利25%的这件衣服盈利多少。设盈利25%的这件衣服进价是x元,可得怎样的方程?
0.25x=60-x 解之,得x=48
所以这件衣服利润是60-48=12元。再来看亏损25%的这件衣服亏损多少元。
设亏损25%的这件衣服进价是y元,可得怎样的方程? -0.25y=60-y 解之,得y=80所以这件衣服的利润是60-80=-20元。
因此,卖这两件衣服亏损了8元。
注意:盈利时利润率通常用正数表示,所以亏损时利润率是负数。
例2 某种商品零售价每件900元,为了适应市场的竞争,商店按零售价的9折降价并让利40元销售,仍可获利10%,则这种商品进货每件多少元?
分析:问题中的等量关系是什么? 实际售价-40-进价=利润。
设这种子商品进货每件x元,那么实际售价是多少?利润是多少?实际售价是900×9/10,利润是10%x。由此可得方程为
900×9/10-40-x=10%x解之,得 x=700
所以这种商品进货每件700元。
三、课堂练习
]一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?
四、课堂小结
1、商品销售问题中的基本等量关系: 利润=售价-进价
利润率=利润/进价×100% 打x折的售价=原售价×x/10
2、恰当地运用商品销售问题中的基本等量关系是解决这类问题的关键。
作业:
108面3、4题。补充题:
某商场因换季准备处理一批羊绒衫,若每件绒衫按标价的六折出售将亏110元,而按标价的八折出售每件将赚70元,问每件羊绒衫的标价是多少元?进价是多少元?[提示:进价不变。]
五、板书设计:
3.4.1销售中的盈亏
一、问题导入二、例题
三、课堂练习
六、课后反思:
第13课时
3.4.2油菜种植的计算
[教学目标]1、学会解决有关百分率问题;2、经历探究“油菜种植”问题的过程,进一步提高分析问题和解决问题的能力。
[重点难点] 解决有关百分率问题是重点;寻找相等关系是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]一、导入新课
上节课我们探究了“销售中的盈亏”问题,使我们进一步感受到一元一次方程作为实际问题的数学模型的作用。本节课我们再来探究农业生产中的一个较复杂的问题——油菜种植的计算。
二、例题
某村去年种植的油菜籽亩产量达160千克,含油率40%,今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。
(1)今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少?
(2)油菜种植成本为210元/亩,菜油收购价为6元/千克,请比较这个村去今两年油菜种植成本与将菜油全部售出所获收入。
分析:(1)我们先来弄清楚什么是产油量?产油量=油菜籽亩产量×含油率
当题目中的数量关系比较复杂时,运用列表法可以较方便的处理问
题。请你找出问题中的两类量并列出草表。
设今年油菜种植面积为x亩,请填表: 今 年去 年
种植面积亩产量含油率
x160+20(10+40)%
x +4416040%
产油(160+20)160×40%·(x量×(10+40)%·x+44)问题中的等量关系是什么?
今年的产油量=去年的产油量(1+20%)
由此得方程
(160+20)×(10+40)%·x=160×40%·(x +44)·(1+20%)
解之,得 x=256
所以今年油菜种植面积是256亩。
(2)去年油菜种植成本是多少?售油收入是多少?
油菜种植成本是:210(x +44)=210×300=63000元;售油收入是:6×160×40%×300=115200元。
今年油菜种植成本是多少?售油收入是多少?
油菜种植成本是:210x =210×256=53760元;
售油收入是:6×180×50% x =6×180×50%×256=138240元。因此,今年比去年种植油菜的成本减少了: 6300-53760=9240元今年比去年售油收入增加了: 138240-115200=23040元
通过上面的比较,可以知道今年比去年的成本降低了,收入增加了。这就是科学种田给我们带来的好处。
三、课堂练习
为了准备小颖6年后上大学的学费15000元,她的父母现在就参加了教育储蓄,已知6年教育储蓄率是3.60%,那么小颖的父母现在应存入多少元?
四、课堂小结
解决有关百分率的问题必须首先明确与这些百分数有关的基本等量关系如本例中的产油量=油菜籽亩产量×含油率,还有利息=利率×本金,等等。作业:
课本108面5、6、9题。
五、板书设计:
3.4.2油菜种植的计算
一、问题导入二、例题三、课堂练习六、课后反思:
第14课时
3.4.3球赛积分表问题
[教学目标]1、学会解决信息图表问题的方法;2、经历探索球赛积分中数量关系的过程,进一步体会方程是解决实际问题的数学模型,明确用方程解决实际问题时,还要检验方程的解是否符合问题的实际意义。
[重点难点] 解决信息图表问题是重点;从图表中获取有用的信息是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程]一、问题导入
我们都喜欢打篮球,你知道篮球比赛胜一场积多少分,负一场积多少分吗?我们今天就来讨论与球赛积分有关的问题。
二、例题
某次篮球赛积分榜
队 名比赛场胜 负 积
次场场分
前 进1410424东 方1410424光 明149523蓝 天149523雄 鹰147721远 大147721卫 星1441018钢 铁1401414
(1)用式子表示总积分与胜、负场数之间的数量关系;(2)某队的胜场总积分能等于它的负场总积分吗?
分析:要解决这个问题,必须求出胜一场积多少分,负一场积多少分。你能从积分表中看出负一场积多少分吗?从最后一行可以看出负一场积1分。
你能从表中看出求胜一场积分的等量关系吗?由第四行可知,胜场得分+负场得分=23设胜一场得x分,则 9x+5×1=23解之,得x= 2
用表中的其它行可以验证:负一场得1分,胜一场得2分。(1)若某队胜m场,那么总积分是: 2m+(14-m)=m+14
(2)若某队的胜场总积分等于它的负场总积分,由(1)得 2m=14-m 解得m=14/3你能回答这个问题吗?
某队的胜场总积分不能等于它的负场总积分,因为获胜的场数不能是分数。
注意:用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要注意方程的解是否符合问题中的实际意义。
拓展:如果删去积分榜的最后一行,你还能知道胜一场得多少分,负一场得多少分吗?
思考:设胜一场得x分,那么负一场得多少分?还可以怎么表示?由第三行知,负一场得;由第五行知负一场得.由此得
= 解之,得x=2==1.
所以胜一场得2分,负一场得1分.
三、课堂练习
某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章价格各是多少元?
