MediaMixinginMultimediaConferences
P.VenkatRangan,HarrickM.VinandSrinivasRamanathan
MultimediaLaboratory
DepartmentofComputerScienceandEngineering
UniversityofCaliforniaatSanDiego
LaJolla,CA92093-0114
E-mail:venkat,vin,sramanat@cs.ucsd.edu,Phone:(619)534-5419,Fax:(619)534-7029
Abstract
Advancesincomputerandcommunicationtechnologieshavestimulatedtheintegrationofdigitalvideoandaudiowithcomputing,leadingtothedevelopmentofcomputer-assistedmultimediaconferencing.Weaddresstheproblemofmediamixingwhicharisesintele-conferencingapplicationssuchastele-orchestra.Wepresentamixingalgorithmwhichminimizesthedifferencebetweengenerationtimesofthemediapacketsthatarebeingmixedtogetherintheabsenceofgloballysynchronizedclocks,butinthepresenceofjitterincommunicationdelaysonpacketswitchednetworks.Thealgorithmisshowntobecomplete:giventhattherearenoothermessageexchangesexceptmediadatabetweenmixersandmediasources,therecannotbeanyotheralgorithmthatsucceedswhenouralgorithmfails.Mixingcanbeaccomplishedbyseveraldifferentcommunicationarchitectures.Inordertosupportapplicationssuchastele-orchestra,whichinvolvealargenumberofparticipants,weproposehierarchicalmixingarchitectures,andshowthattheyareanorderofmagnitudemorescalablecomparedtopurelycentralizedordistributedarchitectures.Furthermore,wepresentmechanismsforminimizingthedelaysincurredbymixinginvariouscommunicationarchitectures.WehaveimplementedthemixingalgorithmsonanetworkofworkstationsconnectedbyEthernets,andhaveexperimentallyevaluatedtheperformanceofvariousmixingarchitectures.Theseexperimentsrevealedinterestingresultssuchasthemaximumnumberofparticipantsthatcanbesupportedinaconference.
1
1Introduction
1.1Motivation
Untilrecently,voice,video,anddatacommunicationshavebeenhandledbydifferentcommunicationnetworks.Theprimarycarrierofvoicehasbeenthepublicswitchedtelephonenetwork,videohasbeentransmittedbycableTV,anddatahasbeenhandledbyspecializedcomputernetworks(LANsandWANs).Thishistoricalseparationcanbeattributedtofundamentaldifferencesincharacteristicsofvoice,videoanddatatraffic.Voiceandvideocharacteristicssuchassensitivitytodelay,highbandwidthrequirement,andtheabilitytotoleraterelativelyhigherrorratesareincompletecontrastwithrequirementsofdata.Hence,voiceandvideotransmissionusecircuitswitchingofanalogsignals,whereasdatatransmissiontypicallyusesdigitalpacket-switchednetworks.
Interestin‘integrating’thesedifferentmediahasbeenstimulatedbyadvancesincommunicationandcomputertechnologies.Advancesincommunicationtechnologyhavemadeavailablelargebandwidthatmodestcost,whereasadvancesincomputertechnologyhaveresultedinthedevelopmentofhigh-performanceworkstationswithaudioandvideocapabilities.Theseadvanceshaveledtothefeasibilityofsupportingmanymultimediaapplicationsoncomputersystems.
Onesuchclassofapplicationsismultimediaconferencing,whichpermitsindividualstocarryoutcollaborativeactivitiesbyexchangingaudio,video,andtextinformationthroughmultimediaworkstations.Therearevariouskindsofconferences,amongwhichthemostdemandingones(intermsofperformance)arethoseinwhichvideoandvoicestreamsarebeingcontinuouslytransmittedbyindividualsintheconference,andtheindividualvideoimagesandvoicestreamshavetobemixedtogethertoobtainacompositeimageandaudiostream.Anexampleofsuchanapplicationisatele-orchestra,inwhichalargenumberofperformersarecontinuouslyplayingtheirrespectivemusicalinstruments,eachathisorherownmultimediaworkstation.Theaudiostreamsbeingreceivedfromalltheperformersneedtobecontinuouslymixedsoastoyieldacoherentmusicalcomposition,andthenbroadcasttotheentireaudience(whichmayalsoconsistofindividualsreceivingaudioattheirrespectiveworkstations).
Thetechniquesformixingdependuponthetypeofthemediaaswellastheapplication.Inthecaseofaudio,mixingmultiplestreamsinvolvesdigitallysummingtheaudiosamplesandthennormalizingtheresult.Inordertoeliminateone’sownfeedback,eachparticipant,onreceivingamixedaudiopacket,removeshisowncontributionbeforeplayingitback.Inthecaseofvideo,whereasitispossibletosimplyjuxtaposethedisplayofmultiplevideostreamswithouthavingtomixthem,applicationssuchastele-virtualconferencingmaybenefitfromthemixingofindividualvideostreamstosynthesizetheimageofavirtualmeetingroom.
Theneedtocontinuouslymixmediastreamsfromseveralsources,coupledwiththereal-timenatureofthemediaposesspecialrequirementsformediatransmissionprotocols.Thedesignofalgorithms,protocols,andcommunicationarchitecturesforsupportingmediamixinginmultimediaconferencesisthesubjectmatterofthispaper.
2
1.2RelatedWork
Inrecentyears,therehavebeenmanyeffortstowardsintegratingmultimediaconferencingintocomputersystems.Lantz[3]proposesatext/graphicsconferencingarchitecturewherethebasicgoalistofitintoexistingsystemswithminimalimpactontherestofthesystem.SarinandGreif[6]havestudiedconferencingarchitecturesfortextandgraphics,buttheirsystemdoesnotincludeaudio.Aguilaretal.atSRI[1]haveproposedarchitecturesforperson-to-personvoiceconferencing.Ziegleretal.[8]presentananalyticalperformanceevaluationofvoiceconferencingonbroadcastandringnetworks.AhujaetalatBellLaboratories[2],andSwinehartetal.atXeroxPARC[4]haveproposedarchitecturesforvideoconferencing.However,theemphasisofallofmostoftheseeffortshasbeenperson-to-persontelephony-typeconferences,andhighperformanceapplicationssuchastele-orchestrawhichrequirecontinuoustime-criticalmixingofmediastreamsfromseveralsourcesarenotsupported.Algorithms,protocols,andcommunicationarchitecturesforsupportingmediamixinghavenotreceivedmuchattention.
