您好,欢迎来到微智科技网。
搜索
您的当前位置:首页2013山东省分析数据库的考试题目深入

2013山东省分析数据库的考试题目深入

来源:微智科技网
1、编写一个过程,对一个n×n矩阵,通过行变换,使其每行元素的平均值按递增顺序排列。 2、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。

typedef struct

{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问 }stack;

stack s[],s1[];//栈,容量够大

BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。 {top=0; bt=ROOT; while(bt!=null ||top>0)

{while(bt!=null && bt!=p && bt!=q) //结点入栈 {s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下

if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点 {for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存 if(bt==q) //找到q 结点。

for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配 {pp=s[i].t;

for (j=top1;j>0;j--)

if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);} }

while(top!=0 && s[top].tag==1) top--; //退栈

if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历 }//结束while(bt!=null ||top>0) return(null);//q、p无公共祖先 }//结束Ancestor

3、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x,这情况下向j 小的方向继续查找;二是A[i,j]void search(datatype A[ ][ ], int a,b,c,d, datatype x)

//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中. {i=a; j=d; flag=0; //flag是成功查到x的标志 while(i<=b && j>=c)

if(A[i][j]==x) {flag=1;break;} else if (A[i][j]>x) j--; else i++;

if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型. else printf(“矩阵A中无%d 元素”,x); }算法search结束。

[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x4、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。 29. ①试找出满足下列条件的二叉树

1)先序序列与后序序列相同 2)中序序列与后序序列相同 3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同

5、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。

void Translation(float *matrix,int n)

//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。 {int i,j,k,l;

float sum,min; //sum暂存各行元素之和 float *p, *pi, *pk; for(i=0; i{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.

for (j=0; jfor(i=0; ifor(j=i+1;j{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}

sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和. }//if }//for i

free(p); //释放p数组. }// Translation

[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

6、请设计一个算法,要求该算法把二叉树的叶子结点按从左到右的顺序连成一个单链表,表头指针为head。二叉树按二叉链表方式存储,链接时用叶子结点的右指针域来存放单链表指针。分析你的算法的时、空复杂度。 7、连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删

除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。 void SpnTree (AdjList g)

//用“破圈法”求解带权连通无向图的一棵最小代价生成树。

{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数 node edge[];

scanf( \"%d%d\输入边数和顶点数。

for (i=1;i<=e;i++) //输入e条边:顶点,权值。

scanf(\"%d%d%d\" ,&edge[i].i ,&edge[i].j ,&edge[i].w);

for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。 {edge[0]=edge[i]; j=i-1;

while (edge[j].wwhile (eg>=n) //破圈,直到边数e=n-1. {if (connect(k)) //删除第k条边若仍连通。

{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除 k++; //下条边 }//while }//算法结束。

connect()是测试图是否连通的函数,可用图的遍历实现, 8、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。 #define true 1 #define false 0 typedef struct node

{datatype data; struct node *llink,*rlink;} *BTree; void JudgeBST(BTree t,int flag)

// 判断二叉树是否是二叉排序树,本算法结束后,在调用程序中由flag得出结论。 { if(t!=null && flag)

{ Judgebst(t->llink,flag);// 中序遍历左子树

if(pre==null)pre=t;// 中序遍历的第一个结点不必判断

else if(pre->datadata)pre=t;//前驱指针指向当前结点 else{flag=flase;} //不是完全二叉树 Judgebst (t->rlink,flag);// 中序遍历右子树 }//JudgeBST算法结束

9、编程实现单链表的就地逆置。

23.在数组A[1..n]中有n个数据,试建立一个带有头结点的循环链表,头指针为h,要求链中数据从小到大排列,重复的数据在链中只保存一个.