共计145元共计280元
四、课堂小结
1、解决有关图表信息问题,要充分利用图表中的数据信息;
2、利用方程解决实际问题时,不仅可以求解,还要看解是否符合实际意义,由此,可以利用方程对一些问题进行推理判断。作业:
课本107-2;108-7、8题。五、板书设计:
3.4.3球赛积分表问题
一、问题导入二、例题三、课堂练习六、课后反思:
第15课时
第三章第三阶段复习3.4
一、双基回顾
1、列方程解应用题的步骤
(1)审:明确已知什么,求什么及基本关系。(2)找:找能表示题目全部含义的相等关系。
(3)设:设未知数。可直接设,也可间接设,要尽量使列出的方程简单。
(4)列:根据等量关系列方程。(5)解:解方程
(6)验:检验方程的解和解是否符合实际问题。 (7)答:怎么问怎么答。2、分析数量关系的方法
(1)译式法:把题目中关键性的数量关系语句译成含有未知数的代数式。
(2)列表法:用一类量作为“行”,一类量作为“列”制成表格,把已知量和未知量(用所设字母表示)“对号入座”。
(3)图解法:用图形表示题目中的数量关系,例如行程问题中的线段图。
3、设未知数的方法
(1)直接设未知数:题目求什么就设什么。
(2)间接设未知数:设的未知数不是题目直接求的量。
(3)设辅助未知数:所设未知数仅作为题目中量与量之间关系的桥梁,它在解方程的过程中会自然消去。
二、例题导引
例1 某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路,虽然行车的速度增加到每小时12千米,但比去时还是多用了10分钟,求甲、乙两地的距离。
例2 张叔叔用若干元人民币购买了一种年利率为10%的一年期债券,到期后他取出本金的一半用作购物,剩下的一半及所得的利息又全部买了这种一年期的债券(利率不变),到期后得本息和1320元,问张叔叔当初购买这种债券花了多少钱?
例3 某市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费,如果超过60立方米,超过部分按每立方米1.2元收费。已知11份某用户的煤气费平均每立方米0.88元,那么11月
份该用户应交煤气费多少元?
例4 某学校八年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:“羽毛球及球拍都打9折”优惠,乙商店说:“买一副球拍赠送2只羽毛球”优惠。
(1)学校准备花90元钱全部用于买2副羽毛球及羽毛球若干只,问到哪家商店购买更合算?
(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店一样合算?
三、练习提高
1、用40㎝长的铁丝围成一个长方形,已知长是宽的3倍,则围成的长方形的面积为 ㎝2.
2、要锻造一个直径为12㎝,高为10㎝的圆柱形零件,需要直径为16㎝的圆柱形钢条 ㎝.3、甲、乙、丙三辆卡车所运货物的吨数比是6:7:4.5,已知甲车比丙车多运12吨货物,则三辆卡车共运货物 吨.4、某商品提价10%后,欲恢复原价,则应降价〔 〕
A、10% B、9% C、% D、%
5、一个两位数,数字之和为11,如果原数加45得到的数和原数的两个数字交换位置后恰好相等,问原数是多少?
第三章第三阶段复习
1、某城市现有人口42万人,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?
2、张先生于1999年3月8日买入1999年发行的5年期国库券1000元,回家后他在存单的背面记下了当国库券于2004年3月8日到期后他可获得的利息数为390元。若张先生计算无误的话,则该种国库券的年利率是多少?(利息=本金×存期×年利率,国库券无利息税。)
能力提高
3、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了,则这次买卖的盈亏情况为〔 〕
A、赚6元 B、不亏不赚 C、亏4元 D、亏24元
4、一张试卷只有25道选择题,做对一道得4分,不做或做错一题倒扣1分,某学生做了全部试题,共得70分,他做对了的题数是〔 〕
A、17 B、18 C、19 D、20
5、某市出租车的收费标准是:起步价5元(行驶距离不超过3千米,都需付5元车费),超过3千米,每增加1千米,加收1.2元。某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是多少?
6、某商品售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获得10%,此商品的进价是每件多少元?
7、一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟的时候,学校将一个紧急通知传给队长。通讯员立即从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少时间可以追上学生队伍?
8、“五·一”期间,某校由4位教师和若干位学生组成的旅游团,拟到国家4A级旅游风景区-闽西豸山旅游,甲旅行社的收费标准是:如果买4张全票,则其余的人按七折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,旅游团体票按原价的八折优惠,这两家旅行社的全票价格均为每人300元。(1)若有10位学生参加该旅游团,问选择哪家旅行社更省钱?(2)参加该旅游团的学生人数是多少时,两家旅行社收费一样?
第16课时第三章小结
一、本章知识结构实际问题的解答实际问题
设未知数,列方程
数学问题的解(x=a)
检 验解方程
数学问题
二、回顾与思考
1、下列式子 是方程; 是一元一次方程.
①x-3; ②x2-1=0;③2x-3=0;④x-2y=3;⑤1/x+1=2;⑥ax+1=b(a、b是常数。).
2、已知x=-1是方程ax-3x=1的解,解方程:3x+a=1.解:把x=-1代入ax-3x=1,得
-a+3=1 ∴a=2
方程3x+a=1变为3x+2=1 ∴x=-1/3
3、若ma=mb,那么下列不等式不一定成立的是[ ]
① ma+1=mb +1 ; ② ma-3=mb-3 ;③ a=b ; ④ -1/2am=-1/2mb. 4、解一元一次方程:
解:去分母,得 6-2(x-2)= 1+3x ①去括号,得 6-2x+4=1+3x ②移项,得 -2x-3x=1-4-6 ③合并同类项,得 -5x=-9 ④系数化为1,得 x=1.8 ⑤
5、一件工程,甲、乙、丙队单独做各需10天、12天、15天才能完成,现在计划开工7天完成,乙、丙先合做3天,乙队因事离去,由甲队代替,在各队工作效率都不变的情况下,能否按计划完成此工程?
①已知哪些已知条件?求什么?
已知甲、乙、丙队单独做各需10天、12天、15天;乙、丙先合做3天,剩下的由甲队代替乙队完成任务。求合做完成任务的时间。
②包含全部内容的等量关系是什么?丙乙合做的任务+甲丙合做的任务=1③怎样设未知数?