1.3ResearchContributionsofThisPaper
Inthispaper,weaddresstheproblemofmixingmediastreamstransmittedbymultiplesourcesinamultimediaconferenceonapacket-switchednetwork.Owingtothereal-timenatureofthemediabeingmixed,packetsfromdifferentsourcesgeneratedataboutthesametimearerequiredtobemixedtogether.Moreprecisely,forcoherentreproductionofaudioandvideoinapplicationssuchastele-orchestra,orformaintainingconsistentorderingofuser-triggeredeventsindistributedreal-timegames,thedifferencebetweenthegenerationtimesofpacketsbeingmixedmustbeminimized.Reductioningenerationtimedifferencesalsoreducesthewaitingtimeofpacketsduringmixing,leadingtolowerbufferingrequirements.Wepresentamixingalgorithmwhichminimizesthedifferencebetweengenerationtimesofthemediapacketsthatarebeingmixedtogetherintheabsenceofgloballysynchronizedclocks1,butinthepresenceofjitterintransmissiondelays.Thealgorithmisshowntobecomplete:giventhattherearenoothermessageexchangesexceptmediadatabetweenamixerandthemediasources,therecannotbeanyotheralgorithmthatsucceedswhenouralgorithmfails.
Mixingcanbeaccomplishedbyseveraldifferentcommunicationarchitectures.Inordertosupportappli-cationssuchastele-orchestra,whichinvolvealargenumberofparticipants,weproposehierarchicalmixingarchitectures,andshowthattheyareanorderofmagnitudemorescalablecomparedtopurelycentralizedordistributedarchitectures.Furthermore,liveperformancessuchastele-orchestrarequirethateachperformerre-ceivestheaudioplayedbyotherperformersalmostinstantaneously.Towardsthisend,wepresentmechanismstominimizethereal-timedelaysincurredbymixinginvariouscommunicationarchitectures.
WehaveimplementedthemixingalgorithmsonanetworkofworkstationsconnectedbyEthernets,andhaveexperimentallyevaluatedtheperformanceofvariousmixingarchitectures.Theseexperimentsrevealedinterestingresultssuchasthemaximumnumberofparticipantsthatcanbesupportedinaconference.
3
Therestofthepaperisorganizedasfollows:InSection2,weformulatetheproblemofmixing.InSection3,wepresentalgorithmsformixingtwomediasources,andinSection4,weextendthemtomorethantwosources.InSection5,weanalyzevariouscommunicationarchitecturesformixing,andinSection6,wepresentmechanismsforminimizingreal-timedelaysduetomixing.Section7presentsourexperiencewithimplementingthemixingalgorithms,andfinally,Section8concludesthepaper.
2ProblemofMediaMixinginConferencing
Initssimplestform,amultimediaconferenceisestablishedbysettinguplogicalmediacommunicationchannelsamongagroupofparticipants.Onceaconferenceisestablished,mediainformationcanbeexchangedamongitsparticipants.Inamulti-partyconference,eachparticipantmustreceivethecompositemediastreamobtainedbymixingthemediastreamstransmittedbyalltheotherparticipants.
Inapacketswitchednetworkenvironment,animportantproblemistodeterminethesetofpacketsfromdifferentsourcesthataretobemixedtoformacompositemediapacket.WecallsuchasetofpacketsastheFusionSet.Ifeachsourcegeneratesmediapacketsataconstantratewithaperiodof,thenthesmallesttime
windowduringwhichtwoindependentsourcesareguaranteedtogeneratepacketsis
.(Theproofisbyasimpleinductiononthenumberofsources).If
2
1
isunbounded,thesmallest
windowduringwhichweareguaranteedtohavepacketsfromeachofthesourcesis.Thisisformalizedbythefollowingmixingruleforamulti-partyconference:MixingRule:Packets
1
and
2
canbelongtoaFusionSet(i.e.,canbemixedtogether)ifandonlyif
1
2
1
where
istheperiodofgenerationofmediapacketsatasource,and
1
and
2
arethegeneration
timesofpackets
1
and
2
attheirrespectivesources.
Thefusionsetcanbedeterminedinastraight-forwardmannerwhentheclocksofthegeneratingsourcesaregloballysynchronized.However,clocksynchronizationrequiressophisticatedprotocolsfornegotiationandagreementamongmediasources.Weassumethatthemediasourcescandigitize,packetize,andtransmitdataonthenetwork,butmaynothavethesophisticationtoexchangecontrolmessagesandruncomplexprotocols.Hence,anyprotocolthatrequirestheexchangeofmessagesotherthanmediadataisoutofquestion.Furthermore,theoverheadofclocksynchronizationprotocolsmaybeexcessivecomparedtosimplerprotocolsthataresufficientfordeterminingafusionset.Hence,determinationofafusionsetintheabsenceofgloballysynchronizedclocksisanimportantproblemthatneedstobesolvedinmultimediaconferencing.
4
3AlgorithmsforMediaMixing
Consideramultimediaconferenceinwhichthereare
sources
1,
2,...,
(seeFigure1).Eachsourcegenerates
mediapacketsataconstantratewithperiod,andtransmitsthemtoamixernodes,beboundedbetween∆generatedbyasource
.Letthecommunicationdelay
fromasourcetoamixer,whichincludestransmissiontimesonthenetworkandqueuingdelaysatintermediate
and∆
.If
isthearrivaltimeatthemixerofapacketnumbered
,thentheearliestandthelatestpossiblegenerationtimes(denotedby
and
,
respectively)ofpacket
canbederivedas:
∆
23
∆
Measuredonthemixer’sclock,thegenerationtimeinterval
ofamediapacket
atsource.
