A(MNLTEXstylefilev2.2)
Theinterplaybetweenradiogalaxiesandcluster
environment
arXiv:0705.0574v1 [astro-ph] 4 May 20071,2,34
ManuelaMagliocchetti&MarcusBr¨uggen1
234
INAF,OsservatorioAstronomicodiTrieste,ViaTiepolo11,34100,Trieste,ItalyESO,Karl-Schwarzschild-Str.2,D-85748,Garching,GermanyS.I.S.S.A.,viaBeirut2-4,34100,Trieste,Italy
JacobsUniversityBremen,CampusRing1,28759Bremen,Germany
1February2008
ABSTRACT
BycombiningtheREFLEXandNORASclusterdatasetswiththeNVSSradiocat-alogue,weobtainasampleof145,z<0.3,X-rayselectedclustersbrighterthan3·10−12ergs−1cm−2thatshowacentralradioemissionabove3mJy.Forvirial
14.5
massesMvir<∼10M⊙,11clustersoutof12(correspondingto92%ofthesystems)areinhabitedbyacentralradiosource.Thisfractiondecreaseswithhighermassesas
−0.4
.Ifthisdecreaseisaselectioneffect,itsuggeststhatthemajorityofX-ray∝Mvir
selectedclustershostintheircentrearadiosourcebrighterthan∼1020W/Hz/sr.Adivisionofthesampleintoclustersharbouringeitherpoint-likeoranextendedradio-loudAGNrevealsthatthesteepeningoftheLX−Trelationforlow-temperatureclustersisstronglyassociatedwiththepresenceofcentralradioobjectswithextendedjetsand/orlobestructures.Inthelattercase,LX∝T4whileforpoint-likesourcesonerecoversanapproximatelyself-similarrelationLX∝T2.3.MonteCarlosimula-tionsshowthatthesteepeningoftheLX−Trelationisnotcausedbyclustersbeingunder-luminousintheX-rayband,butratherbyoverheating,mostlikelycausedbytheinterplaybetweentheextendedradiostructuresandtheintraclustermedium.Inthecaseoflow-masssystems,wealsofindatightcorrelationbetweenradioluminosityandclustertemperature.Theeffectsofthecentralradiosourceonthethermalstateofaclusterbecomelessimportantwithincreasingclustermass.
Thepresenceofradiosourceswithextendedstructures(61,correspondingto∼42%ofthesample)isenhancedinX-rayluminousclusterswithrespectto’field’radio-loudAGN.Furthermore,wefindthattheluminositydistributionoftheclusterradiopopulationdiffersfromthatofallradiosources,asthereisadeficitoflow-luminosity
22
(LR<∼10W/Hz/sr)objects,whilethenumberofhigh-luminosityonesisboosted.Theneteffectontheradioluminosityfunctionofradiogalaxiesassociatedtocluster
24
centresisofaflatteningatallluminositiesLR<∼10W/Hz/sr.Keywords:cosmology:observations-galaxies:clusters:general-galaxies:active-galaxies:statistics-X-rays:galaxies:clusters-radiocontinuum:galaxies
1INTRODUCTION
Arguablyoneofthemostimportantproblemsinthefield
ofstructureformationisthequestionofhowcoolingofgas,whichleadstostarandgalaxyformation,iscontrolledbyvariousheatingprocesses.Thewidelyaccepted,hierarchicalpictureforgalaxyformationstatesthatbaryonicmatteraccretesontodarkmatterhalos.Thispictureimpliesthatintheabsenceofanyfeedbackprocess,thegalaxymassfunctionfollowsthedarkmatterhalomassfunction.However,ithasbeenknownforsometimethatthisisnottrue(seee.g.White&Frenk1991).Atthehigh-
andlow-massend,thereisadeficitofgalaxiescomparedwithdarkmatterhalos.Thesediscrepanciesindicatethatvariousheatingmechanismsmustbeinvolvedintheformationofgalaxies.GalaxyclusterspossessthelargestdarkmatterhalosfoundintheuniverseandcontaingasatX-ray-emittingtemperatures.Theintraclustermedium(ICM)ofgalaxyclustershasbeenstudiedintensivelyandX-rayselectedclustersofgalaxiesprovideanexcellentlaboratorytoexplorethecomplexinterplaybetweengaspropertiesandheatingmechanisms.
Galaxyclustersareknowntoobeyfairlytightscal-
2M.Magliocchetti&M.Br¨uggen
ingrelationsbetweenglobalpropertiessuchasmass,temperatureandX-rayluminosity.Theserelationsareimportantwhenusinggalaxyclusterstoestimatecosmo-logicalparameters.Itisalsoknownthatsimple,self-similarmodels(Kaiseretal.1986)thatcorrectlyreproducethescalingpropertiesofthedark-matterdistributionofgalaxyclusters(e.g.Borganietal.2001;Pointecouteauetal.2005;Vikhlininetal.2006)failindescribingtheobservedscalingrelationsofthehotbaryoniccomponent.Thisdiscrepancyincreasesasonemovesfromtheregimeofrichclustersofgalaxiestothatofpoorclustersandgroups,givingrisetotheso-calledentropy-floorproblem(e.g.Ponmanetal.1999;Ponmanetal.2003;Pratt&Arnaud2005;Piffarettietal.2005).Somesourceofextraheatinghastobein-vokedtoreconciletheoreticalexpectationsandobservations.Moreover,intheabsenceofnon-gravitationalheating,verydenseclustercoresinwhichthecoolingtimeisoftenlessthantheHubbletime(so-calledcoolcoreclusters)shouldcoolandaccretegasatratesofhundredsandmoresolarmassesperyear(seeFabianetal.2004forareview).However,thismodelconflictswithresultsfromX-rayspectroscopythathaveprovidedevidencethatthereisnomassivecoolingofgasinthecentralregionsofcoolcoreclusters.(e.g.Petersonetal.2001;2003;B¨ohringeretal.2002).Numericalsimulationsofclustersofgalaxiesthatincluderadiativecooling(e.g.Bryan2000;Voit&Brian2001;Wu&Xue2002)starformationandsupernovafeedbacks(e.g.Borganietal.2004;2005)arefoundtobeunabletoreproducetheobservedpropertiesoftheintraclustermedium.
Currently,themostpopularmodelthatisinvokedtoexplainthedearthofgasbelowabout1keV(Petersonetal.2003;Tamuraetal.2001)intheICMreliesontheheatingbyacentralAGN.Inprinciple,radiogalaxiesareenergeticenoughtohaltthecoolinginthecentresofgalaxyclustersandexplainthehigh-masstruncationofthegalaxylumi-nosityfunction(seee.g.Bestetal.2006).Radio-loudac-tivegalacticnucleidrivestrongoutflowsintheformofjetsthatinflatebubblesorlobes.Theselobesarefilledwithhotplasma,andcanheattheclustergasinanumberofways(e.g.Br¨uggen,Ruszkowski&Begelman2005;Ruszkowskietal.2004;Br¨uggen&Kaiser2002;Churazovetal.2001).
DirectevidenceforAGNheatingisgrowing.ImagestakenbyCHANDRAandXMM-NewtonhaveshownthatAGNsinthecentresofgroupsandclustersinflatebubblesinthesurroundingX-rayemittinggas.ObservationsofthePerseusCluster(Fabianetal.2003;2006)andoftheVirgoCluster(Formanetal.2005,Simionescuetal.2006)revealsoundwavesandweakshocksthatextendouttoseveraltensofKpc.SimilarresultsarereportedfrominvestigationsofHydraA(Nulsenetal.2005),MS0735.6+7421(McNamaraetal.2004)andAbel478(Sandersonetal.2004).Fromamorestatisticalpointofview,Crostonetal.(2005)con-sideredawell-definedandhomogeneoussampleofROSATgroupsandreportevidenceforthegaspropertiesofgroupscontainingradiogalaxiestodifferfromthoseassociatedtoradio-quietones,inthesensethatradio-loudgroupsarelikelytobehotteratagivenX-rayluminositythanradio-quietgroups.Theyattributethistotheeffectofheatinginducedbyradiogalaxies.Dunn&Fabian(2006)analysed
amoreheterogeneoussampleof30clustersthatshowclear
signaturesofradioactivityeitherintheformof’bubbles’orintheformofacentralradiocoreandstudysomeofthepropertiesofAGNheating.
Morerecently,Bestetal.(2007)investigatedtheradiopropertiesofgalaxieslocatedinthecentresof625nearbygroupsselectedfromtheSloanDigitalSkySurveyDataRelease4(DR4;Straussetal.2002)andarguethatAGNheatingfromtheclustercentralgalaxyprobablyovercom-pensatestheradiativecoolinglossesingroupsofgalaxies,thereforeaccountingfortheobservedentropyfloorinthesesystems.However,Bestetal.(2007)didnotstudythether-malpropertiesoftheICMusingX-raydata.Lastly,Jethaetal.(2006)examinedthecentralregionsof15galaxygroupswithCHANDRAandfindthatrepeatedoutburstshavealong-termcumulativeeffectontheentropyprofilesintheirsample.
ByfollowingCrostonetal.(2005)andBestetal.(2007),thepresentworkassessestheimportanceof(central)ra-dioemissiononthethermalpropertiesoftheintraclustermediumingroupsandclustersofgalaxiesfromastatisti-calpointofview.Ourapproachprovidesanimprovementwithrespecttopreviousworksasitaddressestheissueofsmallstatistics(presentinCrostonetal.2005),lackofin-formationonthethermalpropertiesoftheICM(presentinBestetal.2007)anditalsoextendstheinvestigationoftheAGN-clusterpropertiesuptothehighestclustermasses(∼1016M⊙),whileboththeBestetal.(2007)andCrostonetal.(2005)analysesonlygouptorichgroups/poorclus-tersscales.Finally,wedistinguishradiosourcesinclustercentresonthebasisoftheirradiomorphology.Asitwillbediscussedthroughoutthepaper,suchadistinctionhasanimportantimpactontheanalysisofthegeneralpropertiesoftheICM.
Here,wehaveconsideredastatisticallysignificantsampleof145X-rayselectedclustersbrighterthan3×10−12ergs−1cm−2,takenfromtheREFLEXandNORASsurveysandendowedwithcentralradioemission>abovethe3mJyfluxlimit.TheabovelimitsensurenessbothintheX-rayandradioselections.∼80%complete-Weinvestigatethethermalpropertiesofourclustersampleandcomparethemtopre-existingresultsfromtheliterature.WehavealsomadeuseofdetailedMonteCarlosimulationstostudythebehaviourofradiosourcessurroundedbyadensemediumsuchasthatofrichclusters.