设甲队做了x天或设甲丙合做了x天.④根据等量关系可列怎样的方程?(1/12+1/15) ×3+(1/10+1/15)x=1或者(1/12+1/15) ×3+(1/10+1/15)(x-3)=1.∴x=3.3
⑥因为3.3+3=6.3<7,所以能按计划完成。
⑦答:在各队工作效率不变的情况下,能按计划完成此工程。三、例题导引
例1 解方程:
(1)1/3(x-5 )=3-2/3(x-5); (2)
例2 小刚为书房买灯,现有两种灯可供选购,其中一种是9W(即0.009kW)的节能灯,售价49元/盏;另一种是40W(即0.04kW)的白炽灯,售价18元/盏。假设两种灯的照明度一样,使用寿命都可以达到2800h。已知小刚家所在地的电价是每千瓦时0.5元。
(1)当照明时间是多少时,使用两盏灯的费用一样多?
(2)试用特殊值判断:照明时间在什么范围内选用节能灯费用低?
分析:(1)问题中的等量关系是什么?
买节能灯的钱+节能灯的电费=买白炽灯的钱+白炽灯的电费
设照明时间是x小时时,使用两盏灯的费用一样多,那么节能灯的电费是多少?白炽灯的电费是多少?
节能灯的电费是0.009x·0.5,白炽灯的电费是0.04x·0.5.由此可得方程 49+0.009x·0.5=18+0.04x·0.5解之,得 x=2000
所以当照明时间是2000小时时,使用两盏灯的费用一样多.(2)当x=1000时,
节能灯的电费是49+0.009x·0.5=49+0.009×1000×0.5=53.5白炽灯的电费是18+0.04x·0.5=18+0.04×1000×0.5=38所以当照明时间大于2000小时时,使用用能灯费用低.作业:
课本113面复习题3.
第四章 图形认识初步
单元要点分析 教学内容
本章主要内容有多姿多彩的图形,直线、射线、线段,角的度量,角的比较与运算.
教材从生活中常见的立体与平面图形入手,通过实例,在丰富的现实情境中,使学生经历对几何体的研究的数学活动过程,认识一些常见的几何体及点、线、面的一些特征和性质;通过裁剪、展开、制作及从不同方向看等活动,在几何体与平面图形的转换过程中发展学生的空间观念;通过实例,在丰富的现实情境中,使学生经历对简单的平面图形直线、射线、线段与角的研究的数学活动过程,通过动手画图、线段的大小比较及角的度量、比较与运算等活动过程,理解并掌握这些图形的一些简单性质,感受丰富多彩的图形世界,并为今后进一步学习平面几何知识奠定基础.
三维目标
1.知识与技能
(1)经历探究物体的形状与几何体的关系过程,能从现实物体中抽象得出立体图形.
(2)经历立体图形与平面图形的转换过程,掌握一些简单的立体图形与平面图形的互相转化的技能.
(3)经历对点、线、面、体关系的研究的数学活动过程,建立平面图形与立体图形的联系.
(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、射线、线段和角的表示方法;掌握角的度量方法.
(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,探索线段与线段之间、角与角之间的数量关系.
(6)认识线段的等分点,角的平分线、角角和补角的概念.
2.过程与方法
(1)会用掌握的几何体知识描述现实物体的形状,在探索立体图形与平面图形的关系中,发展空间观念.
(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理.
(3)学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考.
(4)能在现实物体中,发现立体图形和平面图形.
(5)能在具体的现实情境中,发现并提出一些数学问题.
(6)通过小组合作、动手操作、实验验证的方法解决数学问题.
3.情感态度与价值观.
(1)积极参与数学活动的过程,敢于面对数学活动中的困难,并能地或通过小组合作的方法,运用数学知识克服困难,解决问题. (2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,体验数学活动中探索性和创造性,感受丰富多彩的图形世界.
重、难点与关键 1.重点:
(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;初步建立空间观念.
(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义.
(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.
2.难点:
(1)立体图形与平面图形之间的互相转化.
(2)从现实情境中,抽象概括出图形的性质,用数学语言对这些性质进行描述. 3.关键:
(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣.
(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.
课时划分
4.1 多姿多彩的图形 2课时 4.2 直线、射线、线段 2课时 4.3 角 4课时 数学活动 1课时 回顾与思考 2课时
4.1.1 几何图形
教学目标: 1.知识与技能
(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;
(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系. 2.过程与方法
(1)经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力. (2)经历问题解决的过程,提高解决问题的能力. 3.情感态度与价值观
(1)积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;
(2)倡导自主学习和小组合作精神,在思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.
重、难点与关键
1.重点:从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点.
2.难点:立体图形与平面图形之间的转化是难点.
3.关键:从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键.
教具准备
长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片.
教学过程
一、引入新课
1.打开多媒体,播放一个城市的现代化建筑,学生认真观看. 2.提出问题:
在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?二、新授
1.学生在回顾刚才所看的电视片后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验.
2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等.
教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征. 3.立体图形的概念.
(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.
(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)
(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图). (4)提出问题:在这个幻灯片中,包含哪些简单的平面图形? (5)探索解决问题的方法.
①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.
②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.
4.平面图形的概念.
长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形. 注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形. 5.立体图形和平面图形的转化.
(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,让学生从不同方向看. (2)提出问题.
从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗? (3)探索解决问题的方法.
①学生活动:让学生从不同方向看工件模型,画出得到的各种平面图形.
②进行小组交流,评价各自获得的结论,得出正确结论.
③指定三名学生,板书画出的图形. 6.思考并动手操作.
(1)学生活动:在小组中完成课本第119页的探究课题,然后进行小组交流,评价.
(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,并对学生给予鼓励,激发学生的探索热情. 7.操作试验.
(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.
(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?再把展开的纸板复原为包装,体会立体图形与平面图形的关系.
三、课堂小结
1.本节课认识了一些常见的立体图形和平面图形.
2.一个立体图形从不同方向看,可以是一个平面图形;可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.
注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充.
四、作业布置
1.课本第123页至第124页习题4.1第1~6题.
五、板书设计:
4.1.1 几何图形
一、问题导入二、例题三、课堂练习六、课后反思:
4.1.2 点、线、面、体
教学目标 1.知识与技能 (1)了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面; (2)了解几何图形构成的基本元素是点、线、面、体及其关系,
能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.
2.过程与方法
经历探索点、线、面、体的关系的数学活动过程,提高空间想像能力和抽象思维能力,发展运动变化的观念.