belongstothe
,whichisreferredtoasthegenerationintervalofpacket
Arrival timesτ1Packet numbersn1n2S1S2SsMτsnsτmτ2nmSmFigure1:Mixinginamultimediaconference.MixerAstraightforwardmechanismforthemixerfromsources
mixespacketsfromsources
1
tocarryoutmixingistobufferthemediapacketsitreceives
1,
2,...,
,untilatleastonepacketisreceivedfromeachofthem,atwhichtime,cancombine
allthepacketsandtransmitthemixedpacket.BytheMixingRule,theseparationinthegenerationtimesofpackets(ofdifferentsources)beingmixedtogethercanbeatmost.Inthepresenceofcommunicationdelay
jitter,twopacketsgeneratedandarriveatthemixer
apart(attwodifferentsources)maysufferdelaysof∆
and∆
,respectively,
∆
∆
apart,whichthenisthemaximumwaitingtimeofapacketinthe
2
∆
∆
mayalsoarriveat
mixer’sbuffersbeforebeingmixed.However,sucha“bufferandmix”schemehasseveraldisadvantages:Duetoaquirkoftheeffectofjitter,twopacketsgeneratedasfarapartasthemixerwithinawindowof
∆
∆
,therebymisleadingthemixertocombinethosetwopackets
inviolationofthemixingrule.Higherthejitter(asinwideareanetworks),greateristheextentoftheviolation.Thisproblemgetsfurthercompoundedinthepresenceofpacketlosses.Forinstance,whilemixingpacketsfromthreesources
1,
2,and
3,packetlossmaycausethemixertoderivefusionsetsinapairwisemannerfor
5
1
2
and
2
3
,eachofwhichmaycontainpacketsmaximallyseparatedintheirgenerationtimes(i.e.,
by
2∆
∆.Inordertomixpacketsfromallthreetogether,ifthemixertakesaunionofthese
pairwisefusionsets,packetsseparatedasfarapartas22
∆
∆
maygetmixedtogether,and
thisseparationmayincreaselinearlywiththenumberofsources.Ontheotherhand,ifthemixerdecidestoderiveanewfusionsetcontainingmorecloselygeneratedpacketsfromallthethreesources,itmaybefloutingtherequirementofmaintainingconsistentrelativeorderingofpacketsinsuccessivefusionsets.
WenowproposeamixingalgorithmwhichguaranteesthatthepacketsbeingmixedtogetheralwayssatisfytheMixingRule,firstforthecasewhenthereareonlytwomediasources(i.e.,abinarymixing),andthenextendittoacasewhentherearemultiplemediasources(i.e.,aM-arymixing).Thealgorithmisrobusttowardspacketlossesonthenetwork.Hence,evenintheabsenceofarrivalofacurrentpacketfromasource,themixercanstillderiveafusionsetwiththehelpofanyearlierpacketreceivedfromthatsource.Thus,thealgorithmeffectivelydecouplesthedeterminationoffusionsetsfromlivemixingofpackets.Anextremevariationofthissituationisthedeterminationoffusionsetsfrompacketstransmittedserially(ratherthan,concurrently)bythevarioussources,whichfindsanimportantapplicationinliveperformances.Inparticular,aliveperformancegenerallyhasaninitialsound-checkperiodprecedingitscommencement,duringwhichamixercansequencethroughthevariousperformers/performinginstrumentspromptingeachofthemtotransmitaaudiopacket,oneatatime.Attheendofthesound-check,themixercomputesthefusionset(inadditionto,ofcourse,carryingoutroutineadjustmentssuchasvolumelevel,tonefrequency,etc.),andkeepsitforlateruseduringtheactualperformance.
3.1BinaryMixingAlgorithm
Letthearrivaltimesatamixerofpackets
1
and
2
fromtwosources
1
and
2
be
1
and
2.Theearliestand
thelatestpossiblegenerationtimesofpackets
1
and
1
2
are:
1
1
∆
1
1
1
∆∆
2
22
22
2
∆
Sincethegenerationtimesofsuccessivepacketsfromthesamesourcearedisplacedby,thegenerationinterval
ofpacket
fromsource
canbeestimatedas:
45
Sincetheexactgenerationtimesofpacketsareunknownatamixer,determinationofabinaryfusionsetwillhavetobebasedontheaboveestimatesoftheearliestandthelatestpacketgenerationtimes.If
6
max
1
1
2
2
and
min
1
1
2
2
,then
1
1
2
2
and
2
2
1
1
.Consequently,if
6
then,thegenerationtimesofpackets
1
and
2
areguaranteedtosatisfytheMixingRule,andhence,packets
1
and
2
belongtoabinaryfusionset.Equation(6)definesastrongerconditionthantheMixingRulefor
determiningafusionset.Nevertheless,sincetheexactgenerationtimesofpacketsareunknownatamixer,determinationofafusionsetwillhavetobebasedonEquation(6)ratherthanontheMixingRule.Hence,intheremainderofthispaper,weuseEquation(6),referredtoastheStrongMixingRule,astheconditionfordeterminingafusionset.
Themaximumuncertainty,intervalsof
inestimatedgenerationtimesisatleastaslargeasthegeneration
1
and
2,eachofwhichequals∆
∆
induration.Hence,
∆∆
Clearly,ifthejitterincommunicationlatency,∆thegenerationintervalsoffrom
and
∆
exceeds,
willalsoexceed,and
1
and
2
cannotsatisfytheStrongMixingRule(Equation(6)).Infact,sincethe
generationintervalofeverypacketequalsthetransmissionjitterinduration,ifthisjitterexceeds,notwopackets
1
2
cansatisfytheStrongMixingRule.Hence,∆
∆
isanecessaryconditionfor
determiningabinaryfusionset.Thisisthefirstresultofimportance,andisformallystatedasProposition1inTable1.
Ontheotherhand,supposethatthejitter∆packets
∆
.Ifitisalsothecasethat
,then
,
1
and
2
formabinaryfusionset.However,if∆
∆,but
,thenitmayseem
likelythatabinaryfusionsetcannotbedetermined.Surprisingly,thisisnottrue;evenwhenintervalsof
and
donotsatisfytheStrongMixingRule,thoseoftwootherpackets
therearesituationsinwhichamixercandetermineabinaryfusionset.Thisisbecause,eventhoughthegeneration
1
2
1
and
2
maydoso.
However,noticethatifpackets
1
and
2
satisfytheStrongMixingRule,sowillpackets
1
and
2
1
1
(because,thegenerationintervalsofsuccessivepacketsfromthesamesourcearedisplacedby).Hence,in
ordertodetermineabinaryfusionset,itsufficestosearchforapacketfromwith
2
thatcanformabinaryfusionset
1.Weshallnowderiveexactlythosecasesinwhichamixercandetermineabinaryfusionsetevenwhen
.
Withoutlossofgenerality,letusassumethatrelativepositionsofthegenerationintervalsof
1
1
2
2
and
1
1
2
2
.Dependingonthe
1
and
2,twopossiblescenariosarise:
Thegenerationintervalsofgenerationintervalsofitcanbeshownthat
1
and
2
overlap(seeFigure2):
Insuchacase,nomatterwhichpacket
2
from
2
isconsidered,bycomparingtheinEquations(4)and(5))and
2
(derivedbysubstituting
2and
1,
2
and
1
donotsatisfytheStrongMixingRule.Thisisthesecondresultof
importance,andisformalizedasProposition2inTable1.