10、将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。

int BPGraph (AdjMatrix g)

//判断以邻接矩阵表示的图g是否是二部图。

{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合) int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。

int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组 for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合

Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1 while(f{v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号 if (!visited[v])

{visited[v]=1; //确保对每一个顶点,都要检查与其邻接点不应在一个集合中 for (j=1,j<=n;j++)

if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列 else if (s[j]==s[v]) return(0);} //非二部图 }//if (!visited[v]) }//while

return(1); }//是二部图

[算法讨论] 题目给的是连通无向图,若非连通,则算法要修改。

11、设从键盘输入一整数的序列:a1, a2, a3,„,an,试编写算法实现:用栈结构存储输入的整数,当ai≠-1时,将ai进栈;当ai=-1时,输出栈顶整数并出栈。算法应对异常情况(入栈满等)给出相应的信息。

设有一个背包可以放入的物品重量为S,现有n件物品,重量分别为W1,W2,...,Wn。问能否从这n件物品中选择若干件放入背包,使得放入的重量之和正好是S。设布尔函数Knap(S,n)表示背包问题的解,Wi(i=1,2,...,n)均为正整数,并已顺序存储地在数组W中。请在下列算法的下划线处填空,使其正确求解背包问题。 Knap(S,n) 若S=0

则Knap←true

否则若(S<0)或(S>0且n<1) 则Knap←false

否则若Knap(1) , _=true 则print(W[n]);Knap ←true 否则 Knap←Knap(2) _ , _

设有一个顺序栈S,元素s1, s2, s3, s4, s5, s6依次进栈,如果6个元素的出栈顺序为s2, s3, s4, s6, s5, s1,则顺序栈的容量至少应为多少?画出具体进栈、出栈过程。

假定采用带头结点的单链表保存单词,当两个单词有相同的后缀时,则可共享相同的后缀存

储空间。例如:

设str1和str2是分别指向两个单词的头结点,请设计一个尽可能的高效算法,找出两个单词共同后缀的起始位置,分析算法时间复杂度。

将n(n>1)个整数存放到一维数组R中。设计一个尽可能高效(时间、空间)的算 法,将R中保存的序列循环左移p(012、冒泡排序算法是把大的元素向上移(气泡的上浮),也可以把小的元素向下移(气泡的下沉)请给出上浮和下沉过程交替的冒泡排序算法。

48.有n个记录存储在带头结点的双向链表中,现用双向起泡排序法对其按上升序进行排序,请写出这种排序的算法。(注:双向起泡排序即相邻两趟排序向相反方向起泡)

13、在有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点。编写一个算法完成下列功能: (1).建立有向图G的邻接表存储结构; (2).判断有向图G是否有根,若有,则打印出所有根结点的值。

14、设从键盘输入一整数的序列:a1, a2, a3,„,an,试编写算法实现:用栈结构存储输入的整数,当ai≠-1时,将ai进栈;当ai=-1时,输出栈顶整数并出栈。算法应对异常情况(入栈满等)给出相应的信息。

设有一个背包可以放入的物品重量为S,现有n件物品,重量分别为W1,W2,...,Wn。问能否从这n件物品中选择若干件放入背包,使得放入的重量之和正好是S。设布尔函数Knap(S,n)表示背包问题的解,Wi(i=1,2,...,n)均为正整数,并已顺序存储地在数组W中。请在下列算法的下划线处填空,使其正确求解背包问题。 Knap(S,n) 若S=0

则Knap←true

否则若(S<0)或(S>0且n<1) 则Knap←false

否则若Knap(1) , _=true 则print(W[n]);Knap ←true 否则 Knap←Knap(2) _ , _

设有一个顺序栈S,元素s1, s2, s3, s4, s5, s6依次进栈,如果6个元素的出栈顺序为s2, s3, s4, s6, s5, s1,则顺序栈的容量至少应为多少?画出具体进栈、出栈过程。

假定采用带头结点的单链表保存单词,当两个单词有相同的后缀时,则可共享相同的后缀存储空间。例如:

设str1和str2是分别指向两个单词的头结点,请设计一个尽可能的高效算法,找出两个单词共同后缀的起始位置,分析算法时间复杂度。

将n(n>1)个整数存放到一维数组R中。设计一个尽可能高效(时间、空间)的算 法,将R中保存的序列循环左移p(015、编程实现单链表的就地逆置。

23.在数组 A[1..n]中有n个数据,试建立一个带有头结点的循环链表,头指针为h,要求链中数据从小到大排列,重复的数据在链中只保存一个.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务