3.情感态度与价值观
经历本节课的数学活动过程,养成主动探索、求知的学习态度,激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.
重、难点与关键
1.重点:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点.
2.难点:探索点、线、面、体运动变化后形成的图形是难点. 3.关键:让学生在现实情境中,进行探究学习是本节课的关键. 教具准备
长方体、圆柱体模型,投影机和幻灯片.
教学过程
一、引入新课
1.出示一个长方体模型,请同学们认真观察.
2.提出问题:这个长方体有几个面?面和面相交成了几条线?线和线相交成几个点?
二、新授
1.经过学生的思考,然后在小组中进行交流,在小组讨论中,评价并修正自己的结论.
2.各小组学生公布自己小组讨论后的结论.
教师活动:在探索问题解决方法和小组讨论过程中,教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价. 3.几何体的概念.
(1)长方体是一个几何体,我们学过的正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.
(2)提出问题:观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别? 4.给出面的分类.
通过对上面问题的解决,给出面的分类:平面和曲面.
教师活动:板书:平面和曲面. 提出问题:
(1)用幻灯机放映图片,让学生观察.
(2)提出问题:通过观察,你得出什么结论?
(3)进行小组讨论中,综合小组中每个同学意见,得出观察图片发现的结论.
(4)在小组活动中,教师指导学生看课本第121~122页内容,得出观察图片能发现的结论. 师生互动:请学生给出观察结论:点动成线,线动成面,面动成体.教师对学生的回答给出正面评价,并把学生观察结论板书. 注:在探索问题解决的方法活动过程中,教师应充分调动学生的想像能力,鼓励学生进行深入探究.
思考课后思考题,让学生进行小组讨论,教师给以必要的指导,然后得出合理的解释.
5.点、线、面、体与几何图形关系.
指导学生阅读课本第122页内容,总结出点、线、面、体与几何图形的关系.
三、课堂小结
1.本节课我们主要探究了几何体的形成:由平面和曲成围成一个几何体.
2.点、线、面、体之间的关系.
3.体验了在数学活动过程中小组合作的重要性.
四、作业布置
1.课本第125~126页习题4.1第7~12、13、14题. 2.选用课时作业设计.
五、板书设计:
4.1.2 点、线、面、体
一、问题导入二、新授三、课堂练习
六、课后反思:
4.2 直线、射线、线段(1)
教学目标
1.知识与技能
(1)能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质. (2)会用字母表示直线、射线、线段,会根据语言描述画出图形.
2.过程与方法
(1)能在现实情境中,进行抽象的数学思考,提高抽象概括能力.
(2)经历画图的数学活动过程,提高学生的动手操作与实践能力.
3.情感态度与价值观
体验通过实验获得数学猜想,得到直线性质的过程.
重、难点与关键
1.重点:理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形.
2.难点:根据语言描述画出图形.
3.关键:理解画图语言,建立图形与语言之间的联系.
教具准备
一把直尺、木工墨盒.
教学过程
一、引入新课
1.出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程. 2.提出问题:为什么这样拉出线是直的?其关键是什么?
二、新授
学生活动:学生经过小组交流后,总结出结论:两点确定一条直线.其关键在于先固定墨盒中墨线上两个点. 教师活动:参与学生活动,并请学生思考:这个现象符合数学上的什么原理?
1.探究直线性质.
学生活动:完成课本第128页探究课题,学生动手按要求画图,并进行小组交流,总结出课题结论.
教师活动:巡视小组活动情况,并给出课题:板书直线、射线、线段,直线的性质.
2.寻找生活中直线性质应用的例子.
想一想:日常生活中有哪些现象是应用的直线的性质? 学生回答(只要答案合理,教师都给以肯定的评价). 3.直线、射线、线段的表示方法. 学生活动:阅读课本第129页有关内容.
教师活动:讲解直线、射线、线段的表示方法.
三、巩固练习
1.提出问题:下图中,有几条直线?几条射线?几条线段?说出它们的名称.
注:此题在学生完成后,教师再行讲评,并对学生的完成情况作出适当、肯定的评价.
2.根据语句画出图形.
例:读下列语句,并按照语句画出图形: (1)直线L经过A、B两点,点B在点A的左边.
(2)直线AB、CD都经过点O,点E不在直线AB上,但在直线CD上. 注:此例让学生完成后在小组中交流和自我评价,然后教师进行讲评.
3.完成课本第129页练习.
注:此练习请四个同学进行板书,教师巡视学生完成的情况给予评价,并请学生作出自我评价.
四、课堂小结
1.提问:直线的性质是什么?如何表示直线、射线、线段? 2.本节课还学习了根据语句画图,知道了每一个语句都对应着一个几何图形.
五、作业布置
1.课本第132页至第134页习题3.2第1、2、3、4、10题. 2.选用课时作业设计.
六、板书设计:
4.2 直线、射线、线段(1)
一、问题导入二、新授三、课堂练习
六、课后反思:
4.2 直线、射线、线段(2)
教学目标
1.知识与技能 (1)会用尺规画一条线段等于已知线段,会比较两条线段的长短. (2)理解线段等分点的意义,理解两点间距离的意义,借助现实的情境,了解“两点之间,线段最短”的线段性质.
2.过程与方法
培养学生的动手操作能力,提高学生的抽象概括能力,能从实际问题中抽象出数学问题,初步学会数学的建模方法.
3.情感态度与价值观
积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.
重、难点与关键
1.重点:画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点.
2.难点:画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点.
3.关键:学生积极参与画图等动手操作的数学活动中,通过小组交流,获取数学信息是学好本节课知识的关键.
教具准备
直尺、圆规、刻度尺、三根木棒(两根等长)、多媒体设备.
教学过程
一、引入新课
1.提出问题:有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?
教师活动:出示长短不同的两根木棒.
学生活动:小组讨论,探索方法,总结出问题的解决方法.
注:教师对学生给出的解决方法,应进行可操作性评价,对好的方法给予鼓励和肯定,以激发学生的学习兴趣. 2.提出数学问题:
上面的问题,可以转化为如下一个数学问题: 已知线段a,画一条线段等于已知线段a.
二、新授
学生活动:思考,动手画图,小组讨论交流,总结出问题的解决方法.
教师活动:参与学生小组讨论,指导学生探索问题的解决方法. 1.用刻度尺量出已知线段长,在画出的射线(或直线)上量出相同长度的一条线段.