7
eg (n )11lg (n )11Timeeg (n )22lg (n )22Figure2:Packetswithoverlappedgenerationintervals
ge(n )22< p< k * pgl(n )22ge (n )11< pgl(n )11Time< (k + 2) * pFigure3:Mixingofpacketswithdisjointgenerationintervals
Thegenerationintervalsofpositiveintegersuchthathand,isgivenby:
1
and
2
aredisjoint(seeFigure3):
Inthiscase,theirminimumseparation,
1
1
2
2
isboundtobepositive,andlet
1bethesmallest
1
1
1
2
2
.Theirmaximumseparation,ontheother
1
1
2
2
1
1
1
1
1
1
2
2
2
2
2
2
Since
1
1
1
1
2
2
2
2
∆
∆
,weobtain,
1
1
2
2
2
∆
∆
1
1
2
2
Since∆
∆
,weget:
1
1
1
2
2
2
7
ElaborationofEquation(7)yieldsthreesub-scenarios:1.
1
1
1
2
2
:Inthiscase,bycomparingthegenerationintervalsof
2
1
andand2.
2
(derivedusingEquations(4)and(5))withthatof
1,itcanbeshownthatboth
2
1
2
formfusionsetswith
1
1.Wewouldbeutilizingthisresultinderivingacomprehensive:Inthiscase,bycomparingthegenerationintervalof
binarymixingalgorithm,andisformallystatedasProposition3inTable1.
1
1
2
2
2
(derivedagainbyusingEquations(4)and(5))withthatofafusionsetwith3.
1
1,itcanbeshownthat
2
forms
1.Thiswillalsobeutilizedinthebinarymixingalgorithm,andisformalizedas
2
:Inthiscase,nomatterwhichpacket
Proposition4inTable1.
1
1
2
2
2
from
2
isconsidered,acomparisonofthegenerationintervalsof
2
and
1
showsthattheydo
notsatisfytheStrongMixingRule.ThisimpossibilityresultisformallystatedasProposition5inTable1.
8
Proposition1Ifthejitterincommunicationlatency,∆deriveabinaryfusionset.
∆
,thenitisnotpossibleforamixerto
Proposition3Ifthegenerationintervalsofpacketsinteger,
1
and
2
asestimatedbyamixeraresuchthat,forsome
1,
1
1
1
2
2
and
1
1
1
2
2
1
canformabinaryfusionsetwitheitherpacket
2
1orpacket
2
.Wereferto
1
2
1
asthelowerbinaryfusionsetand
1
2
astheupperbinaryfusionset.
Proposition5Ifthegenerationintervalsofpacketsinteger
1
and
2
asestimatedbyamixeraresuchthat,forsome
1,
1
1
1
2
2
and
1
1
1
2
2
2
andthen,itisimpossibleforthemixertodetermineabinaryfusionsetofpacketsfromthetwomediastreams.
Table1:Binarymixingpropositions;rigorousmathematicalproofsofthesepropositionshavebeenomittedforthesakeofbrevity,andcanbefoundin[5].
9
Propositions1-5(seeTable1)yieldpowerfultechniqueswhichcanbecombinedtogetherintothefollowingalgorithmthatamixercanexecutetodetermineabinaryfusionsetwhenitreceivespacketsfromtwomediasources.
BinaryMixingAlgorithm:
Supposethatpacketsthemixer.1.If∆
1
and
2
arriveatthemixerattimes
1
and
2,respectively.Let∆
and∆
be
themaximumandminimumpossibletransmissiondelaysofpacketsonthenetworkbetweenamediasourceand
∆
,thenabinaryfusionsetcannotbedetermined(Proposition1).,computethegenerationintervalsofpackets
2.If∆
∆
1
and
2
tobe
1
1
1
1
and
1
2
2
2
2
,respectively,where,
∆
,
∆
,and
1
12.Without
lossofgenerality,let(a)If
min
1
1
2
2
2
2
and
1
max
1
2
2
1
.
1
1
2
2
,thenthebinaryfusionsetis
2
(byEquation(6).
(b)Ifthegenerationintervalsofpackets(c)Ifthegenerationintervalsofpackets
1
andand
2
overlap,and
1
1
2
2
,thenitisimpossible
1suchthat
1,
forthemixertodetermineabinaryfusionset(byProposition2).
1
2
aredisjoint,andthereexistsaninteger
1
1
1
2
2
,then:
i.If
1
1
1
2
2
,thentwobinaryfusionsetsarepossible:
1
2
whichisthelowerbinaryfusionset,andProposition3).ii.Ifiii.If
1
2
,whichistheupperbinaryfusionset(by
(byProposition
1
1
2
2
1
,thenthebinaryfusionsetis2
1
2
4).
1
1
1
2
2
,thenitisimpossibletodetermineabinaryfusion
set(byProposition5).
3.2CompletenessofBinaryMixingAlgorithm
Theeffectiveness(i.e.,thesuccess)oftheabovealgorithmindeterminingabinaryfusionsetcriticallydependsontherelativevaluesofthetransmissionjitter(i.e.,∆inthefollowingTheorem.
Theorem1Whenamixerexecutesthebinarymixingalgorithmontwopacketsand
∆
),andthepacketduration.Thisisquantified
1
and
2
receivedattimes
1
2,respectively,
(1)if∆(2)If
∆
2,thealgorithmalwaysproducesabinaryfusionset.
2
∆
∆
,thealgorithmmaysucceedorfailindeterminingabinaryfusionset.
(3)If∆
∆
,thealgorithmfailstodetermineabinaryfusionset.
(4)Thealgorithmiscomplete:giventhattherearenoothermessageexchangesexceptmediadatabetweenamixerandthemediasources,therecannotbeanyotheralgorithmthatsucceedswhenouralgorithmfails.
10
Proof:Lettheearliestandlatestgenerationtimesofpackets
1
and
2
becomputedas:
∆
,and
2
∆
,where
12.Again,withoutlossofgenerality,let
2
2
1
1
,and
2
2
1
1
.Hence,ifthegenerationintervalsof
1
and
2
2
overlap,then
2
2
1
1
2
1
1
.