Thelayoutofthepaperisasfollows:§2presentstheparentcataloguesfromwhichoursamplewasdrawn,while§3discussestheproceduretoassignaradiosourcetoclus-tercentres.§4describesthefinalcatalogue,withparticu-larattentiontotheissueofextendedvsunresolvedradiostructures.§5illustratesourresultsonthefractionofX-rayselectedclusterswhichhostacentralradiosource(§5.1),ontheX-rayandradioluminosityrelationswithclustertem-perature(§5.2),ontheX-ray,radioandmechanicalluminos-ityrelationswiththeclustersvelocitydispersion(§5.3)andonthemassdepositionratedM
Theinterplaybetweenradiogalaxiesandclusterenvironment
3
activityandthermalpropertiesoftheclusterswhichhostthem.
ThroughoutthisworkweadoptaflatcosmologywithamatterdensityΩ0=0.3andavacuumenergydensityΩΛ=0.7,apresent-dayvalueoftheHubbleparameterinunitsof100km/s/Mpc,h0=0.7.
2THEPARENTCATALOGUES2.1
NORASandREFLEX
TheRosat-EsoFluxLimitedX-raygalaxyclustersurvey(REFLEX;B¨ohringeretal.2004)providesinformationontheX-rayproperties,fluxes,redshiftsandsomeidentifica-tiondetailsforasampleof447,z X-rayluminositiesinthe[0.1-2.4]KeVbandarepro-videdforboththeREFLEXandNORASclusters.However,whileinthecaseoftheREFLEXsurveythesearegivenintheconcordanceΛCDMcosmology,theNORAScataloguestillreferstoanEdSmodelwithh0=0.5.Inordertocorrectforthisproblem,weconvertedtheNORASX-rayluminosi-tiesfromtheoriginalEdScosmologytotheoneadoptedin thisworkbysimplywritingLΛCDMX=LEdSX·(xΛCDM/xEdS)2 ,wherexisthecomovingcoordinateevaluatedatthespecificredshiftofeachobject. FortheconversionfromX-rayluminositiesintherele-vant[0.1-2.4]KeVbandtoclustermasseswefollowedtheapproachpresentedbyBorganietal.(2001).Asafirststep,wecomputedbolometricandK-correctionstothe[0.1-2.4]KeV-observedbandbyusingtherelationprovidedbyB¨ohringeretal.(2004).Then,fortherelationbetweentem-peratureandbolometricluminosity,weconsideredthephe-nomenologicalexpression:Lbol=L6 TX 1015h−1 0 (e.g.Ekeetal.1998),where2/3 [Ω0∆vir(z)]1/3(1+z)KeV,(2) wetake76%ofgastobehy-drogen,Mviristheclustervirialmassexpressedinsolar masses,βistheratiobetweenthekineticenergyofdark matterandthegasthermalenergy,and∆vir(z)isthera-tiobetweentheaveragedensityρwithinthevirialradiusandthemeancosmicdensityatredshiftz.Inourcaseweassumeβ=1.15,asfoundbytheSantaBarbaraclus-tercomparisonproject(Frenketal.1999).Oncewehavecomputedthevirialmasses,weobtainthevirialradiiviarvir=(3Mvir/4πρ)1/3.Giventheuncertaintiesassociatedwiththeparametersusedinequations(1)and(2)andtheerrorsrelatedtothedeterminationofLXinboththeRE-FLEXandNORASsurveys,wenotethatthevaluesquotedthroughoutthisworkforbothMvirandrvirhavetobecon-sideredestimates.2.2 NVSS TheNRAOVLASkySurvey(Condonetal.1998)isara-diosurveythathasobservedtheentireskynorthof-40degdeclinationat1.4GHz.TheNVSSwasobservedwiththearrayintheDconfiguration(DnCformostofthesouthernsky),whichprovidesanangularresolutionof45arcsec.Morethan1.8millionsourceswereobserveddowntoafluxlimitS1.4GHz=2.5mJy,andthesurveyisshowntobe∼80%completeatfluxesbrighterthan3mJy.Thermsuncertain-tiesinrightascensionanddeclinationvaryfrom<1arcsecforrelativelystrong(S1.4GHz>∼15mJy)pointsourcesto∼7arcsecforthefaintestdetectableobjects. 3MATCHINGPROCEDURE Asexplainedintheintroduction,thescopeofthepresent workistwo-fold:first,itaimsatinvestigatingthepropertiesofthoseradiosourcesthatresideintheproximityofclustercentres.Second,itstudiestheimpactandpossibleeffectsofradiosourcesonthesurroundingICM.NotethatforourpurposesclustercentresareassumedtocoincidewiththecentresofX-rayemission,sothatinmost(butnotall)casestheadoptedcentreiscoincidentwiththepositionofthecentralclustergalaxy(hereafterCG). IntheregionwhereX-rayandradiosurveysoverlap(δ−40◦),wecompiledacatalogueofX-rayselectedclus-terswithenhancedcentralradioemissionbyperformingacross-correlationanalysisbetweenobjectsbrighterthan3×10−12ergs−1cm−2intheNORASandREFLEXsam-plesandradiosourcesfromtheNVSSdatasetwith1.4GHzfluxesabove3mJy.Thesefluxlimitswererequiredtoen-sureahighdegreeofcompletenessbothintheprimaryX-rayselectionandinthesearchforradiocounterparts(cfr.Sections2.1and2.2).Thereare425clustersfromtheRE-FLEXsurveyfulfillingtheaboveconditiononX-rayfluxes.Thisnumberfallsto305whenweconsideronlythosesourcesthatlieatδ−40◦,necessaryfortheoverlappingofthera-dioandX-raysurveys.Thetotalnumberofclustersusedforouranalysisisthen550,where245comefromtheNORASsurvey. Asuitablematchingradiusshouldmaximizethenum-berofrealassociationsandminimizespuriousmatches.Herewehavetoconsiderthreefactors:i)thewiderangeofred-shiftsspannedbyclustersintheREFLEXandNORASsur-veys(fromz∼5·10−3toz∼0.3),ii)thefactthatX-rayandradioemissionintheproximityoftheclustercentrecan 4M.Magliocchetti&M.Br¨uggen bedisplacedfromoneanotherandiii)thatNORASandREFLEXareflux-limitedsurveysprobingonaveragemoreluminousandmoremassiveclustersatincreasingredshifts.Allthesefactorsconvergeatindicatingthatwecannotuseafixedmatchingangularradius.Infact,anangularradiussuitableforsourcesaroundz∼0.2wouldbetoolargeforthemorelocalobjectsandasaresultwouldincrease(evenbyalargefactorfortheverylocalclusters)thechancesofrandomassociations.Ontheotherhand,anangularradiussuitableforlocalsourceswouldmostlikelymissrealradio-to-Xassociationsathigherredshifts. Consequently,wehavechosentoadoptavaryingangu-larradiusinourcross-correlationanalysis.SinceonaverageclustersofhighermassarefoundtohostmoremassiveandthereforelargerCGs(e.gvonderLindenetal.2007)–sothatthepossibilityforagreaterdisplacementbetweenX-rayandradioemissionoriginatingfromwithintheeventualCGishigher–wehaveadoptedamatchingradiusoftheformθmatch=Qθvir,whereθviristheangularextensionoftheclustergivenbyθvir=rvir/x,withrvirvirialradiusandxcomovingdistance. ParticularattentionwaspaidtothedeterminationofthevalueforthequantityQusedinθmatch.WefindthatQ=0.015(i.e.θmatch1.5%oftheprojectedvirialradius)producesalargeenoughsampleofX-rayclusterswithacentralradiocounterpartwhileminimizingcontaminationfrominterlopers.Theseinterloperscanresidebothinside(i.e.radioemittersotherthanthecentralsource)andout-side(i.e.spuriousmatchesoriginatingfromprojectionef-fects)theclustersinoursample. ByapplyingtheabovematchingcriteriatotheRE-FLEXandNORASsamples,wefindthat81REFLEXclus-tersoutof305–correspondingto26.5%ofthesample–havearadiocounterpartthatisoffsetfromthecentreofX-rayemissionbylessthan1.5%ofthevirialradius,whileinthecaseofNORASwehave67radiomatchesoutof245objects(i.e.27.3%oftheoriginaldataset)withinthesameangulardistance.Itisreassuringthatthepercentageofmatchesisapproximatelythesameinthetwoclustersurveys.ThesefiguresarealsoinagreementwiththeresultsfromBestetal.(2007)fortheoccurrenceofcentralradiocounterpartsintheirSDSSclustersample(seetheirFigure2).Crostonetal.(2005)andDunn&Fabian(2006)findsomehowhighervalues(ontheorderof50%),buttheselectioncriteriaforthesetwosamplesaredifferentfromours,especiallysincebothgroupsconsidersystemsthatareonaverageatmuchlowerredshiftsthanoursample. WenotethatthreesourcesinREFLEX(namelyRXCJ0338.4-3526,RXCJ1501.1+0141,RXCJ2347.7-2808)andtwoinNORAS(RXCJ1229.7+0759andRXCJ1242.8+0241)allowedformorethanoneradiocounterpartwithintheadoptedmatchingradius.Visualinspectionofradiomapshasshownthatinallfivecasesthecentralradiosourceshadextended/multiplestructures.Theradiofluxassociatedwitheachoftheseobjectswastakentobethesumoftheirsub-components.WewillgetbacktothispointinSection4.1. Chancesofcontaminationfromspurioussourcesinthejointradio–X-raycatalogueasobtainedabovehavebeenes-timatedbysimplyverticallyshiftingallradiopositionsby1degreeandbyre-runningthematchingprocedure.Bydoingso,wefindthatinthecaseofbothREFLEXandNORAS Figure1.DistributionofresidualsbetweenradioandX-rayposi-tionsforobjectsintheREFLEX(solidline)andNORAS(dashedlines)catalogues. theprobabilitythataradiosourcefallsbychancewithinthesearchradiusfromthecentreofX-rayemissionisabout5.6%.TheadoptionofasmallermatchingradiussensiblyreducesthenumberofradiosourcesfoundintheproximityofthecentreofX-rayemission,whileleavingthechancesforspuriouscontaminationalmostunaltered.Forinstance,ifinsteadoftakingQ=0.015weconsiderQ=0.01,inthecaseofREFLEXweonlyobtain56matches,whilethees-timatedpercentageofrandomcoincidencesremainsalmostthesame(∼4.5%).Ontheotherhand,increasingtheal-lowedmatchingradiusbyevenasmallamountgreatlyin-creasesthenumberofpossiblespuriouscounterparts:forQ=0.02thisfigurealreadygetsashighas13%. ThedistributionofresidualsbetweenradioandX-raypositionsasafunctionofthe(comoving)distancefromthecentreoftheclusterisshowninFigure1.ThesolidlineindicatesthecaseforREFLEXclusters,whilethedashedlinereferstotheNORASsample.AllradiopositionsdifferfromtheX-rayonesbylessthan∼50Kpc.Ifacentralclustergalaxyispresent,thisimplies–asexpected–thatradioemissionoriginatesfromit. Thenumberofclustersbrighterthan3·10−12ergs−1cm−2endowedwithacentralradiocounterpartabovethe3mJylevelasderivedfromouranalysisis148.Threeclusters,however,havemultipleidentificationsintheNO-RASandREFLEXcatalogues(i.e.appearinbothsurveys).Byremovingthesesourcesfromtheradio-NORASsample,weendupwith145clusterswithauniquecentralradiocoun-terpart.Thisisthesamplethatwillbeusedthroughoutthiswork. 