2.用尺规截取.(按课本第130页所讲方法) 教师活动:打开电脑,演示尺规作图过程. 板书:画一条线段等于已知线段.
3.思考课本第130页的问题,从中得出数学问题:如何比较两条线段的长短?
4.探索比较两条线段长短的方法:
学生活动:小组交流,总结出比较方法.
教师活动:评价学生总结出的比较方法,并用教具请一个学生进行演示,板书:比较线段的长短.
(1)用刻度尺分别测量出它们的长度进行比较.
(2)用把一条线段移到另一条线段上,端点对齐的方法进行比
较.
5.线段长短的比较结果.
学生活动:通过上面的讨论,总结出线段比较结果.
教师活动:用教具(三根木棒)演示线段比较方法,评价学生得出的比较结果,再用多媒体演示两条线段的比较方法和比较结果.板书:(1)AB 6.线段的等分点. (1)线段的中点: 教师活动:用多媒体演示,取线段AB上一点M,移动线段AM到线段MB上,当AM与MB完全重合时,线段AM=MB,此时点M就叫做线段AB的中点. 板书: AM=MB=AB (2)线段的等分点: 通过类比线段的中点,可得出线段的三等分点、四等分点.板书: AM=MN=NB=AB AM=MN=NP=PB=AB 7.探索线段的性质. (1)完成课本第132页思考题. (2)提出问题: 由这个思考题,你能得出线段的性质? 学生活动:联想以前所学知识及生活常识,经过小组讨论,得出直线的性质:两点之间,线段最短. 教师活动: 板书:线段的性质,并用几何语言完整归纳出线段性质. (3)举例说明线段的性质在生活中的应用. (4)在直线L上顺次取三点A、B、C,使得AB=4cm,BC=3cm,如果O是线段AC的中点,求线段OB的长度. 注:这两个问题先请学生在小组中完成后进行交流,教师再作评价. 8.两点的距离. 教师活动:讲解两点的距离定义. 三、课堂小结 1.本节课学会了画一条线段等于已知线段,学会了比较线段的长短. 2.本节课学习了线段的性质和两点间距离的定义. 3.懂得了知识来源于生活并用于生活的道理. 四、作业布置 1.课本第133页至第114页习题4.2第5、6、7、8、9、11题. 2.选用课时作业设计. 五、板书设计: 4.2 直线、射线、线段(2) 一、问题导入二、新授三、课堂练习 六、课后反思: 4.3.1 角的度量(1) 教学目标 1.知识与技能 (1)在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法. (2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算. 2.过程与方法 提高学生的识图能力,学会用运动变化的观点看问题. 3.情感态度与价值观 经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲. 重、难点与关键 1.重点:会用不同的方法表示一个角,会进行角度的换算是重点. 2.难点:角的表示、角度的换算是难点. 3.关键:学会观察图形是正确表示一个角的关键. 教具准备 多媒体设备、量角器、时钟、四棱锥. 教学过程 一、引入新课 1.观察时钟、四棱锥. 2.提出问题: 时钟的时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来. 学生活动:进行思考、画图,然后观看教师的演示过程. 教师活动:用多媒体演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角. 板书:角. 二、新授 1.角的概念. (1)提出问题: 从上面活动过程中,你能知道角是由什么图形组成的吗? 学生回答:两条射线. (2)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.(如下图) 2.角的表示. 学生活动:阅读课本第137页有关内容,了解角的表示方法. 教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法. 请用适当的方法表示下图中的每个角. 学生活动:请一个学生板书练习,其余学生练习. 教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价. 学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论. 教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价. 答案:分别形成平角、周角. 3.角的度量. 教师活动:指导学生阅读课本P138页内容,讲解角的度量方法及度、分、秒的换算. 板书:1周角=_____°,1平角=_____°,1°=____′,1′=____″. 学生活动:思考并完成上面的填空. 例:把一个周角7等分,每一份是多少度的角(精确到分)? 三、巩固练习 1.课本第139页练习. 2.计算:(1)48°39′+67°41′; (2)90°-78°19′40″; (3)22°30′×8; (4)176°52′÷3. 此:此练习由学生完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评. 3.想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少 度? 师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,得出答案.. 四、课堂小结 师生互动,完成本节课的小结: 1.什么是角?组成角的图形是什么?如何表示一个角? 2.本节课还复习了平面、周角?怎样得到这两种角? 3.角的度量单位是什么?它们是如何换算的? 五、作业布置 1.课本第144页习题4.3第1、2、3、4题. 六、板书设计: 4.3.1 角的度量(1) 一、问题导入 二、新授 三、课堂练习 七、课后反思: 4.3.1 角的度量(2) 教学目标 1.知识与技能 会用量角器测一个角的大小,能借助三角板画出30°,45°,60°,90°等特殊角及用量角器画出一个给定度数的角,会用尺规作图画一个角等于已知角,熟悉并理解画法语言. 2.过程与方法 经历本节课的画一个角等于已知角,测量角的大小数学活动,提高学生的动手操作能力. 3.情感态度与价值观 经历本节课的数学活动过程,尝试从不同角度寻求解决问题的方法,体会不同方法间的差异,能够在测量画图等操作活动过程中发挥主动作用. 重、难点与关键 1.重点:会用量角器测量角的大小,会用尺规画一个角等于已知角. 2.难点:用尺规画一个角等于已知角. 3.关键:引导学生积极参与画图的数学活动过程,才能熟练掌握画图步骤. 教具准备 一副三角板、量角器、多媒体设备、投影仪. 教学过程 一、引入新课 1.投影一个五角星的图案,请学生观察图形.(如右图) 2.