Similarly,iftheintervalsaredisjoint,thenabovetheoremcanbeprovedasfollows:1.∆
2
2
2
1
1
1
1
.Thefourassertionsofthe
∆
2:
Itmaybeobservedthatthelengthsofthegenerationintervals(ofpacketsand
1
and
2),
1
1
1
1
2
2
2
2
areeachequalto∆
∆
,andhenceneitherofthemexceeds
2.Therefore,
1
1
1
1
2
2
2
2
8
Thegenerationintervalscanbeeitheroverlappedordisjoint.Ifthegenerationintervalsoverlap,weobtainthat,
1
1
1
1
2
2
2
2
9
Thus,abinaryfusionsetmixingcanbederivedusingEquation(6).Supposethat,ontheotherhand,thegenerationintervalsofpackets
1
and
2
aredisjoint;thatis,
2
1
1
2
2
1
1
1
1
1
1
2
2
2
2
2
10
Let
beanintegersuchthat:
1
1
1
2
2
11
UsingEquations(8),(10),and(11)weobtainthat,
1
1
1
2
2
1
12
HenceconditionsofeitherProposition3orProposition4aresatisfied,leadingtothedeterminationofabinaryfusionset.2.
2
∆
∆
:
Thelengthsofthegenerationintervalsofpacketsexceed2,butcanlieeitherbetween0and
1
and
2
willeachliebetween
2and,andthe
generationintervalscanbeoverlappedordisjoint.Iftheyareoverlapped,
1
1
2
2
willnot
inwhichcaseEquation(6)yieldsthebinaryfusionset,
orbetweenfusionset.
and2inwhichcaseProposition2showsthatitisimpossibletodetermineabinary
Supposethat,ontheotherhand,thegenerationintervalsofpackets
1
and
2
aredisjoint,thatis,
2
1
1
2
2
1
1
1
1
1
1
2
2
2
2
2
13
11
Let
1beanintegersuchthat,
1
1
1
2
2
14
GiventhatthelengthsofgenerationintervalsarenolessthanEquation(13)and(14)yield:
2butaredefinitelylessthan,
1
1
2
2
2
Hence,eitherProposition4issatisfiedinwhichcaseabinaryfusionsetcanbedetermined,orProposition5issatisfiedinwhichcaseitisimpossibletodetermineabinaryfusionset.Thus,thealgorithmmaysucceedorfailindeterminingabinaryfusionset.3.∆
∆
:
ByProposition1,itisimpossibletoderiveabinaryfusionset.4.Completeness:
Thealgorithmfailstodetermineabinaryfusionsetonlywhen(a)∆(b)
∆
,or
2
∆
∆
and,eitherthegenerationintervalsareoverlappedand
,
ortheyaredisjointbutsuchthat,
1
1
1
2
2
2
,where
1isaninteger
1
1
1
2
2
.
Incase(a),Proposition1showsthatitisimpossibletodetermineabinaryfusionset,andincase(b),Propositions2and5showtheimpossibility.Hence,therecannotbeanyotheralgorithmthatsucceedsinsuchcases,whichgoestoshowthatourbinarymixingalgorithmiscompleteunderthenetworkingassumptionsstatedinSection2.
Intheabovetheorem,thelimitationtotheeffectivenessofthebinarymixingalgorithmarisesduetotheuncertaintyingenerationintervals,whichisatmostthejitterincommunicationdelay.Inpractice,however,amixermaybeabletoreducetheuncertainty(soastobemuchbelowthejitter)byiterativelyrefiningitsestimatesofthegenerationintervals,everytimeanewpacketarrives.Toseehow,supposethat
denotethegenerationintervalsofpackets
fromthatof
fromsource
,predictedfromthatof,
using
Equations(4)and(5).Arrivalofasubsequentmediapacketgenerationintervalsofhence,in
from
enablesthemixertorecomputethe
tobe:
,againusingand
Equations(4)and(5).Theactualgenerationinstantofpacket
isguaranteedtobeinboth
,and
.Therefore,
representsarevisedandpossiblymorepreciseestimateofthegeneration
intervalforpacket
.Surprisingly,theintersectionissmallwhenmediapackets(onwhichestimatesare
based)undergowidelydifferentcommunicationdelays.Inthelimit,theexactgenerationtimecanbedeterminediftheintersectionreducestoasinglepoint,whichcanoccurwhentwomediapacketstransmittedbyasourcesuffernetworkdelaysof∆
and∆
,respectively.
12
4M-aryMixing
Inmultimediaapplicationssuchasatele-orchestra,theremay,ingeneral,bemorethantwomediasources.Inthissection,weextendthebinaryalgorithmtohandlemixingofmediapacketsreceivedfrommorethantwosources.TheresultingM-arymixingalgorithmyieldsfusionsetssuchthattheentirerangeofgenerationtimesofallthepacketsinafusionsetareboundedwithinawindowofSection2).
Letussupposethatamixerhastodetermineafusionsetofpacketssources
(whichistheshortestwindowpossible,asshownin
1,
2,
...,
beingreceivedfrom
1)binaryfusion
1,
2,...,
.Inastraightforwardextensionofthebinaryalgorithm,themixercandeterminethefusion
setforeachofthepairs(1,
2),(
1,
3),...,(
1,
),andtaketheunionofallofthose(
sets.Ifthemaximumofthelatestgenerationtimes,andtheminimumoftheearliestgenerationtimesofallthepacketsintheunionarewithinawindowof,thentheunionconstitutesaM-aryfusionset.
However,recallthatinthebinaryalgorithm,therearescenarioswhentwobinaryfusionsets(lowerandupper)arepossible.Itislikelythat,choosingoneofthetwobinaryfusionsetscanleadtotheformationofaM-aryfusionset,whereaschoosingtheotherbinaryfusionsetdoesnot.Intheworstcase,giventhattherearetwoalternativesforeachbinaryfusionset,thereare2
1
alternativesfortheunionsof
1binaryfusionsets
thatmayneedtobecomputedinthedeterminationofaM-aryfusionset,yieldingexponentialexecutiontimes.
WewillnowpresentanalgorithmthatusesawindowslidingtechniquetoobtainaM-aryfusionsetinalinearnumberofexecutionsofthebinaryalgorithm.
4.1AlgorithmforM-aryMixing
Let
1
1
,
2
2
,...,
bethegenerationintervalsofpackets
min
1,
2,...,
generatedby
sources,
respectively.Let
1
max
1
Withoutlossofgenerality,letthegenerationintervalofpacket(wecanalwaysreplacepacketgenerationtimeofpacket(
1,
1
bedisjointfromthoseofalltheotherpackets
2,
3,
1
by
1,
where
1
1
isanintegersufficientlylargesuchthattheearliest
1
exceedsthemaximumlatestgenerationtimeofpackets...,
1,
).Usingthe(
binarymixingalgorithm,computethebinaryfusionsetsofpacketsfrompairsofsources(
2),1,
3),...,
).Clearly,theremustexistbinaryfusionsetsforeachoftheabovepairsofsources,ifthereexistsaM-ary
fusionsetforthe
Let
mediastreams.Sincethegenerationintervalof
1
isdisjointfromthoseofallothers,the
determinationofeachofthebinaryfusionsetswouldrequiretheuseofPropositions3or4.