4DESCRIPTIONOFTHESAMPLE Relevantpropertiesfortheradiosourcesfoundintheprox-imityofNORASandREFLEXclustercentresbyfollowing Theinterplaybetweenradiogalaxiesandclusterenvironment 5 theproceduredescribedinSection3aresummarizedinTa-ble2whichreportsinthevariouscolumns:(1)Nameoftheparentcluster. (2)-(3)RA(2000)andDec(2000)oftheradiosource.(4)RadiofluxexpressedinmJy(F1.4GHz). (5)LogoftheradioluminosityexpressedinW/Hz/sr(log10LR). (6)Redshiftofthecluster(z). (7)Distancebetweenclustercentreandradiocounterpart(Kpc). (8)Notesontheradioappearance,i.e.whetherpoint-like(blankspace)orextended/sub-structuredsource(denotedwithan’S’). Radioluminositieshavebeencalculatedaccordingtotherelation: L1.4GHz=F1.4GHzD2(1+z)3+α, (3) whereDistheangulardiameterdistanceandαisthespec-tralindexforradioemission[F(ν)∝ν−α].Sincewedonothavemeasurementsforα,weassumedα=0.75whichisthetypicalvaluefoundforearly-typegalaxiesandsteepspec-trumsourcessuchasjetsandlobes.Notethat,sincethemaximum Radiosourceswithextendedemission Theissueofextended/sub-structuredsources(point(8)inTable2)deservesadigression.AsmentionedinSection3,fiveclustersareassociatedwithradiosourcesthathavemul-tiplecomponentswithinthechosensearchradius.AvisualinvestigationoftheradioimagestakenfromtheNVSSsur-veyforallthe145radioobjectsassociatedwithNORASandREFLEXclustersshowsthatabout42percentofthemdif-ferfromapoint-likestructure.(NotethatsincetheNVSSresolutionis45′′,multiplestructurescloserthan∼9Kpcatz=10−2upto∼250KpcatthehighestredshiftsprobedbytheREFLEXandNORASsurveyswillbeunresolvedintheNVSSradiomaps.WewillgetbacktothispointinSections5.1and5.2).Moreprecisely,thishappensfor61sources,outofwhich33arefoundinREFLEXclustersand28inNO-RASclusters.Thepercentagequotedaboveismuchhigherthanwhatisfoundfor’field’radiogalaxieswithinthesameredshiftrangeandatsimilarradiofluxlevels(∼5%cfr.Magliocchettietal.2001).WewillgetbacktothispointinSections6and7. Havinglabelledtheradiosourceswithan’S’,wedonotmakeanyfurtherdistinctiononwhethertheradioemis-sionpresentsextendedblobs,itappearsasacloseordistantdouble-lobedobjectorfeaturesatriple/morecomplexstruc-ture.Forthepurposesofthepresentwork,theonlydivisionweareinterestediniswhethertheradiosourceexhibitssignsofextendedemissionornot. Generally,itwasrelativelyeasytorecognizedifferentsub-structuresthatbelongtothesameradiosource.Never-theless,thereareanumberofcasesthatremainuncertainandthathavebeenlabelledwithan’S?’inTable2.Toplaysafe,thesesourceshavenotbeenincludedinthe”sub-structure”sampleandinthefollowinganalysestheywillbetreatedaspoint-likeobjects. RadiofluxesforextendedradiosourcesinTable2have Figure2.Toppanel:numberofclustersperX-rayluminosityinterval.Thethick(green)linesillustratethecaseforNORAS,whilethethin(blue)onesarefortheREFLEXsample.SolidlinesshowtheentireFX3×10−12ergs−1cm−2population,whiledashedonesonlyrepresentthoseobjectswhichexhibitrelevant(F1.4GHz3mJy)centralradioemission.Lowerpanel:ratiobetweennumberofclusterswithacentralradiocounterpartandthewholeFX3×10−12ergs−1cm−2clusterpopulation.Open(green)circlesareforNORASobjects,filled(blue)dotsforRE-FLEX,while(red)squaresandassociatederrorbarsrepresentthecombinedREFLEX+NORASdataset. beenobtainedbyaddingupallthefluxesoftheirdifferentcomponents.Radioluminositieshavethenbeencomputedbymeansofequation(3)fortheresultingtotalfluxes. 5 OBSERVATIONALPROPERTIESOFTHESAMPLE Inthissection,wewillshowthemostinterestingproper-tiesandrelationsofoursample.InadditiontothedatadescribedinSection4,someextrainformationsuchastem-peraturesandvelocitydispersionshasbeengatheredfromtheBAXandVIZIERdatabases.Allthebest-fitvaluesfortherelationspresentedinthefollowingpagesaresumma-rizedinTable1,whilewedeferadetailedinterpretationoftheresultstoSections6and7.5.1 Fractionofradiodetections Asaninterestingfirstexercise,wecanestimatethenumberofX-rayclustersbrighterthan3ergs−1cm−2thathostacentralradiosourceaboveF1.4GHz=3mJy.Figure2shows,asafunctionofX-rayluminosity,thetotalnumberofX-rayclustersusedinthiswork(solidlinesinthetoppanelofFig-ure2;thethicklinerepresentstheNORAScasewhilethethinoneisforREFLEXclusters),thenumberofX-rayclus-terswithacentralradiocounterpart(dashedlinesinthetoppanelofFigure2),andtheratiobetweenthesetwoquan-tities(bottompanelofFigure2,wheresquaresandasso- 6M.Magliocchetti&M.Br¨uggen Table1.Best-fitvaluesforthetrendspresentedinSection5.Allrelationsareofthekindlog10y=blog10x+a.X-rayluminositiesLX areexpressedin[1044erg/s],radioluminositiesLRin[W/Hz/sr],temperatureskTin[KeV],velocitydispersionsσin[Km/s]andmassdepositionratesdM LRvskT(Fig.7b) .2+0.1 b=5.6+0−0.2;a=20.40−0.09(33).4+0.1 b=7.2+0−0.3;a=19.5−0.2(31).3+0.1 b=6.3+0−0.2;a=20.1−0.1() σvskT(Fig.8b) .04+0.03 b=0.44+0−0.06;a=2.55−0.01(16).07+0.06 b=0.53+0−0.11;a=2.54−0.02(18).03+0.04 b=0.49+0−0.09;a=2.55−0.01(34) dM Figure3.Ratiobetweennumberofclusterswithacentralra-diocounterpartbrighterthan3mJyintheNVSSmapsandthe wholeFX3×10−12ergs−1cm−2clusterpopulationasafunc-tionofvirialclustermass.Open(green)circlesareforNORASobjects,filled(blue)dotsforREFLEX,while(red)squaresandassociatederrorbarsrepresentthecombinedREFLEX+NORASdataset.Thedashedlineindicatesthebestfittothedata(seetextfordetails). Figure4.Toppanel:fractionofX-rayselectedclusterswithfluxesFX3×10−12ergs−1cm−2whichpresentcentralra-dioemissionbrighterthanaluminosityLR=1021.9W/Hz/srasafunctionofvirialclustermass.Open(green)circlesareforNORASobjects,filled(blue)dotsforREFLEX,while(red)squaresandassociatederrorbarsrepresentthecombinedRE-FLEX+NORASdataset.Bottompanel:sameasabovebutforthevolume-limitedsampleLR1022W/Hz/sr,z0.14(cfr.Fig.12b). ciatederrorbarsindicatethecombinedREFLEX+NORAScase).Notethatthereisaclearpreferenceforradiosourcestoappearinpoorclusters.Infact,despitetherelativelypoorstatisticsatlowluminosities,thepercentageofclus-tershostingacentralradio-AGNbrighterthan3mJydrops 43 fromabout[50%-100%]forLX<∼10erg/sto∼10%atthehighestluminositiesprobedbyNORASandREFLEX. Thistrendbecomesevenmoreintriguingifoneconsid-ersthefractionofclustersthatpresentcentralradioemissionabove3mJyasafunctionoftheclustervirialmassevaluatedasinSection2.1(Figure3).Inthiscase,thereisatrendforcentralradiodetectionsinclusterstodecreasewithcluster 114.5 M⊙h−mass;wefindthatallbutoneofthe12Mvir<0∼10 poorclustersandgroupsidentifiedinNORASandRE-FLEXareassociatedwithacentralradioemittingsource brighterthan3mJyintheNVSSmaps,whilethisfigurerapidlydecreasestoa∼20percentassoonasonemovesto −115 massesMvir>∼10M⊙h0.Wecanquantifythisresultby −α writing:fR=NRADIO/NTOT,whereCLUSTERS=(Mvir/M∗) −113 M∗=(3.5±0.9)·10M⊙h0andα=0.35±0.08(dashedlineinFigure3). Obviously,selectioneffectsbiastheresultspresentedinFigures3and2.TheadoptedfluxlimitforNORASandREFLEXimpliesthatX-rayluminousandthereforemoremassiveclustersarepreferentiallyobservedathigherred- Theinterplaybetweenradiogalaxiesandclusterenvironment 7 