提出问题: 你知道五角星的五个角是多少度吗?你是怎样知道的? 二、新授 学生活动:在小组中交流测量角的大小方法,可借助三角板估计角的度数,或用量角器量出角的度数. 教师活动:巡视收集学生测量的方法,并请学生说明不同方法得出的结论有何不同,对学生的活动过程给予积极评价. 结论:每个角均为36°. 1.画一个角等于已知角. (1)提出问题: 你能用量角器画一个角等于36°吗?能画一个角等于108°吗? 学生活动:两个学生板书演示画图过程,其余同学完成. 教师活动:巡视并指导学生画图. (2)提出问题: 你能用三角板画出30°,45°,60°,90°等特殊角吗? 学生活动:动手画图. 教师活动:指导个别学生画图,评价学生的画图结果. 2.用尺规画一个角等于已知角. 探究:已知∠AOB,画一个角等于这个角. 学生活动:先进行思考,阅读课本第139页探究内容,动手画图,小组交流解决疑难,根据教师的演示,进行自我评价. 教师活动:启发引导学生画图,并巡视指导学生画图,然后板书演示画图过程(画图过程中指导学生阅读课本中的画法),指导学生进行自我评价:用量角器量∠A′O′B′与∠AOB,看一看度数是否相等. 三、巩固练习 任意画一个钝角∠AOB,用尺规画一个角等于∠AOB. 师生互动:教师在黑板上画钝角∠AOB,请一个学生板书画图教师巡视指导其余学生画图. 请同学们用三角板画出(1)15°;(2)75°;(3)105°;(4)120°;(5)135°的角. 教师活动:在学生活动过程中,教师对学生进行必要的指导,如15°看成45°~30°,用两块三角板画出15°的角. 四、课堂小结 本节课我们通过测量角的度数,复习了角的度量方法,学会了用不同的工具画角. 提出问题: 请同学们说出你所知道的测量角的大小的仪器.(同学互相补充) 教师活动:打开多媒体播放有关用仪器测量角的活动片子,让学生认识测量角的仪器. 五、作业布置 1.课本第145页至第146页习题4.3第6、11、14题. 2.选用课时作业设计. 六、板书设计: 4.3.1 角的度量(2) 一、问题导入 二、新授 三、课堂练习 六、课后反思: 4.3.2 角的比较与运算 教学目标 1.知识与技能 (1)在现实情境中,运用类比的方法,学会比较两个角的大小,丰富对角的大小关系的认识,会分析图中角的和差关系. (2)通过动手操作,学会借助三角板拼出不同度数的角,认识角的平分线及角的等分线,会画角的平分线. 2.过程与方法 进一步培养和提高学生的识图能力和动手操作的能力,认识类比的数学思想方法. 3.情感态度与价值观 能在动手操作画图、拼图的数学活动过程中发挥积极作用,体验数学活动的成功经验,激发学生的学习热情. 重、难点与关键 1.重点:比较角的大小,认识角的大小关系,分析角的和差关系,认识角平分线及画角平分线是本节课的重点. 2.难点:认识复杂图形中角的和差关系,比较两个角的大小是难点. 3.关键:从动手操作过程中,认识角的大小关系,认识角的和差关系及认识角平分线,也是学好本节课知识的关键. 教具准备 量角器、三角板、圆规、剪刀、透明纸、多媒体设备. 教学过程 一、引入新课 教师活动:在黑板上画出一个三角形.(如右图所示) 1.提出问题:比较图中线段AB、BC、CD的长短. 学生活动:回顾线段长短的比较方法.小组交流,得出适当的比较线段长短的方法. 教师活动:归纳学生的讨论结果,并演示用圆规比较AB、BC、CD三条线段长短的过程,并写出结论:AB>AC>BC. 2.提出问题: 怎样比较图中∠A、∠B、∠C的大小? 学生活动:小组交流比较方法,得出结论:可用量角器先量出角的度数,然后比较它们的大小. 教师活动:(1)肯定评价学生提出的方法,并动手测量度数,比较它们的大小,板书结论:∠C>∠B>∠A.(2)启发引导学生,类比线段长短的比较方法,也可以把它们叠合在一起比较大小. 二、新授 1.提出问题: 如何用叠合的方法比较角的大小? 学生活动:进行小组交流讨论,动手操作:每个学生都在透明纸上画一个角,然后剪下这个角,并与小组中其它同学所画的角进行比较后归纳出比较方法和比较结果,然后观看多媒体演示角的比较过程. 教师活动:巡视并指导学生进行角的比较活动过程,打开多媒体演示角的比较过程:把一个角移到另一个角上,顶点与一条边重合;两个角的另一边都在重合边的同侧.观察这两边的位置关系,就能得出两个角的大小关系. 注:讲解过程应强调操作过程,让学生掌握角的比较的操作过程. 完成课本第142页练习. 注:教师在评价学生完成练习的情况时,应对较好的方法给予肯定的评价,鼓励学生进行探索. 2.认识角的和差. 学生活动:思考课本第140页观察中的问题,小组交流思考的结论. 教师活动:讲解观察中的问题,给出图中各角之间的和差关系.(如下图) ∠AOC=∠AOB+∠BOC, ∠AOB=∠AOC-∠BOC. 提出问题:∠AOC-∠AOB=________. 3.动手操作:用三角板拼出特殊角,完成课本第140页探究中的问题. 学生活动:每个学生都用三角板进行尝试拼出15°、75°的角,并讲出其中的理由. 提出问题: 利用一副三角板还能拼出多少度的角? 学生活动:小组交流后说出这些角的度数,各小组之间互相补充. 教师活动:评价学生的结论,对学生的答案进行归纳补充. 4.认识角的平分线. 教师活动:在透明纸上画一个角,沿着顶点对折,使角的两边重合. 学生活动:观察老师演示过程,并思考下面问题.(如下图) 提出问题:∠AOC被折痕OB分成的两个角有什么关系? 在图中,射线OB把∠AOC分成相等的两个角,即∠AOB=∠BOC,∠AOC与∠AOC和∠BOC有什么关系?这个关系怎样用式子来表示?射线OB叫做什么? 学生活动:阅读课本第140页有关内容,回答上面问题. 教师活动:讲解角平分线定义,板书:角的平分线. 教师活动:指导学生看课本第141页图3.4-5,讲解角的三等分线. 请学生动手完成课本P138探究,加深对角的平分线的认识. 在纸上画一个角,设法画出这个角的平分线. 学生活动:思考并进行小组交流,总结出角平分线的画法并画图. 教师活动:对学生总结出的画法进行评价,并演示画图过程. (1)借助量角器画图:以已知角顶点为顶点,已知角的一边为边,在已知线的内部画一个度数等于已知角度数一半的角,则这个角的另一边就是已知角的平分线. (2)用折叠方法:把角沿顶点对折,使角的两边重合,沿折痕在角的内部画一条射线即为已知角的平分线. 三、课堂小结 师生互动,共同总结本节课的学习内容: 1.角的大小比较方法和角的大小关系有哪些?认识了角的哪些运算. 2.本节课学习了用三角板拼出哪些角? 3.角平分线的定义是什么? 四、作业布置 1.课本第145页习题4.3复习巩固5,综合运用10,拓广探索15. 2.选用课时作业设计. 五、板书设计: 4.3.2 角的比较与运算 一、问题导入 二、新授 三、课堂练习 六、课后反思: 4.3.3 余角和补角 教学目标 1.