1
2
3
bethesetobtainedastheunionofbinaryfusionsetscorrespondingtopacket
1
fromsource
1
usingthepropositionsofSection3,withthelowerbinaryfusionsetalwaysbeingchosenin
caseofchoice.IfsetdoesnotturnouttobeaM-aryfusionset,itisonlybecausethechoiceoflowerbinary
fusionsetforsomepacketin
isincorrect;itmustbesetrightbyreplacingpacket
with
1.We
13
refertothiscorrectiontechniqueaswindowsliding.Therecanbeatmost
1incorrectchoicesintheset
.
Thewindowslidingoperationstartsbyconsideringthepacketwiththelowestgenerationinterval,andterminateswheneither(1)aM-aryfusionsetisformed,or(2)apacketforwhichthereisnochoiceofbinaryfusionsetsisencountered,or(3)allthe
1choiceshavebeencorrected.Theexactalgorithmisasfollows:
M-aryMixingAlgorithm:1.Letamixerreceivepackets
1
2
from
mediasources.Let:
˜
max
2
Let
1
bethesmallestpositiveintegersuchthat
1
1
1
˜
Replacepacket2.
1
bypacket
1
1
1.Markpacket
1
asFIXED.
2
do:
(a)Usingthebinarymixingalgorithm,computeabinaryfusionsetforsources
algorithmandreportfailure.(b)Letthebinaryfusionsetbe
1
and
,choosingthe
lowerbinaryfusionsetincaseofachoice.Ifabinaryfusionsetcannotbedetermined,terminatethe
1,
.Mark
asCHOOSABLEiftherehadbeenachoiceoflower
binaryfusionset,elsemarkitFIXED.
3.
(a)Compute
and
asfollows:
max
1
min
1
(b)If
,thenterminatethealgorithmsuccessfullyandreporttheunion
1
2
asaM-aryfusionsetofthe(c)If
mediastreams.
,thenperformthefollowingwindowslidingoperation:
i.Withoutlossofgenerality,letalgorithmandreportfailure.ii.IfpacketasFIXED.iii.Recompute
.Ifpacket
ismarkedFIXED,thenterminatethe
1intheunion,andmarkit
ismarkedCHOOSABLE,thenreplaceitbypacket
and
fortheunion.If
,thenterminatethealgorithm
successfullyandreporttheunionastheM-aryfusionset.iv.Otherwise,gotostep(i).
14
4.2CompletenessofM-aryAlgorithm
ThecorrectnessandcompletenessoftheabovealgorithmindeterminingaM-aryfusionsetisprovedbythefollowingtheorem:
Theorem2Supposethatamixerreceivespackets
1,
2,...,
from
mediasources.TheM-aryMixing
Algorithmproducesafusionsetthatsatisfiesthemixingrule(i.e.itiscorrect).Giventhattherearenoothermessageexchangesbetweenmediasourcesandthemixer,therecannotbeanyotheralgorithmthatproducesaM-aryfusionsetwhenouralgorithmfails(i.e.itiscomplete).Proof:
1.Correctness:Thisisself-evidentfromthecomputationoftheM-aryfusionsetinwhich,theearliestandlatestestimatesofgenerationtimesofpacketsareguaranteedtosatisfyhencesatisfyEquation(6).
2.Completeness:Supposethatthereisanalgorithmthatdeterminesafusionset,containingpacketsources,(
1,
,and
1
2
1.
WewillnowshowthatourM-aryalgorithmwillproducetheabovefusionset.
3),...,
Sincethenewalgorithmproducesafusionset,itcanalsoproducebinaryfusionsetsforpairsof
2),(1,
(
1,
).Bythecompletenesspropertyofourbinarymixingalgorithm,
.Sinceourbinaryalgorithm
ouralgorithmwillalsosucceedindeterminingbinaryfusionsets.Lettheunionofallthesebinaryfusionsetsasdeterminedbyouralgorithmbe
1
2
alwayschooseslowerbinaryfusionsets,weobtainthat,
2
,eitheror
1.
eg (n ’’)sspeg (n ’)11eg (n ’)ssUnion of binary fusion setsM-ary fusion setFigure4:WindowslidingintheM-aryalgorithm
If
1,thenitmustbethecasethat
formsalowerbinaryfusionsetwith
1
andis
is
markedCHOOSABLEinourM-aryalgorithm(ontheotherhand,setwithby
mustformaupperbinaryfusion
1).
Sincetheirbinaryfusionsetsarealllower,theearliestgenerationtimeofallsuch
guaranteedtooccurbelowthatof
1,
whichismarkedFIXED.Everywindowslidewillreplacea
,andwhenthewindowslideoperationreaches
1
1
whichismarkedFIXED,thealgorithm
terminatesafterhaving(1)replacedall
sthataremarkedCHOOSABLE,and(2)performedatmost
1windowslides,yieldingtheset
1
2
.Hence,ifthereisanyalgorithmthatproduces
aM-aryfusionset,sowillourM-arymixingalgorithm,whichgoestoshowthatitiscomplete.
15
Theorem2canbeusedtodeterminethemediapacketsizegivennetworkenvironment:
suchthatthemixingalgorithmiseffectiveina
2
∆
∆
However,inpractice,
cannotbechosentobeverylarge,because,feedbackdelaysinapplicationssuchas
tele-orchestraarerequiredtobesmall,andareboundedbythehumanresponsetime.
5CommunicationArchitecturesforMediaMixing
Theprocessofmixingpassesthroughasequenceoftwophases:(1)atransientphase,duringwhichafusionsetisdetermined,and(2)asteadyphase,inwhichmediapacketsaremixedusingthefusionset.Typically,theprocessofmixingentersthetransientphasewheneveranewsourcejoinsaconference,requiringthatthefusionsetthathadbeencomputedearlierfortheoldersourcesbechangedtoaccommodatethenewsource.Ifthefusionsetdeterminedduringatransientphasecontainspacketsthesteadyphase,
1
and
2
fromsources
1
and
2,respectively,thenduring
0,packets
1
and
2
aremixedtogether.