shifts.Ontheotherhand,theradio-selectionfunctionde-rivedfromhavinguseda3mJylimitforourradiosample(solidlineinFigure12b)impliesthatwhilelocallyoneiscapableofdetectingallradiosourcesbrighterthan∼1019.5W/Hz/sr,attheredshiftsprobedbymassiveclustersonlyradiosourcesbrighterthan∼1022W/Hz/srcanbeob-served.Furthermore,probingthemostluminousclustersathighredshiftsmayimplyselectingrelaxedclustersi.e.thosewhicharecool-coreones.Ifradio-loudAGNaretheoriginforanyfeedback,thenthismaybeanextraselectioneffect,inthatcool-coreclustersaremorelikelytohostpowerfulradiosources. Nevertheless,theobservationalfactthatallbutoneofthelocalclustersandgroupshostacentralradio-luminoussourcesuggeststhat–bygoingdeepenoughinradiomaps–thismightalsobethecaseforthemajorityofX-rayselectedclusters.Thisconclusionbecomesmorestringentbythefactthatourcriterionforassociatingradiosourceswithclustercentresnecessarilymissesrelativelycommonobjectssuchastriplestructureswherethecentralcomponentistoofaintinradiotobeseen(double-lobedsourceswitha’radio-quiet’galaxysetintheirmiddle). Toobtainanunbiasedtrendfortherecurrenceofradiosourcesinclustercentres,wecompileavolume-limitedsam-ple.Thisispresentedinthebottom-panelofFigure4forthevolume-limitedsamplez0.14,LR1022W/Hz/sr(cfr.Figure12b),chosensuchthatthenumberofsourcesavail-ablefortheanalysisismaximised.Inthiscase,thefractionofX-rayclusterswithcentralradioemissionisfoundtobearoundthe20percentlevel,withpossiblyaslightprefer-enceforradiosourcestoinhabitmoremassiveclusters.Wenotehoweverthatthisresultonlyholdsforrelativelylargeclustersastheradioluminositycuthasexcludedallclusters lessmassivethanMvir∼1014.5M⊙h−1 0. Bestetal.(2007)useasampleof625groupsandclus-tersofgalaxiesselectedfromtheSloanDigitalSkySurveyandcross-correlatedwiththeNVSSandFIRST(FaintIm-agesoftheRadioSkyatTwentycentimeters;Beckeretal.1995)radiosamplestostudythepropertiesofradio-loudAGNinthebrightestclustergalaxies(coincidinginthema-jorityofthecaseswithourdefinitionofCGs,seevonderLindenetal.2007).Intheirworktheyshowthatthefrac-tionofbrightestclustergalaxiesthatareradio-loudAGN increaseswith(stellar)massas∝Mstellar1.0 uptoaplateaulevelofabout∼20−30percentreachedfortheirhighestmassrangewhichiscentredataroundMstellar∼1011.5M⊙.OursampleofX-rayselectedclustersallowstoextendtheBestetal.(2007)analysistothehigher-massregionprobedbyrichgroupsandclustersofgalaxies.Thetrendpre-sentedinthetoppanelofFigure4thenshowsthefractionofclusterswithacentralradiocounterpartbrighterthanLR1021.9W/Hz/sr(limitwhichiscomparabletothedefinitionofradioloudnessgiveninBestetal.2005)asafunctionofclustermass.Atallclustermasses,thepercent-ageofclustershostingacentralradio-loudsourceissubstan-tiallyconstantandequalto∼20percent.Ourresults,bothforwhatconcernsthepresenceofaplateauinthedistribu-tionofobjectsthatareradio-loudAGNandforthevalueofsuchfraction,aretheninagreementwiththoseofBestetal.(2007).Itisquiteintriguingthatthesamedependence(orratherindependence)onmassoftheoccurrenceofcentralradio-loudsourcesinmassiveextragalacticobjectsisfound Figure5.Fractionofradio-detectedclustersthatpresentextended/sub-structuredradioemissionasafunctionofvirialclustermass.Open(green)circlesareforNORASobjects,filled(blue)dotsforREFLEX,while(red)squaresandassociateder-rorbarsrepresentthecombinedREFLEX+NORASdataset.Thedashedlineindicatesthebestfittothedata(seetextfordetails). independentlyofwhethersuchamassisthatofa’field’galaxy(seeBestetal.2007),ofaclustercentralgalaxyoroftheclusterthatsurroundsit. Anotherinterestingpointconcernstheintermittencyoftheradio-loudAGNphenomenon.Bestetal.(2005)arguethattheobservationalfindingthat∼20-30percentofallthemostmassivegalaxiesintheirsamplepresentsigna-turesofradioactivityimpliesthatthisactivityhastobere-triggeredsooftenthatthegalaxyspendsaboutaquarterofitslife-timeinanactivestate.Thisfuel-supplyrequire-mentbecomesevenmoredemandingifoneconsidersthattheBestetal.(2005)selectionincludesradiosourcesthatarebrighterthanthoseconsideredinthiswork.Asalreadydiscussed,Figure3suggeststhatifonegoestolow-enoughradioluminosities,itislikelythatthemajorityofclustershostacentralradiosource,justasitisfoundlocallyforoursample.Thisresultwouldthenimplyanalmostconstantre-triggeringoftheradiosource,sotoallowthehostinggalaxytospendalmostallitslifetimeinanactivestate. Asafinalpointinthissection,wehaveconsideredthoseradiosourceswithintheclustercentresthatpresentextendedand/orsub-structuredradioemissionandinvesti-gatedwhethertherewasadependenceoftheirrecurrencerateonclustermass.TheresultsarepresentedinFigure5.TheverymarginaltrendfortheirfractiontodecreaseMvir(fS=NSub/NRADIO≃Mvir/1.6·1012h−1 mostlikelyduetothecombinedeffectofthe0M⊙ resolution−0.with 1)isca-pabilitiesoftheNVSSsurveywiththealreadymentionedselectionbiasesinflux-limitedsurveyswhichpreferentiallyidentifymassiveclustersathighredshifts.Thisimpliesthat,atvariancewithwhathappensmorelocally,closesubstruc-tureswillnotbeobservedassuchatthoseredshifts,result- 8M.Magliocchetti&M.Br¨uggen Figure6.Fractionofradio-detectedclustersthatpresentextended/sub-structuredradioemissionasafunctionofredshift.Open(green)circlesareforNORASobjects,filled(blue)dotsforREFLEX,while(red)squaresandassociatederrorbarsrepresentthecombinedREFLEX+NORASdataset. inginanetlossofsub-structured/extendedsourcesstart-ingfromz∼0.05andparticularlybeyondz∼0.1(cfr.Figure6).Nonetheless,inthelocaluniverseand/oratlowclustermassesthereisatendencyforthemajority(>50%)ofcentralradiosourcestopossessextendedradioemission.CombiningthisresultwiththatofFigure3wecanthencon-cludethat,atleastlocally,themajorityofclusters(whichinthiscasearerathergroups)hostanextendedradiosourceintheircentre.Wewillinvestigatetheconsequenceofthisfindinginthenextsub-sections.5.2 LuminosityvsTemperature X-rayscalingrelationsofgalaxyclusters,suchastheX-rayluminosity-temperaturerelation,playanimportantrolewhenusingclustersofgalaxiestoconstraincosmologicalpa-rameters.Whengravitationalheatingistheonlysourceofheating,clustersshouldbehaveself-similarlyandtheX-rayluminosity(duetothermalbremsstrahlung)shouldscaleasLX∝T2(Kaiser1986). Mostauthors(e.g.White,Jones&Forman1997;Ar-naud&Evrard1999andmorerecentlyPopessoetal.2005)reportLX−kTcorrelationswithlogarithmicslopescloseto3intheclusterregime,thoughattemptstoremovetheeffectsofcentralcoolingflows(Allen&Fabian1998;Marke-vitch1998)resultsinflatterrelations.However,theaboveresultisfoundtobreakatthemass/luminosityscalesofgroupsofgalaxies.Helsdon&Ponman(2000a,b)reportasteeperslopeof4.9±0.8forasampleofX-raybrightloosegroups,and4.3±0.5foralargersampleincludingbothlooseandcompactgroups,whileXue&Wu(2000)foundaslope5.6±1.8fromdatafor38groupstakenfromtheliterature.Morerecently,Osmond&Ponman(2004)–byanalysingasampleof60galaxygroupswithintheGEMSproject–have measuredanLX−kTslopethatiscomparablewiththat foundinclusters(butseetheirdiscussionaboutpossiblesystematicswhichcouldhaveaffectedtheirresult). Theobserveddeparturefromself-similarityhasbeeninterpretedasexcessofentropyinlowmassclustersduetosomeformofpre-heatinggeneratedbysourcessuchassu-pernovaeand/orAGN(seee.g.Tozzi&Norman2001).Ev-idenceforheatingexcessin19groupscontainingradio-loudAGNhasrecentlybeenreportedbyCrostonetal.(2005).Fromthetheoreticalpointofviewanumberofworkshaveshownthatradio-loudAGNcanprovideasufficientlyener-geticandwidelydistributedheatingmechanismtosolvetheentropyfloorproblem(e.g.Br¨uggen&Kaiser2001;Br¨uggen&Kaiser2002;B¨ohringeretal.2002;Fabianetal.2003;Heinzetal.2006). Inordertoinvestigatetheeffectsofthepresenceofacentralradiocomponentingroupsandclustersofgalax-iesfromastatisticalpointofview,wehavegatheredtem-peraturesforoftheradio-detectedclustersbelongingtooursamplefromtheBAXdatabase.Thissamplewassub-dividedaccordingtowhetherthecentralradiosourcepresentedanextended(31objects)oranunresolved(33objects)structure.TheLXvskTtrendforthetwosub-populationsispresentedintheleft-handpanelofFigure7,whereopencirclesrepresentclustersinhabitedbypoint-likeradiosources,whilefilledsquaresareforclustersassociatedwithcentralsourceswithextendedradioemission.Thedif-ferenceinbehaviourbetweenthesetwopopulationsisstrik-ing:atagiventemperature,theoverwhelmingmajorityofclustersassociatedwithextendedradiosourceshavealowerX-rayluminositythanthosethathostpoint-likeradioob-jects.Or,fromadifferentpointofview,atagivenlumi-nosityclustersassociatedwithextendedradiosourcesaresystematicallyhotterthanthosethatarenot. Whenwemakeaχ2fittoourentiresampleofX-rayselectedclustersthathostacentralradiosource,wefindaslopeoftheLX−kTrelationofb=2.8±0.1.Thisslope