11
1
3
1
1
精品资料
______________________________________________________________________________________________________________
ππ1πx--x x-sinx-+x+sin8解析:选B.y=sincosx=6662111π112x-π1
sin2x--==sin6-4. ∴ymax=2-4=4. 6222
9解析:选C.cos(α+β)cos(α-β)=(cos2α+cos2β)
2=[(2cos2α-1)+(1-2sin2β)] 2=cos2α-sin2β, ∴cos2α-sin2β=
13.
1
1
1
ππsinπ x+x+10解析:选B.y=sin-sinx=2cos366π
=cos(x+).
6π0,∵x∈2,
∴≤x+≤, 663
ππ
2π
13∴y∈-,.
22
11解析:y=sin215°+cos215°+cos75°·cos15° 155
=1+(cos90°+cos60°)=. 答案: 244
α+βα-βα+βα+β1π12解析:cosα+cosβ=2coscos=2coscos=cos=,
223223∴cos(α+β)=2cos2
α+β
177
-1=2×-1=-. 答案:- 2999
π1 -13解析:y=cos2x+π+cos32π
=1-1cos2x, -cos2x+cos=34221
33
因为-1≤cos2x≤1,所以ymax=. 答案:
44
2sin
A+B22cosA+2cos120°cosBcosA-cosBA+B14解:(1)原式====tan.
sinB+2cos120°sinAsinB-sinAA+BB-A2
2cossin22(2)原式=
sin3A+sin7A+2sin5AsinA+sin5A+2sin3AsinB-A=
2sin3Acos2A+2sin3A
2sin5Acos2A+2sin5A精品资料
______________________________________________________________________________________________________________
=
2sin3Acos2A+12sin5Acos2A+1=sin3Asin5A.
15解:由题意得
cosAsinC=1
2[sin(A+C)-sin(A-C)]
=1
2[sin(π-B)-sin(A-C)] =1
1
4-2sin(A-C). ∵-1≤sin(A-C)≤1, ∴-1
1
1
4≤4-2sin(A-C)≤3
4
,
AsinC的取值范围是13∴cos-4,4
.
sin5xx2-sin
2
16解:(1)f(x)=x 2sin
2
2cos3x2sinx=
2sin
x=2cos3xx2cos2
2
=cos2x+cosx=2cos2x+cosx-1. (2)∵f(x)=2(cosx+14)2-9
8,
且-1<cosx<1.
∴当cosx=-14时,f(x)取最小值-9
8
.
精品资料
______________________________________________________________________________________________________________
Welcome To Download !!!
欢迎您的下载,资料仅供参考!
精品资料