Thearchitectureforcommunicationamongparticipantsofaconferenceduringthesteadyphasecanbecentralizedatoneendofthespectrum,orfullydistributedattheotherendofthespectrum.Thecentralizedarchitecturerequiresthateachparticipantinaconferencetransmitmediainformationtoacentralmixer.Themixerreceivespacketsfromalltheparticipants,createsacompositepacketbymixingthereceivedpackets,andthentransmitsittoalltheparticipants.Eachparticipant,onreceivingthecompositemediapacket,mayhavetoperformsomemediadependentprocessingofthecompositepacket(suchasremovinghisowncontributioninthecaseofaudio)beforeschedulingitforplayback.
Attheotherendofthespectrumisthedistributedarchitecture,whichrequiresthateachparticipantinaconferencetransmitmediainformationtoeachoftheotherparticipants.Mixingisperformedbyeachparticipantindependently.However,itispossiblethatthefusionsetsderivedbytheparticipantsmaybedifferent.Toresolvethisconflict,oneoftheparticipantsisdesignatedasthemastermixer,andthefusionsetcomputedbythismasterispropagatedtoalltheparticipants.
Whereasthecentralizedarchitectureissimpletoimplementbutinflexible(i.e.,doesnotprovidefeaturessuchasautonomousvolumecontrolofeachmediastream),thedistributedarchitectureisflexiblebutincursduplicationofmixingcomputationandbandwidthusage.Neitherarchitecturescaleswell(witheitherthenumberofparticipantsorthegeographicalseparationbetweenparticipants)ifthenetwork,thenetworkinterface,ortheprocessingpoweratthemixeristhebottleneck.
Byclusteringtogethercloselysituatedparticipants,andusingahierarchicalmixingarchitecture(seeFigure5),wecanboundthebandwidthandprocessingrequirementsatthemixers[7].Inamixinghierarchy,participantsconstitutetheleafnodes,andthemixersconstitutenon-leafnodes.Duringthetransientphase,therootmixercomputesthefusionset(sinceitistheonlynodethatreceivespacketinformationfromalltheparticipants),andpropagatesittoeachoftheintermediatemixers.Duringthesteadyphase,eachmixerreceivesmediapacketsfromitschildren,mixesthem,andsendsthecompositepackettoitsparent.Themixerthatisattherootofthe
16
hierarchyforwardsthefinalmixedpackettoeachoftheleafnodes.Thebandwidthrequiredforpacketreceptionateachmixerisproportionaltothenumberofitschildren,whereasthebandwidthforpackettransmissionisthatofsendingtojustoneparent.(Eventhoughtherootmixerhastosendamixedpackettoeachoftheparticipants,sincethemixedpacketiscommontoalltheparticipants,therootmixerneedstomakeonlyonepackettransmissionbyusingmulticasting).Thus,byincreasingonlytheheightofthehierarchywhileboundingthenumberofchildrenofeachmixer,thehierarchicalarchitecturescanbemadehighlyscalable.
Root mixer :MMixers :M1Multicast to all participantsM2Participants :P1P2P3P4P5Figure5:Ahierarchicalarchitectureformixing
Aspecialcaseofahierarchicalarchitectureisadirectedring,whichcanbethoughtofasamixingtreeinwhicheachnodehasexactlyonechild.Suchaconfigurationisappropriatefortokenringbasednetworks,andisanalyzedbyZiegleretal.[8].
Ageneralizationofthehierarchicalarchitectureyieldsagraph-structuredmixingarchitecture.Inanon-hierarchicalgraph,theremaybemultiplepathsbetweenaparticipantandamixer.Hence,amixermayreceivemultiplemixedpacketscontainingthesameparticipant’spacket.Toeliminatetheduplication,theparticipant’spacketmayhavetobetransmittedinadditiontothemixedpacket,leadingtowastageofbandwidth.Sincegraph-structuredarchitecturesdonotaffordanyspecialadvantagesoverhierarchicalones,theyarenotveryinterestingformixing.
6Real-TimePerformanceofMixing
Theinteractiveandreal-timenatureofcollaborativeapplicationsrequirethattheend-to-enddelayexperiencedbymediapacketsbebounded.Whenamixerreceivesthefirstpacketfromoneofthesourcesthatgoestoformamixedpacket,ithastodelaythecompletionofthemixingprocessuntilitreceivesallotherpacketsthatconstitutethemixedpacket.However,ifthenetworkisunreliable,someofthepacketsthatgotoformamixedpacketmaynotarriveatthemixer.Hence,animportantquestionis:howlongshouldamixerwaitforpacketsfromsourcesbeforedecidingtotransmitapartiallymixedpacket(whichisnotfullymixedbecauseoftheunavailabilityofpacketsfromsomeofthesources)?Asimplesolutionisforthemixertotransmitapartiallymixedpacketwhenamediapacketthatgoestoformasubsequentmixedpacketisreceivedfromoneofthesources.However,this
17
causesmixingdelaysoftheorderofpacketduration()atthemixer.Extensionofthissolutiontoahierarchical
mixingarchitectureofheight
resultsinamixingdelayofateachlevel,leadingtoanoverallmixingdelayof
,andend-to-enddelayof
1
∆
(
∆
forthetransmissiondelayfromaleaftotheroot
upthehierarchy,andanadditional∆
forthemulticastofthefinalmixedpacketfromtherootbacktotheleaf).
Thepacketdurationcannotbechosentobeverysmall(typicalvaluesforvoicepacketsonEthernetare20to150ms)mainlytokeepthepackettransmissionoverheadlow.Hence,eveninsmallmixinghierarchies,themixingdelaywillturnouttobeunacceptablylargeforsupportinginteractiveandreal-timemultimediaapplications.
Wenowpresentasimplealgorithmthatremovestheproportionaldependenceofmixingdelayonmaintainsinformationabouttheexpectedgenerationtimesofpacketsatitschildren.