becomesappreciablyshallower(b=2.35+0.08 −0.07)ifoneonlyincludesunresolvedradiosources,andremarkablysteeper(b=4.0±0.2)forthesub-populationofextendedradioob-jects.Intriguingly,X-rayclusterswithapoint-likecentralradiosourcetraceadistributionthatisverysimilartotheLX∝T2expectedforself-similarsystems.ThepresenceofextendedradiosourcesbreaksthisrelationcausingamuchsteeperdependenceofX-rayluminosityonclustertemper-ature.ThismaypointtowardsamoreefficientmodewithwhichextendedsourcescanpermeatethesurroundingICMandtransferheatwithinthecluster.AswillbediscussedingreaterdetailinSections6and7,theabsoluteeffectofextendedradio-loudAGNontheICMdecreaseswithclus-termass.ThisisclearlyseeninFigure7a.Withincreasingmass(i.e.increasingT),thedifferencebetweenpoint-likeandextendedradiosourcesdecreases. Theissueofpoint-likevsextendedradiosourceshasbeeninvestigatedfurtherbyconsideringvolume-limitedsamplesofclusters.Infact,giventhe45′′resolutionofNVSS(cfrSection4.1andFigure6),theaboveresultonthedif-ferentbehaviouroftheLX−kTrelationshipforclustersthathostcompactorextendedradiosourcescouldbebi-asedbythepresenceofradiostructuresthatareextendedbutappearaspoint-likeintheNVSSmaps.Wehavethenrepeatedtheaboveanalysisbysplittingthesamplesinto Theinterplaybetweenradiogalaxiesandclusterenvironment9 Figure7.Left-handpanel(a):X-rayluminosityversusclustertemperatureforthoseX-rayselectedclustersbrighterthan3ergs−1cm−2whichexhibitcentralradioemissionabove3mJy.Open(red)circlesrepresentclustersassociatedtopoint-likeradiosources,whilesolid(green)squaresareforthoseclustersinhabitedbyradioobjectspresentingextendedstructures.Thedashed(green)lineindicatestheLX−kTbestfitforthesub-populationofextendedradiosources,whilethedotted(red)oneisforpoint-likeradioobjects(seeTable1).Thesolidlineisthebestfittothewholeradioclustersample.Right-handpanel(b):radioluminosityofthesourcesassociatedwithclustercentresversusclustertemperature.Symbolsareasbefore. Figure8.Left-handpanel(a):X-rayluminosityLXversusvelocitydispersionσforasubsampleof39clusterswithenhancedcentralradioemission.Open(red)circlesidentifypoint-likeradiosourceswhilefilled(green)squaresrepresentextendedones.The(green)dashedand(red)dottedlinesrespectivelyindicatetheLX−σbestfitstothesub-populationsofextendedandpoint-likeradiosources(seeTable1).Thesolidlineisthebestfittothewholeradioclustersample.Right-handpanel(b):velocitydispersionversusclustertemperature.Symbolsareasbefore. sourceswithz0.05and0.05 b=2.9+0.8+0.4 −0.6;a=−1.5−0.6andb=2.7±0.3;a=−1.3±0.2.Onecanthenseethattheresultsobtainedforthemorereli-ablelocalsubsetsofclustersareinverygoodagreementwiththosederivedpreviouslyinthisSection(cfrTable1)regard-lessoftheclusterredshiftdistribution.Thisisreassuring.Harderistheintepretationofthehigher-redshiftresults.Inthiscaseclustersinhabitedbypoint-likeandsub-structuredradiosourcespresentaverysimilardependenceoftheX-rayluminosityonthetemperature.Whetherthiseffectisduetothefactthatthe’point-like’sampleofsourcesinthisredshiftrangealsoincludesafractionofsub-structured(butunresolved)objects,thereforeproducinganetmixofthetwopopulationsorwhetheritsexplanationresidesinthemorephysicaleffectthatathighredshiftwearepref-erentiallyselectinghigher-masssystemswheretheabsoluteeffectofextendedradio-loudAGNontheICMissmallerisdifficulttotell.Higher-resolutionradioobservationsoftheclustercentresareneededtodisentanglethesetwoeffects. TheaverageLX−kTbehaviourobtainedbyconsideringbothpopulationsofextendedandpoint-likeradiosourcesisinremarkableagreementwithwhatisfoundinthelitera-tureforthewholeclusterpopulation(e.g.White,Jones&Forman1997;Arnaud&Evrard1999;Popessoetal.2005).Thisresult,togetherwiththefactthatweexpectmostX-rayselectedclusterstohostacentralradioobjectbrighterthan∼1020W/Hz/sr(see§5.1),suggeststhattheobservedLX∝T3scalingisduetothesuperpositionoftwoseparatepopulations:clustersinhabitedbyunresolvedradioobjectsandclusterswithextendedradioemission. Theaboveanalysisunderlinesthefundamentalimpor-tanceofextendedradio-loudAGNinbreakingtheself-similarityofclusters,atleastonscaleskT<∼3KeV.Atthispointonecanwonderhowthelevelofradioactivitydependsontheclustertemperature.AplotofLRvskTispresentedintheright-handpanelofFigure7.Independentoftheradiomorphology,thereisamuchgreaterspreadthanintheLXvskTplot.However,forkT<∼3keV,i.e.intheregimewhereradio-loudAGNheatingisveryefficient,theLR−kTrelationisrelativelytight,providingsomeevidence–atleastinlow-masssystems–forarelationbetweenradioluminosityandclustertemperature,inthathotterclustershostmorepowerfulradiosources.Notethatthisresultisfoundtoholdforbothunresolvedandsub-structuredradiosources. 5.3VelocityDispersions Velocitydispersionmeasurementsforthispartofouranaly-sishavebeentakenfromtheVIZIERdatabaseandinmostcasesrelyontheworksofMahdavietal.(2000)andMahdavi&Geller(2001).X-rayluminositieshavebeencomparedtovelocitydispersionsforthe39clustersforwhichmeasure-mentswereavailableintheleft-handpanelofFigure8.Best-fitvaluesforthefitsareprovidedinTable1.Thetrendseenforthewholepopulationofclustersinhabitedbyacentralradiosource(LX∝σb,withb=3.8±0.4)isingeneralagreementwithwhatisfoundintheliteraturefordifferentsetsofclustersandgroupsofgalaxies(e.g.b∼3.6,Popessoetal.2005;b∼4.4,Madhavi&Gheller2001;b∼3.9fortheclustersconsideredinOsmond&Ponman2004).Thisbe-haviour,togetherwithwhatwasfoundinSection5.2forthe Figure9.RatiobetweenmechanicalandX-rayluminosityversusclustervelocitydispersion.Open(red)circlesidentifypoint-likeradiosourceswhilefilled(green)squaresrepresentextendedones.The(green)dashedand(red)dottedlinesrespectivelyindicatetheLmech/LX−σbestfitstothesub-populationsofextendedandpoint-likeradiosources(seeTable1);thesolidlineisthebestfittothewholeradioclustersample. LX−kTrelation,showthatradio-identifiedclustersprovideafairsampleoftheentireclusterpopulation. However,thesimilaritybreaksifoneconsidersclustersinhabitedbyunresolvedandextendedradiosourcessepa-rately.Fortheformercase,wefindthatb=6.2+0.4 −0.3,whilein thecaseofextendedradioemissionwefindb=5.5+1.0 −0.8.Thedifferenceintheobservedbehaviourofthesetwosub-groupswiththegeneralcase(cfr.Figure8a)maybeattributedtothefactthatinoursampleextendedradiosourcesseemtobesystematicallyassociatedtohighervelocitydispersionsystems.Eventhoughtheavailabledataisnotgoodenoughtoprovidemorethana1σevidenceforthiseffect,thenetresultofcombiningextendedandpoint-likeradiosourcesisaflatteningoftheLX−σrelationtothe’standard’valueb∼4.AsalreadyobservedinSection5.2,itisintriguingthatthesumoftwopopulationswithdissimilarbehavioursgivesrisetoatrendthatmatchespreviousmeasurementsobtainedfordifferentclustersets.Thissuggestsagainthatclusterscanbedividedintotworatherdifferentgroups:clus-tersthathostpoint-likeradiosourcesandthoseassociatedwithextendedradioemission. ItwouldbeinterestingtoinvestigatetheLX−σre-lationinthe erg/sregime,thisiscurrentlynotpossible.∼10 sothatForthesamereason,wecannotdetectanydifferenceintherelationbetweentem-peratureandvelocitydispersion(right-handpanelofFigure8),apartfromamarginalpreferenceforextendedradiosourcestoresideinhighervelocitydispersionsystems.The Theinterplaybetweenradiogalaxiesandclusterenvironment 11 slopeoftheσvskTrelationisb∼0.5inallcases,againinagreementwithmostoftheresultsfoundintheliterature. Byanalysingthecavitiesandbubblesthatarepro-ducedinclustersandgroupsbytheinteractionbetweenra-diosourcesandthesurroundinghotgas,Birzanetal.(2004)provideausefulempiricalrelationtoestimatethemechan-icalluminosityreleasedbythecentralradiosourceintotheICM:Lmech 1025WHz−1 Eventhoughthe1.4GHzsynchrotron0.40±0.13 (4) luminosityisnottooreliableatpredictingthemechanicalluminosityascanbeseenfromthelargeerrorsintheexponentofEq.4,wewilluseittocalculatetheenergeticbalancebetweenAGNheat-ingandradiativelosses(asinBestetal.2007andBirzanetal.2004).ThisispresentedinFigure9asafunctionoftheclustervelocitydispersion,whereonceagainsolidsquaresareforextendedradiosources,whileopencirclesrepresentpoint-likestructures.InagreementwithBestetal.