知识与技能 (1)在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质. (2)了解方位角,能确定具体物体的方位. 2.过程与方法 进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想. 3.情感态度与价值观 体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在思考和小组交流中获益. 重、难点与关键 1.重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点. 2.难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点. 3.关键:了解推理的意义和推理过程,是掌握性质的关键. 教具准备 三角板、量角器、多媒体设备. 教学过程 一、引入新课 1.提出问题: (1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少? (2)已知∠1=36°,∠2=54°,那么∠1+∠2=? 学生活动:思考,小组交流,得出结论:都是90°. 2.提出问题. (1)观察方格如右图中的两个角,你能猜想∠1+∠2等于多少度? (2)如果∠1=144°,∠2=36°,那么∠1+∠2=? 教师活动:打开多媒体,让学生观察方格图. 学生活动:观察思考,小组交流,得出结论:都是180°. 教师活动:操作多媒体,移动∠2,使∠1、∠2顶点和一边重合,引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论. 二、新授 1.余角与补角. 教师活动:指导学生阅读课本第142页有关内容,并讲解余角与补角的定义. 注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角). 2.巩固反思. (1)填空: ①47°18′的余角是______,补角是_______. ②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______. (2)已知一个角是它补角的3倍,求这个角. 注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解. (3)课本第143页练习. 学生活动:完成,并由三个学生进行板书,其余同学进行小组交流并进行小组评价. 教师活动:巡视学生完成练习的情况,并给予适当的评价. 3.余角与补角的性质. (1)提出问题: 观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系? 教师活动:操作多媒体,演示方格图. 学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+∠4=180°. 教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2与∠4有什么关系? 学生活动:观察思考后得出∠2=∠4. (2)说明理由: 注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1. 例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么? 教师活动:指导学生分析题意,并写出说理过程,归纳性质. 学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质. 板书:等角的补角相等. 师生互动:类比补角的性质,得出余角的性质. 板书:等角的余角相等. 三、巩固练习 1.如右图,∠EDC=∠CDF=90°,∠1=∠2. (1)图中哪些角互为余角?哪些角互为补角? (2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么? 学生活动:完成练习,并进行小组交流和自我评价. 教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评. 2.认识方位角. 提出问题:课本第143页例2. 如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线. 教师活动:用多媒体演示课本图3.4-10(1),讲解方位角和表示方位的射线,在学生完成题中的问题后操作多媒体演示画图过程. 注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边. 学生活动:在教师指导下画出问题中的每一条射线. 3.知识拓展 提出问题: 小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°) 学生活动:先进行小组讨论,然后完成,再进行小组交流和评价. 教师活动:指导学生画图和测量,并对学生完成的情况进行评价. 四、课堂小结 1.本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质. 2.了解方位角,学会确定物体运动的方向 五、作业布置 1.课本第145页习题4.3:复习巩固8、9,综合运用12、13. 2.选用课时作业设计. 六、板书设计: 4.3.3 余角和补角 一、问题导入 二、新授 三、课堂练习七、课后反思: 4.4 课题学习 设计制作长方体形状的包装纸盒 教学任务分析 知识技能利用立体图形的平面展开图制作包装纸盒.教学目标 数学思考解决问题情感态度 重点难点 教学流程安排 活动流程图 提出问题、明确任务 提出活动步骤、分组活动. 小结与作业 活动内容和目的 指明活动的主要内容. 在活动的过程,培养学生的合作意识与合作能力,以及动手能力. 归纳总结、巩固新知. 通过问题的解决使学生进一步理解立体图形和相应平面图形之间的转化关系. 通过包装纸盒的制作,使学生掌握制作长方体纸盒的一般方法,能够制作出相关的包装盒. 在解决问题的过程中,使学生提高对合作意识的认识,培养合作精神. 如何把立体图形转化为平面图形,制作包装纸盒.如何把立体图形转化为平面图形. 教学过程设计 一、提出问题,指明活动的主要内容活动名称:设计制作长方体形状的纸盒. 方法:观察、讨论、动手制作. 材料:厚(硬)纸板、直尺、裁纸刀、剪刀、胶水、彩笔等.准备:收集一些长方体形状的包装盒,如墨水瓶盒、粉笔盒、饼干盒、牛奶包装盒、牙膏盒等. 二、提出活动步骤、分组活动活动步骤: 1.观察、讨论 以5~6人为一组,各组确定所要设计制作的包装盒的类别,明确分工. (1)观察作为参考物的包装盒,分析其各面、各棱的大小与位置关系. (2)拆开盒子,把它铺平,得到表面展开图;观察它的形状,找出对应长方体各面的相应部分;度量各部分的尺寸,找出其中的相等关系. (3)把表面展开图复原为包装盒,观察它是如何折叠并粘到一起的. (4)多拆、装几个包装盒,注意它们的共同特征.