Whenanewsourceatheight
attime
ina
generalmixinghierarchy(ofwhich,othermixingarchitecturesarespecialcases).Inthisalgorithm,eachmixer
joinstheconference,itsendsaprobepacket
upthehierarchytoenableeach
intermediatemixertocomputetheearliestandlatestgenerationtimesforthepacket.Ifthepacketreachesamixer
,themixercomputesitsearliestandlatestgenerationtimesasfollows:
∆
∆
Considertheprocessofformingthethmixedpacketatthemixer.Sincepacketsaregeneratedregularlyatan
intervalof,themixercanestimatetheearliestandthelatestgenerationtimesofpacket
fromsource
asfollows:
Theminimumearliestandmaximumlatestgenerationtimesofpacketsconstitutingthethmixedpacketare
givenby:
12
min
12
max
Theearliestandlatestarrivaltimesofpacketsconstitutingthethmixedpacketcanbepre-computedasfollows:
∆∆
Hence,allpacketsconstitutingthethmixedpacketmustarriveatamixeratheight
withintheinterval
.Attherootmixer,
(heightoftheentiretree),and
∆
.The
maximumaggregateend-to-enddelaysufferedbyapacketfromaleaftotherootisgivenby,Adding∆
.
forthetransmissionofthefinalmixedpacketfromtheroottoparticipants,weobtainthemaximum
aggregateend-to-enddelayofapacketas:
18
AggregateEnd-to-EndDelay
∆
∆
1
∆
Theabovederivationofmixingdelayhasignoredthecomputationaloverheadofmixingateachmixer,whichisassumedtobesmallcomparedtothecommunicationandwaitingdelays.
7ImplementationandExperience
Wehaveimplementedthemixingalgorithmsonanetworkofmultimediastations,eachconsistingofacomputingworkstation,aPC-AT,avideocamera,andaTVmonitor(seeFigure6).TheworkstationandPC-ATsareconnectedviaEthernets.ThePC-ATsareequippedwithdigitalvideoprocessinghardwarethatcandigitizeandcompressmotionvideoatreal-timerateswitharesolutionof480x200pixelsand12bitsofcolorinformationperpixel,andaudiohardwarethatcandigitizevoiceat8KBytes/sec.
Multimedia StationMultimedia StationVideoMonitorCameraVideoMonitorCameraWorkstationPC-ATWorkstationPC-ATGATEWAYETHERNETSFigure6:Hardwareconfiguration
Wecarriedoutseveralexperimentstoevaluatetheperformancelimitsofmixinginaudioconferencingapplications.AudiosamplesarepacketizedandtransmittedontheEthernet.Inordertostrikeabalancebetweennetworktransmissionoverhead(whichfavorslargepacketsizes),andthepacketizationdelay(whichfavorssmallpacketsizes),theaudiopacketsizewaschosentobe512samples,yieldingcommunicationdelayperpacketiswithin10ms.
Weobservedtheperformanceofcentralizedanddistributedmixingarchitectures,andexperimentallymea-suredthemaximumnumberofparticipantsthattheycansupport.Figure7showsthevariationofthefractionofpacketsreachingamixerinacentralizedarchitecturewithincreaseinthesizeofaconference.Whenthatfractiongoesbelow98%,thereisarapiddeteriorationofvoicequality,andthemixingarchitecturebreaksdown.Thebreakdownpointyieldsamaximumconferencesizeof20inthepresenceofmulticasting,and12initsabsenceforcentralizedarchitecture.Inthepresenceofmulticasting,distributedandcentralizedarchitecturesbehaveinasimilarfashion.However,intheabsenceofmulticasting,theirperformancewillbepoorerduetothegrowthofbandwidthconsumptionasthesquareofthenumberofparticipants.Forhierarchicalarchitectures,givenamaximumallowableend-to-enddelayofabout100ms,theanalysisinSection6yieldscansupportconferenceswithupto202
66.67ms.Themaximum
2,showingthatthey
400participants.
19
Packets recieved at the mixer (%)10090With MulticastingWithout multicasting80706050403020100051015202530Conference size (Number of participants)Figure7:Performanceofaudiomixingwithincreaseinconferencesize
8ConcludingRemarks
Wehavepresentedalgorithmsformixingmediadatatransmittedbymultiplesourcesinmultimediaconferencingapplicationssuchastele-orchestra,carriedoutonpacket-switchednetworks.Thealgorithmsminimizebothdifferencesbetweengenerationtimesofmediapacketsbeingmixed,andend-to-enddelaysofmixedpackets.Thealgorithmsarecomplete,i.e.,therecannotbeamoreeffectivealgorithmformixingintheabsenceofanycontrolmessageexchangesbetweenparticipantsandmixers.
Wehaveimplementedthemixingalgorithmsonanetworkofworkstationsequippedwithdigitalmultimediahardware.Experimentalevaluationsdemonstratethatcentralizedanddistributedmixingarchitecturesarelimitedinthenumberofparticipantsthattheycansupport.Inordertoovercometheirlimitations,wehaveproposedhierarchicalmixingarchitectures,whichcansignificantlyreducebandwidthconsumption,makingthemsuitableforscalablemultimediaconferences.
REFERENCES
[1]L.Aguilar,J.J.Garcia-Luna-Aceves,D.Moran,E.J.Craighill,andR.Brungardt.ArchitectureforAMulti-MediaTele-ConferencingSystem.ProceedingsoftheSIGCOMM’86SymposiumonCommunicationsArchi-tecturesandProtocols,Stowe,VT,pages126–136,August5-7,1986.
[2]S.R.Ahuja,J.Ensor,andD.Horn.TheRapportMultimediaConferencingSystem.InProceedingsofCOIS’88
ConferenceonOfficeInformationSystems,PaloAlto,CA,pages1–8,March23-25,1988.
[3]K.A.Lantz.AnExperimentinIntegratedMultimediaConferencing.InProceedingsofCSCW’86,pages
267–275,December1986.
20
[4]P.VenkatRanganandD.C.Swinehart.SoftwareArchitectureforIntegrationofVideoServicesinthe
EtherphoneEnvironment.IEEEJournalonSelectedAreasinCommunication,9(9):1395–1404,December1991.
[5]P.VenkatRangan,HarrickM.Vin,andSrinivasRamanathan.CommunicationArchitecturesandAlgorithms
forMediaMixinginMultimediaConferencing.ToappearinIEEE/ACMTransactionsonNetworking,1(1),February1993.
[6]S.SarinandI.Greif.Computer-BasedReal-TimeConferences.IEEEComputer,18(10):33–45,October
1985.
[7]HarrickM.Vin,P.VenkatRangan,andSrinivasRamanathan.HierarchicalConferencingArchitecturesfor
Inter-GroupMultimediaCollaboration.InProceedingsoftheConferenceonOrganizationalComputingSystems(COCS’91),SIGOISBulletin,Vol.12,No.2-3,pages43–55,November1991.
[8]C.Ziegler,G.Weiss,andE.Friedman.ImplementationMechanismsforPacketSwitchedVoiceConferencing.
IEEEJournalonSelectedAreasCommunications,7(5):698–706,June19.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务