(2007)wefindthat,whileonthesmallestmassscales(σ Thus,forthesmallermasssystemswehavefoundthefollowing:(i)mechanicalheatandradiativelossesbalanceand(ii)thereisacorrelationbetweenX-rayluminositiesandclustertemperaturesandbetweenradioluminositiesandclustertemperaturesinthelowtemperatureregime(Sec-tion5.2).Thissuggeststheconclusionthatinobjectssuchasgroupsorsmallclustersofgalaxiesthereisastrongin-terplaybetweencentralradiosourceandthesurroundinggas.Inthiscase,morepowerfulradiosourcesleadtohot-tersystems.Theeventualpresenceofextendedradiostruc-turessuchasjetsandlobesisoffundamentalimportancetothethermalstateoftheICM,astheycancarryenergythroughoutthewholeclusterandappeartobemoreefficientatheatingthesurroundingmedium.Theheatingprovidedbythecentralradiosourceisalsofoundtobesufficienttobalanceradiativelosses. Thesituationisdifferentathighermasses.Inthiscase,wefindthatthereisnocorrelationbetweentheradiolu-minosityofthecentralsourceandtheclustertemperature.Also,theeffectoftheradio-loudAGNonthethermalstateoftheclusterisindependentofthecapabilitiesofsuchanobjecttopermeatethesurroundingmedium(nodifferenceintheLX−kTrelationbetweenextendedandpoint-likesources).AGNheatingisfoundtobeinsufficienttocoun-terbalancetheradiativelossesoftheICM,witharelativeenergeticimportancewhichsteeplydecreases(as∝σ−7)withclustermass. Adifferentsourceofprominentheatingmustbeinvokedinthislattercase.Onesuchmechanismmaybethermalcon-duction(seee.g.Br¨uggenetal.2003;Hoeft&Br¨uggen2004;Roychowduryetal.2005;Ruszkowski&Begelman2002;Fu-jita&Suzuki2005;Narayan&Medvev2001;Voigt&Fabian2004).Hoeft&Br¨uggen(2004)haveprovidedevidencefortherelativeimportanceofheatingduetothermalconduc- Figure10.X-rayluminositywithinthecoolingvolumeversusradioluminosityLRofthecentralsource.Symbolsareasbefore. tiontoincreasewithclustermass,inagreementwithourresults.5.4 Coolingcoreclusters Clustersofgalaxiescanbeseparatedintotwoclasses:clus-terswithdensegaseouscoresinwhichthecoolingtimeislessthantheHubbletime,(coolcoreclusters),andclusterwithlessdensegaseouscores(non-coolcoreclusters). Chenetal.(2007)haveinvestigatedtheinfluenceofcoolcoresonclusterscalingrelations.TheiranalysishasshownthatincoolcoreclusterstheX-rayluminosityisenhancedoverthatofnon-coolcoreclusters,whileotherparameterssuchastemperature,massandgasmassarelessaffectedbytheoccurrenceofacoolingcore.Thishasbeenexplainedbythefactthatatleastsomeofthenon-coolcoreclus-tersareindynamicallyyoungstatescomparedwithcoolingcoreclusters.Alternatively,thenon-coolcoreclustersmighthavehadtheircoolcoresheatedbyaradio-loudAGN.ThisissuggestedbyFig.7awhichshowstheLX−Trelationforclusterswithanextendedradiosourceandforthosewithoutit.Ourresultindicatesthatthescalingrelationsforclus-tersaresignificantlyaffectedbythepresenceofaradio-loudAGNattheircentres. IntheworkbyBirzanetal.(2004),aclosecorrelationbetweenthemechanicalenergyoutputofthejetsandtheenergylossofthecentralX-rayplasmabycooling(relatedtothetraditionallydeterminedcoolingflowmassdepositionrate)hasbeenestablished.ThislendssupporttotheideathatthefeedingoftheAGNisconnectedtothecoolingrateandthattheenergyoutputoftheAGNregulatesthecoolingcorestructurebyfeedbackprocesses.Inanymodeloffeed-back,thepowerofthecentralAGNshouldberegulatedbythesupplyoffuelfromtheICM.Thus,asinathermostat,largeradiativelossesshouldgiverisetoastrong,centralradiosource,whichinturnwillheatuptheICM(seeChu- 12M.Magliocchetti&M.Br¨uggen Figure11.Thermalenergyrequiredtoheattheclusterswhichhostintheircentresextendedradiosourcesfromthepredictedtothemeasuredtemperature(cfr.Figure7a)asafunctionofradiopower(seetextfordetails). razovetal.2003).Themorestronglyaclustercoolsatitscentre,themorefuelcanbesuppliedtothecentralAGNwhich,inturn,candrivemoreenergeticradiolobesthroughtheICMwhichgetsheateduntilthecentralcoolingtimegoesup,themassdepositionrategoesdownandthesupplyoffuelisshortened. Coolingflowmeasurementsfor15clustersbelongingtooursamplehavebeentakenfromWhiteetal.(1997).Fig-ure10showsthedependenceoftheradioluminosityofthecentralsource,LR,onthecoolingluminositydM dt vsLRrelationwhichdoesnotaffect ouranalysisandconclusions).Giventhepaucityofsourcesandthefactthattheydidnotshowanydifferentbehaviour,inthiscasethebest-fitvaluefordM dt ∝LbRwithb=0.25±0.02cfr.Table1) whichisinagreementwithfeedbackmodels(e.g.Churazovetal.2003)forthefuelingofclusterradiosources. 6 CLUSTERSWITHCENTRALRADIOEMISSION:UNDER-LUMINOUSOROVERHEATED? InSection5.2wehaveseenhowclustersthathostaradiosourceendowedwithanextendedstructureshowadepar-turefromthetypicalLX−kTrelationfoundfortheclusterpopulationasawhole(cfr.Figure7a),adeparturethat isparticularlyremarkableinthecaseoflow-masssystems. Whatisnotyetclearfromouranalysisisifextendedradiosourcescauseanunder-luminosityoranoverheatingoftheassociatedcluster.Ifitisindeedatemperatureincrementcausedbythecentralradiogalaxy,onemayexpectthecor-respondingheatexcesstobecorrelatedwiththeradiopowerofthecentralsource. Toinvestigatethispossibility,wehaveconsideredthequantityEreq=3Nk∆T/2=3Mgask∆T/2µmHwhichistheenergyrequiredtoheattheICMfromthepredictedtothemeasuredtemperature.Intheaboveexpression,Nisthetotalnumberofparticles,Mgasthegasmassoftheclusterand∆TthetemperatureincrementofclusterswhichhostanextendedradiosourcewithrespecttotheLX−kTrelationobeyedbyclusterswithunresolvedcentralsources.Thegasmasswascomputedfromthetotalmassoftheclus-terbyusingaconstantgasmassfractionof0.2.WehaveplottedtherequiredenergyasafunctionofradiopowerinFig.11.Theradioluminosityandtheheatinputneededtoproducetheobservedtemperatureincrementinclustershostingextendedradiosourcesappeartobecorrelated,al-thoughwithalargescatter.Thiscorrelationfavoursamodelwherethetemperatureincreaseiscausedbyradiogalaxy-inducedheating.AsnotedbyCrostonetal.(2005)whoper-formedasimilaranalysisforgroupsofgalaxies,thelargescatterinthisplotisnotsurprisinggiventhattherearemanyunknownfactorssuchastheageofthesource,itshistoryandsize. TheissueoftemperatureincrementcanbeinvestigatedfurtherbyperformingMonteCarlosimulationstobecom-paredwiththeX-rayandradioluminositydistributionsofthepresentsample.PossiblebiasesduetothejointeffectsoftheX-rayandradioselectionfunctions(highlightedbythesolidcurvesinthetwopanelsofFigure12),havebeenremovedbylimitingouranalysistofourcontiguousredshiftregionswhicharecompletebothinX-rayluminosityandin1.4GHzradiopower.Inordertomaximizethenumberofsourcesavailableforstatisticalanalyses,thesefourregionsinthez−LX−LRspacehavebeenidentifiedasfollows:1)z0.01;LX0.0015·1044;LR1019.5;2)0.01 –whereX-rayluminositiesareinerg/sandradioluminosi-tiesinW/Hz/sr–andarethoseenclosedwithinthedashedlinesinFigure12.91clustersinourdatasetfulfilltheaboverequirements(crossesinFigure12),outofwhich45hostsub-structured/extendedradiosources(filledgreensquareswithcrossesontopinFigure12). Simulatedsamplesinthez−LX−LRspacehavebeenobtainedbyassumingthattheclusterX-rayluminosityandradioluminosityofthecentralsourcearenotcorrelatedwitheachother.Eachsimulatedobjectinthefourregionsconsid-eredinouranalysiswasthengivenatripletofvaluesz,LXandLR,wheretheX-rayluminositywasassignedaccordingtotheB¨ohringeratal.