(5)经过讨论,确定本组的设计方案. 2.设计制作 (1)先在一张软纸上画出包装盒表面展开图的草图,简单设计一下,裁纸、折叠,观察效果.如果发生问题,调整原来的设计,知道达到满意的初步设计. (2)在硬纸板上,按照初步设计,画好包装盒的表面展开图,注意要预留出粘合处,并要减去适当的棱角.在表面展开图上进行图案与文字的美术设计. (3)裁下表面展开图、折叠并粘好粘合处,得到长方体包装盒3.交流、比较 各组展示本组的作品,并介绍设计思想和制作过程.讨论本组的作品,重点探究以下问题: (1)制成的包装盒是否是长方体?若不是,是哪个地方出项了问题?如何改正? (2)从使用性上看,包装盒形状、尺寸是否合理?用料是否节省?是否需要改进? (3)包装盒的外观设计是否美观? (4)对平面图形与立体图形的联系有哪些新认识?4.评价、小结 评价各组的活动情况,小结活动的主要收获.三、小结与作业 小结:制作立体图形――先转化为平面图形(平面展开图),再转化为立体图形(折叠). 作业: (1)自己设计制作一个正六棱柱形状(底面是6条边相等、6个角都相等的六边形,6个侧面都是长方形)的包装盒; (2)自己设计制作一个圆柱形的包装纸盒. 4.4设计制作长方体形状的包装纸盒 [教学目标] 1.通过对长方体和它的表面的探索,进一步了解直线与直线的平行、相交、异面的关系,以及直线与平面、平面与平面的平行、垂直的关系。 2.会设计制作长方体纸盒,并对纸盒进行美术设计。 此外,培养学生观察、实验、分析、判断、归纳和概括的能力,空间想象力、综合应用知识的能力和语言表达能力、审美能力,渗透空间图形 和平面图形之间的相互联系。相互转化的数学思想,培养学生的实践意识、创新精神和团队合作的精神,发展学生的个性品质和特长。 [引导性材料] 按“同质”的原则将学生分成若干个小组(分8~10组),每组准备一只长21厘米、宽14厘米、高7厘米的长方体白纸板盒,一只墨水瓶,另配有白纸一块,剪纸刀、剪子、胶水、刻度尺、铅笔和彩笔各一支。 (教师应对学生合理、有效地分组,尽可能做到组间同质、组内异质。“同质”,就可以保证各组实践操作所花的时间大体一致,也便于各小组之间进行公平的比较和竞争;“异质”,即组内成员的差异性,有利于每个成员发挥其个性和特长,有效地展开互助与合作。) (另外,为了便于学生直观地探索和研究立体图形和平面图形的关系,顺利地设计制作墨水瓶的包装盒。教师要预先制作几个长方体纸板盒。制作时,盒子尽量要做大一点,便于学生观察;面与面之间的连接处都要用胶带封好,不留下制作的痕迹,使各棱在外观上保持一致,学生沿棱将纸盒剪开时,可随机地得到不同的平面展开图,以有利于发展学生的求异思维。) 教师在讲台上展示出粉笔盒、玻璃杯、药品、营养品等各种各样的产品包装盒,问:这些包装盒的形状有什么共同的特点呢?从而提出本节课的主题:长方体和它的表面。 [知识产生和发展过程的教学设计] 问题1-1:长方体是一个立体图形,它是由几个面、多少条棱、多少个顶点组成的呢? 问题1-2:长方体的6个面是平面图形还是立体图形?是什么形状?长方体中相对的两个面有什么特殊的位置关系?(互相平行)这两个面的形状有什么关系?(相同)。它们的面积呢?(相等)长方体中相邻的两个面有什么特殊的位置关系呢?(互相垂直) 问题1-3:长方体的棱共有12条,同一方向的棱的大小和位置有什 么特殊的关系呢?(同一方向的棱互相平行,且长度相等)不同方向的棱呢?(不同方向的校互相垂直或异面,长度不一定相等)。 (学生回答时有可能答不全,教师要根据情况分位置关系和大小两方面引导学生去观察、比较、思考;另一方面,教师可要求学生根据学过的定义,找出平行、垂直、异面的棱,找出互相平行、互相垂直的棱与面、面与面。) 问题2-1:现在请将每一组的纸制长方体沿棱剪开,展开成一个完整的平面展开图,需要剪开多少条棱?(由组长负责,人人参与,分工明确,团结合作,强调用剪刀和剪纸刀时要注意安全,尽量保持卫生。) (剪开长方体纸盒,得到平面展开图,应剪开七条棱) 问题2--2:如图2.8—1所示,将其沿棱剪开,所得的平面展开图是什么样的?由各小组长到讲台前分别展示所得的图形。(共有如图2.8-2~图2.8-7所示的六种图形) 图2.8-1 图2.8-2 图2.8-3 图2.8- 4 图2.8-5 图2.8-6 图2.8-7 (由于每组学生剪开的棱不同,会得到不同的平面展开图形,教师要对学生的创新活动给予充分的肯定,即使不能全部展示六种情况也没关系,教师可以继续让学生探索,直到展示出六种情况为止。) 问题2-3:你能试着从六个平面展开图中发现它们的共同特点吗?(它是由长方体的表面所组成的。六个表面在同一平面内;边与边之间互相平行或垂直;原来相对的面成为相隔的面;长方体的长、宽、高成了其平面展开图中的每个长方形的长和宽。) (学生可能不能完全讨论出结果,教师可在启发之后,给予完整的结论。) 问题3-1:按刚才长方体的平面展开图的大小,在白纸板上制作出平面图,并折成长方体。 (培养学生观察实验能力,在动手制作的过程中一方面复习知识,另一方面加强组员之间的团结协作精神,发展学生的个性品质和特长。) 问题3-2:设计出与教科书中长城牌墨水瓶不同的图案,不仅可用彩笔在盒上画出包装盒表面的产品广告设计,而且可以用电脑进行创意。图案以朴实大方设计合理为主。 (培养学生的审美能力,设计制作包装盒也不是件容易的事,一次不行可重来。当个人想法与大家想法不一致时,可保留自己的想法,个人服从集体,发挥团结合作的精神。) 问题4-1:如图2.8-8所示,长方体顶点A处有一只小蚂蚁,沿长方体表面爬行到B处,小蚂蚁非常聪明,它总是能按照最短的路线爬行,你能找到这条最短的路线吗?为什么? 问题4-2:设计出与如果是从顶点A沿表面转一圈爬到顶点A′,最短的路线是什么呢? 图2.8-8 (这两个问题可根据实际情况,有选择地提出。解决这两个问题的关键在于将长方体这个立体图形展开成平面展开图,将立体问题转化为平面问题解决,渗透了空间图形和平面图形之间相互联系、相互转化的数学思想。) [练习] 课本第94页练习第1、2题。 [小结] 这节课,从研究长方体出发,先把长方体展开成平面图形,再学习制作长方体纸盒。在这样的实践活动中,我们可以体会到:用数学的眼光观察事物,常常能引起“探究”问题的兴趣;研究解决问题之前,要设计方案,并尽量考虑周全;在解决问题过程中,又要根据需要调整原来的 方案;问题得到解决以后,要总结经验,相互交流。同时,在这样的过程中,大家要学会互相帮助,团结协作,还要发挥自己的聪明才智和创造能力。通过这节课的学习,大家一定会感到学好数学是有用的,学习数学就要会用数学知识解决实践中的问题。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务