(2002)clusterluminosityfunctionasderivedfromtheREFLEXclustersurveyoncetheirsamplewascorrectedbothformissingfluxandfluxerror:Φ(LX)dLX=Φ0 LX L∗ dLX Theinterplaybetweenradiogalaxiesandclusterenvironment13 Figure12.DistributionofX-ray(left-handpanel)andradio(right-handpanel)luminositiesasafunctionofredshiftforthe145NORAS+REFLEXclustersendowedwithacentralradio-activecomponent.ThesolidlinesshowtheminimumluminositiesprobedbytheX-rayand1.4GHzsurveyscorrespondingrespectivelytothelimitingfluxesof3·1012ergs−1cm−2and3mJy.Open(red)circlescorrespondtopoint-likeradiosources,whilefilled(green)squaresidentifysub-structuredobjects.Crosseshighlightthosesystems(91,outofwhich45showsignaturesofofextendedemission)whichfulfilltheluminosityrequirements(5)adoptedfortheMonteCarlosimulations(dashedhorizontallinesbothintheleft-handandright-handpanels)andthatthereforehavebeenincludedintheanalysispresentedinthissection(seetextfordetails). Figure13.FractionalluminositydistributionsofX-rayselectedclustersinhabitedbyacentralradio-activeAGN.Thesolidpointswithassociatederrorbarscorrespondtothe91sourcesextractedfromthesamplepresentedinthisworkbyrequiringtheconditions(5)tobefulfilled.SolidlinesrepresenttheresultsoftheMonteCarlosimulations. −3 withα=1.69,Φ0=1.07·10−7h3and0,50Mpc 44−2 L∗=8.36·10h0,50erg/s,whereh0,50=h0/0.5. provedtoprovideaverygoodfittothelocal,AGN-fuelled,radiopopulation(seee.g.Magliocchettietal.2002): RadioluminositieswereinsteaddrawnfromtheDun-lop&Peacock(1990)radioluminosityfunctionforsteep-spectrumsources(model7forpureluminosityevolution), Ψ(LR,z)=Ψ0 LR Lc(z) β−1 ,(7) 14M.Magliocchetti&M.Br¨uggen Figure14.ThesameasinFigure13butforthesub-populationofextendedradiosources(45objects). whereα=0.69,β=2.17,Ψ0=10−6.97Mpc−3 (∆log10LR)−1andwheretheevolvingbreakluminosityLc(z)canbeexpressedaslog10Lc(z)=26.22+1.26z−0.26z2(inW−1Hz−1units).SincetheaboveexpressionwasderivedforanΩ0=1,h0=0.5(EdS)universe,followingDunlop&Peacock(1990)wehaverewrittenequation(7)inthecon-cordanceΛCDMcosmologybyusingtherelation:Ψ1(LR,1,z) dV1 dz, (8) observedinFigure7a.ThecontributionofAGNheatingfromacentralradiosourceislessimportanti)inthecaseofpoint-likesourceswhicharenotobservedtopermeatetheICMandii)–independentofthetypeofradioobject–inthecaseofhighmasssystemswhichrequireadditionalformsofenergytobalanceradiativeloss. ThisisinagreementwiththeresultsdisplayedinFig-ure11.Physically,itmeansthattheradiosourcesdisplaceonlyasmallfractionoftheX-rayluminousICMsothatthereisnonoticeableluminositydeficitinclusterswithra-diostructure.However,simulationsshowthatifasignifi-cantfractionofthejetenergyistransferredintopotentialenergythusleadingtoanexpansionoftheclusteratmo-sphere,alsotheluminosityoftheICMdecreases(seeHeinzetal.2006).SuchsimulationsalsosuggestthatasignificantfractionofthejetenergyisthermalisedintheICMonrel-ativelyshorttimescales.Onlongtimescales,however,theenergyinjectedintotheICMbyradiogalaxiesmustendupmostlyaspotentialenergybythevirialtheorem,thusim-plyinglong-termtemperatureincrementstobesmall.Thisindicatesthatouranalysisisunveilingtheshort-termeffectsofradio-loudAGNheating.TheextendedradiostructuresinfactoriginatefromrecentAGNactivityandarefoundincorrespondencewithongoingheatingintheICM.Ontheotherhand,thoseclusterswithnoextendedstructureshavenothadarecent(i.e.longerthanthelifetimeofaradiolobe)outbreakofradio-loudAGNactivityandthereforeshownosignsofrecenttemperatureincrements. WhiletheX-rayluminosityofatypicalclusterremainsunaffectedbythepresenceofacentralradio-emittingcom-ponent,oursimulationsclearlyshowthatthisisnotthefateforthe1.4GHzluminosityofaradiogalaxysetatthebottomofthepotentialwellofacluster.Infact,theright-handpanelsofFigures13and14highlightthatthereisaremarkabledeficitoflow-luminosity(1021W/Hz/sr<∼22 10W/Hz/sr)radiosourceswhencomparedtotheLR<∼ wholeFR3mJypopulation.Atthesametime,radio-loud where1and2refertotheoldandnewcosmologyanddV/dzisthevolumeelement. Weperformed1000MonteCarloruns,whereeachrunwassetsotogivethesamenumberofsourcesperredshiftinter-valwithluminositiesabovethelimitsexpressedin(5)asintherealdataset. TheluminositydistributionsofX-ray-selectedclustersinhabitedbyaradio-loudAGNareshowninFigures13and14whichprovidethefractionalnumberofclustersperX-ray(left-handpanels)and1.4GHzluminosity(right-handpanels)forbothrealdata(pointswithassociatederrorbars)andsimulatedsample(solidlines.Notethat,duetothehighnumberofrealizations,thesevaluesarevirtuallyerror-free). Twoimportantconclusionscanbedrawnfromthedis-tributionsshowninFigures13and14.First,theX-raylu-minositydistributionofclusterswithacentralradio-activecounterpartisvirtuallyidenticaltothatfeaturedbythewholepopulationofX-rayselectedclustersbrighterthanthesamefluxlimit.Inotherwords,thepresenceofacen-tralradio-loudcomponent,howeverpowerful,doesnotaffecttheclusterX-rayluminosity.ThisresultisfoundregardlesstowhethertheradioAGNshowsanextendedorpoint-likestructure.IfwethencombinetheabovefindingwithwhatemergedfromSections5.2and5.3,wecanconcludethat–mostlyinthecaseofsmallmasssystems–theinteractionofextendedradiosourceswiththesurroundingenvironmentcausesaremarkableoverheatingoftheavailablegas,heat-ingwhichproducesthesteepeningoftheLX−kTrelation Theinterplaybetweenradiogalaxiesandclusterenvironment 15 AGNwithintheclustercentresseemtofavourluminosities∼1024W/Hz/sr(∼3σdiscrepancyfromtheresultsforthewhole1.4GHzradiopopulation).Thisdifferentbehaviourbetweentheradio-luminositydistributionofrealsourcesandofsimulateddatasetsisfoundregardlessofwhetherthecen-tralradiosourcepresentsanextendedstructureornot.Thisresultimpliesadifferencebetweentheluminosityfunctionofradiosourcessittingintheclustercentresandthatofthewholeradiopopulation,inthesensethattheformer oneismuchflatteratallluminositiesLR Thefactthatlow-luminosityradiosourcesareunder-representedinclustersismostlikelyduetothe’strangling’effectcausedbytheoverdensecentralregionsofmassivesystemsonradioobjectsthatarenotpowerfulenoughtoexpandthroughoutthesurroundingmedium.Ontheotherhand,ifwecombinetheresultspresentedinthissectionwiththeanalysisperformedinSection5.1,wecancon-cludethatextendedstructuresandhighradioluminositiesaremorelikelytooccurinsourcesthatarelocatedinrichenvironmentssuchasgroupsorclustersofgalaxies.Thisislikelycausedbyatightinterplaybetweentheintraclustermediumandtheenergyreleasedbyacentralradiosource,whichbooststheradioluminosityofthelatterone.Indeed,inagreementwithourresults,Barthel&Arnaud(1996)findthatforafixedjetkineticpower,radioluminositiescanbehigherinclustersduetotheconfiningeffectofthedenseICMwhichreduceslossesduetoadiabaticexpansionintheradiolobes,thereforeenhancingtheradiosynchrotronemis-sion. 7CONCLUSIONS WehavecombinedtheREFLEXandNORASclustersur-veyswiththeNVSSdatasettoprovidealistofX-rayse-lectedclustersbrighterthan3·10−12ergs−1cm−2whichhostintheircentres(dist1.5%rvir)aradiosourcebrighterthan3mJy.Outof550clusterssetinthewholeskynorthofδ=−40◦,148systems(correspondingto∼27percentofthetotalsample)showsignaturesofcentralradioemis-sion.WefindthatthreesystemswereimagedbothinRE-FLEXandNORASintheoverlappingregion0◦<∼δ<◦Bythenremovingdouble∼2.5 betweenthetwosurveys.identi-ficationsweendupwithasampleof145clustersthathostacentralradiosourcewithF1.4GHz3mJy.Visualinves-tigationsofradiomapsshowthat61oftheradioobjects(i.e.∼42percentofthesample)associatedwithclustercentrespossessextendedradioemissionintheformofelon-gatedblobs,doubleortriple/multiplestructures.Archivaldata(mainlytakenfromtheBAXandVIZIERdatabases)haveprovidedextrainformationsuchastemperaturesandvelocitydispersionsforsomeofthesystemsinoursample. Themainconclusionsofourworkcanbesummarizedasfollows: (1)Althoughthefractionofclustersthathostacen-tralradiosourcebrighterthanLR=1022W/Hz/srisap-proximatelyconstantwithclustermassandequalto20% (inagreementwiththeresultsofBestetal.2007),wefindthat11outof12(i.e.92percent)local/low-masssystemspresentcentralradioemissionwithluminosities LR>20 W/Hz/sr.Thissuggeststhat,either,radiosources∼10 preferentiallyinhabitlow-massclusters,or–morelikely–thatbygoingdeepenoughinradioflux,mostofX-rayselectedclusterswillbefoundtohostacentralradio-loudAGN. (2)Theluminosity-temperaturerelationofclustersthathostacentralradiosourcefollowsthatfoundforthewholeclusterpopulation(LX∝T2.8–e.g.White,Jones&Forman1997;Arnaud&Evrard1999;Popessoetal.2005).However,thereisasignificantdiscrepancyintheLXvskTrelationbetweenunresolvedandextendedradiosources.ThelatterpopulationshowsthemuchsteepertrendLX∝T4,whileforunresolvedstructuresonefindsLX∝T2.3,whichisclosetotheself-similarresult.ThedifferencebetweentheLXvskTtrendforpoint-likeandextendedsourcesbecomespar-ticularlynoticeablefortemperatureskT<∼3KeV,wherealmostallsystemswithextendedradioemissionliebelowthoseassociatedwithunresolvedradiostructures. (3)Theradioluminositiesofthecentralsourcesshowasteep(LR∝T6)dependenceontheclustertemperatureforkT<∼3KeV.Suchacorrelationislostinmoremassivesystems. (4)TheX-rayluminosityvsvelocitydispersionandthetemperaturevsσrelationsofoursampleareinagreementwiththosefoundintheliterature(LX∝σ3.8;kT∝σ2;e.g.Popessoetal.2005;Madhavi&Gheller2001;Osmond&Ponman2004).Nosignificantdifferencesarefoundbetweenpoint-likeandextendedsources,exceptforamildpreferenceforthelatterpopulationtoappearinhighervelocitysys-tems.Weremarkthoughthattheavailableσmeasurementsdonotallowustoprobetheverylow-massregimewherethedifferentbehaviourbetweenpoint-likeandextendedsourcescouldbemoreprominent. (5)Themechanicalluminosityprovidedbythecentralradiosourceisfoundtobalanceradiativelossesonlyinsmall(i.e.σ<∼400km/s)systems. (6)Itseemsplausiblethatheatingbylow-power(FRI)radiogalaxiescanexplaintheabsenceofcoolingflowsinclustersofgalaxies.Thisisinagreementwithconclusionsbyvariousotherauthors(e.g.Fabianetal.2003;Crostonetal.2005),whoconcentratedtheiranalysisongroupsofgalaxies.However,forthelargestclusters,theenergyre-leasedbytheradiosourcesmaynotbesufficienttobalanceradiativelosses. (7)MonteCarlosimulationsshowthattheX-raylumi-nosityofaclusterisnotaffectedbythepresenceofacentralradiosource,howeverpowerful.Theluminositydistributionofthepresentsampleofradio-identifiedsystemsisthesameasthatofthewholeclusterpopulation.Combiningthisre-sultwithwhatwefoundinpoint(2),wecanconcludethatthepresenceofradiosourceswithanextendedstructureisresponsiblefortheover-heatingoftheintraclustergas.Theimportanceofsuchaheatingdramaticallyincreasesinlow-masssystems. (8)Theluminositydistributionofradiogalaxiessittinginclustercentresisverydifferentfromthatofthetotalradiopopulation.Infact,intheformercasewefindthatlowluminosities(LR∼1021−1022W/Hz/sr)aredepressed,whilehigherluminositiesarestronglyboosted.Theneteffect 16M.Magliocchetti&M.Br¨uggen ontheradioluminosityfunctionisaflatteninginthewhole luminosityrangeLR<∼1024 W/Hz/sr.OurresultssupportastronginteractionbetweenAGNradioemissionandtheICM.Radiosourcesarepresentinthecentresofalmostalllocal/smallmasssystemsandweexpectthemajorityofclusterstoexhibitcentralradioemis-sionwithpowersLR>∼1020 W/Hz/sr.TheICMstronglyaffectstheluminosityoftheradiosourcethatsitsintheclustercentre:low-luminosityobjectsare’strangled’bytheoverdensecentralmedium,whilebrightoneshavetheirlu-minositiesboostedbytheinteractionwiththesurroundinggas(seee.g.Barthel&Arnaud1996).Moreover,theexis-tenceofacentralradiosource–especiallyifitexhibitsanextendedstructureandresidesinsmall-masssystems–leadstoasignificantheatingoftheICM. Furthermore,radio-loudAGNareobservedtoprovideenoughmechanicalenergytobalanceradiativelosses.TheeffectofAGNheatingfromacentralradiosourcebecomeslessimportanti)inthecaseofpoint-likesourceswhicharenotobservedtopermeatetheICMandii)–independentofthetypeofradioobject–forhighmasssystems.ClustershotterthankT<∼3KeV,donotobeythetightLRvskTre-lationobservedforsmallsystems,theeffectonthethermalstateoftheclusterasprovokedbythepresenceofaradio-activeAGNisindependentofthecapabilitiesofsuchanobjecttopermeatethesurroundingmedium(nodifferenceintheLX−kTrelationbetweenextendedandpoint-likesources)andAGNheatingisfoundtobeinsufficienttobal-anceradiativelossesinthecluster.Inthiscase,adifferentsourceofheatingsuchasthermalconduction(e.g.Narayan&Medvev2001;Voigt&Fabian2004)hastobeinvoked. Thedatasuggestasmoothtransitionbetweentheradio-AGNheatingmodeandthethermalconductionmode.Indeed,doubleheatingmodels–firstdevelopedbyRuszkowski&Begelman(2002)–havebeenprovedtopro-videagoodagreementwiththeobservedclusterproperties(seee.g.Br¨uggenetal.2003;Hoeft&Br¨uggen2004;Roy-chowduryetal.2005;Fujita&Suzuki2005).Withinthisframework,Hoeft&Br¨uggen(2004)haveshowntherela-tiveimportanceofheatingduetothermalconductiontoincreasewithclustermass,inexcellentagreementwithourfindings. Obviously,itwouldbedesirabletopushthiskindofanalysistofainterfluxes(bothradioandX-ray)andhigherredshiftstoinvestigatewhethersomeofourfindingsonlyholdinthelocaluniverseoraremoregeneralpropertiesoftheclusterpopulation.ForthcomingsurveyslikeCOSMOS(seee.g.Finoguenovetal.2007)areexpectedtoprovidesuchanswers. Acknowledgments MMwishestothankS.Borgani,A.Merloni,P.Rosati&G.DeZottifordiscussionsandclarificationswhichgreatlyhelpedshapingupthiswork.MBwishestoacknowledgethesupportbytheDFGgrantBR2026/4withinthePrior-ityProgram“WitnessesofCosmicHistory”andthesuper-computinggrantsNIC1927and1658attheJohn-NeumannInstitutattheForschungszentrumJ¨ulich.Wethanktheref-ereeforhelpfulcomments. REFERENCES AllenS.W.,FabianA.C.,1998,MNRAS,297,57 ArnaudM,EvrardA.E.,1999,MNRAS,305,631 BeckerR.H.,WhiteR.L,HelfandD.J.,1995,ApJ,450,559 BestP.N.,KauffmannG.,HeckmanT.M.,BrinchmannJ.,Char-lotS.,IvezicZ.,WhiteS.D.M.,2005,MNRAS,362,25 BestP.N.,KaiserC.R.,HeckmanT.M.,KauffmannG.,2006,MN-RAS,368,67 BestP.N.,vonderLindenA.,KauffmannG.,HeckmanT.M., KaiserC.R.,2007,astro-ph/0611197 BirzanL.RaffertyD.A.,McNamaraB.R.,WiseM.W.,Nulsen P.E.J.,2004,ApJ,607,800 BorganiS.,etal.2001,ApJ,561,13BorganiS.,etal.2001a,ApJ,559,L71BorganiS.,etal.2004,MNRAS,348,1078 BorganiS.,FiniguenovA.,KayS.T.,PonmanT.J.,SpringelV., TozziP.,VoitG.M.,2005,MNRAS,361,233B¨ohringerH.,etal.,2000,ApJSS,129,435B¨ohringerH.,Matsushitak.,ChurazovE.,IkebeY.,ChenY., 2002,A&A,382,804B¨ohringerH.,etal.,2004,A&A,425,367Br¨uggenM.,KaiserC.R.,2001,MNRAS,325,676Br¨uggenM.,KaiserC.R.,2002,Nat,418,301Br¨uggenM.,2003,ApJ,593,700Br¨uggen,M.,Ruszkowski,M.,&Hallman,E.,2005,ApJ,630, 740 BryanG.L.2000,ApJ,544,L1ChenY.,ReiprichT.H.,B¨ohringerH.,IkebeY.,ZhangY.-Y., 2007,astro-ph/0702482ChurazovE.,Br¨uggenM.,KaiserC.R.,B¨ohringerH.,Forman W.,2001,ApJ,554,261 ChurazovE.,FormannW.,JonesC.,B¨ohringerH.,2003,ApJ, 590,225 CondonJ.J.,CottonW.D.,GreisenE.W.,YinQ.F.,PerleyR.A., TaylorG.B.,BroderickJ.J.1998,AJ,115,1693 CrostonJ.H.,HardcastleM.J.,BirkinshawM.,2005,MNRAS, 357,279 DunlopJ.S.,PeacockJ.A.,1990,MNRAS,247,19DunnR.J.H.&FabianA.C.,2006,MNRAS,373,959 EkeV.R.,ColeS.,FrenkC.S.,HenryJ.P.,1998,MNRAS,298, 1145 FabianA.C.,SandersJ.S.,AllenS.W.,CrawfordC.S.,Iwasawa K.,JohnstoneR.M.,SchmidtR.W.,TaylorG.B.,2003,MN-RAS,344,L43 FabianA.C.,SandersJ.S.,TaylorG.B.,AllenS.W.,Crawford C.S.,JohnstoneR.M.,IwasawaK.,2006,MNRAS,366,417FabianA.C.,2004,ARA&A,32,277 FinoguenovA.etal.2007,astro-ph/0612360FormanW.etal.,2005,ApJ,635,4FrenkC.S.,etal.,1999,ApJ,525,554FujitaY.,SuzukiT.K.,2005,ApJ,630L1Heinz,S.,Br¨uggen,M.,Young,A.,&Levesque,E.2006,MNRAS, 373,L65 HeldsonS.F.,PonmanT.J.,2000a,MNRAS,315,356HeldsonS.F.,PonmanT.J.,2000b,MNRAS,319,933HoeftM.,BruggenM.,2004,ApJ,617,6 JethaN.N.,PonmanT.J.,hardcastleM.J.,CrostonJ.H.,2007, astro-ph/0612350 KaiserN.,1986,MNRAS,222,323MahdaviA.,B¨ohringerH.,GellerM.J.,RamellaM.,2000,ApJ, 534,114 MahdaviA.,GellerM.J.,2001,ApJ,554,L129 MagliocchettiM.etal.(the2dfGRSTeam),2002,MNRAS,333, 100 MarkevitchM.,1998,ApJ,504,27 McNamaraB.R.,NulsenP.,WiseM.W.,RaffertyD.A.,Carilli C.,SarazinC.L.,BlantonE.L.,2005,Nature,433,45 Theinterplaybetweenradiogalaxiesandclusterenvironment NarayanR.,MedvedevM.V.,2001,ApJ,562,L129 NulsenP.,McNamaraB.R.,WiseM.W.,DavisL.P.,2005,ApJ, 628,629 OsmondJ.P.F.,PonmanT.J.,2004,MNRAS,350,1511PetersonJ.R.etal.2001,A&A,365,L104PetersonJ.R.etal.,2003,ApJ,590,207 PiffarettiR.,JetzerP.,KaastraJ.S.,TamuraT.,2005,A&A,433, 101 PointecouteauE.,ArnaudM.,PrattG.W.,2005,Advancesin SpaceResearch,36,659 PonnmanT.J.,CannonD.B.,NavarroJ.F.,1999,Nature,397, 135 PonnmanT.J.,SandersonA.J.R.,FinoguuenovA.,2003,MN-RAS,343,331 PopessoP.,BivianoA.,B¨ohringerH.,RomaniellaM.,VogesW., 2005,A&A,433,431 PrattG.W.,ArnaudM.,2005,A&A,429,791RaymondJ.C.,SmithB.W.,1977,ApJS,35,419 RoychowduryS.,RuszkowskiM.,NathB.B.,2005,ApJ,634,90RuszkowskiM.,BegelmanM.C.,2002,ApJ,581,223Ruszkowski,M.,Br¨uggen,M.,&Begelman,M.C.,2004,ApJ, 611,158 SandersonA.J.R.,FinoguenovA.,MohrJ.J.,2004,ApJ,630,191Simionescu,A.,B¨ohringer,H.,Br¨uggen,M.,&Finoguenov,A. 2006,ArXivAstrophysicse-prints,arXiv:astro-ph/0610874StraussM.A.etal.,2002,AJ,124,1810TamuraT.etal.,2001,A&A,365,L87TozziP.,NormanC.,2001,ApJ,546,63 VikhlininA.,KravtsovA.,FormanW.,JonesC.,MarkevitchM., MurrayS.S.,VanSpeybroeckL.,2006,ApJ,0,691VogesW.etal.,1999,a&A,349,3 VoitG.M.,BryanG.L.,2001,Nature,414,425VoigtL.M.,FabianA.,2004,MNRAS,347,1130 VonderLindenA.,BestP.N.,KauffmannG.,WhiteS.,2007, astro-ph/0611196 WhiteS.D.M.,FrenkC.S.,1991,ApJ,379,52 WhiteD.A.,JonesC.,FormanW.,1997,MNRAS,292,419WuX.-P.,XueY.-J.,FangL.-Z.,1999,ApJ,524,22WuX.-P.,XueY.-J.,2002,ApJ,569,112XueY.-J.,WuX.-P.,2000,ApJ,538,65 17
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务