FROMGAITSEQUENCES
AravindSundaresan,AmitRoyChowdhury,RamaChellappa
CentreforAutomationResearch,andDepartmentofElectricalandComputerEngineering
UniversityofMaryland,CollegePark,MD20742
ABSTRACT
InthispaperweproposeagenericframeworkbasedonHid-denMarkovModels(HMMs)forrecognitionofindividualsfromtheirgait.TheHMMframeworkissuitable,becausethegaitofanindividualcanbevisualizedashisadoptingposturesfromaset,inasequencewhichhasanunderlyingstructuredprobabilisticna-ture.TheposturesthattheindividualadoptscanberegardedasthestatesoftheHMMandaretypicaltothatindividualandprovideameansofdiscrimination.Theframeworkassumesthat,duringawalkcycle,theindividualtransitionsamongdiscreteposturesorstates.Anadaptivefilterisusedtoautomaticallydetectthecycleboundaries.Ourmethodisnotdependentontheparticularfeaturevectorusedtorepresentthegaitinformationcontainedinthepos-tures.ThestatisticalnatureoftheHMMlendsrobustnesstothemodel.Inthispaperweusethebinarizedbackground-subtractedimageasthefeaturevectorandusedifferentdistancemetrics,suchasthosebasedontheandnormsofthevectordifference,andthenormalizedinnerproductofthevectors,tomeasurethesimilaritybetweenfeaturevectors.Theresultsweobtainarebet-terthanthebaselinerecognitionratesreportedbefore.
1.INTRODUCTION
Biometricscanbeapowerfulcueforreliableautomatedpersonidentificationandthereexistseveralestablishedbiometric-basedidentificationtechniquesincludingfingerprintandhandgeometrymethods,speakeridentification,facerecognitionandirisidentifi-cation.However,theapplicabilityofallthesemethodologiesisusuallyrestrictedtocontrolledenvironmentsorrequirecoopera-tionofthesubject.We,therefore,needtoexplorebiometricsigna-tureswhichcanbeobtainednon-invasivelyfromadistance.Gaitisonesuchbiometricwhichiscurrentlybeingexploredforpurposessuchasidentification.Weknowfromexperiencethatpeopleoftenrecognizeothersbysimplyobservingthewaytheywalkimply-ingthatbodyshapeanddynamicsaresufficientlydistinctacrosshumans.
Ithasbeenobservedthatgaitcanbemodeledasatransitionacrossstates,whereeachstateisexemplifiedbyatypicalfeaturevectororexemplar.Inthispaperweproposeageneralframeworkthatemploysexemplar-basedHMMstocharacterizeanindivid-ual’sgaitandthereafterrecognizetheindividualfromhisgait.Theuseoftemporaltemplates,whichcapturemotionofeachpixelintheframe,hasbeenproposedforrecognitionofbothhumanac-tions[1]andhumansfromtheirgait[2].HMMshavealsobeenusedtorecognizehumanactions[3,4,5].Exemplarshavebeenusedinlearningprobabilisticmodelsin[6]andtrackingin[7].
F1F2F3F4F5F6F7
Fig.1.PartofanObservationSequence
Duringthetrainingphase,amodelisbuiltforallthesubjects,indexedbyofiteratively.and,inthegallery.AninitialestimateNoteisformedthatisfromcompletely,anddefinedtheseestimatesbyifisarefixedrefinedbe-forehand.WecaniterativelyestimateWelchalgorithm,keepingandbyusingtheBaum-isdeterminedbythechoicefixed.oftheThedistancealgorithmmetric.tore-estimateDuringtest-ing,givenaGalleryandtheprobese-quenceoflength,
traversingthepath,beingthestateindexattime,weobtain
theIDoftheprobesequenceas
(2)
3.METHODOLOGY
Thefeaturevectorweuseintheexperimentsisthebinarizedver-sionofthebackgroundsubtractedimages.TheimagesarescaledandalignedtothecenteroftheframeasinFigure1whichfeaturespartofasequenceoffeaturevectors.WedescribeinthissectionthemethodsusedtoobtaininitialestimatesoftheHMMparame-ters,thetrainingalgorithmandfinally,identificationresultsusingUSFdatadescribedin[9].
3.1.InitialEstimateofHMMParameters
Inordertoobtainagoodestimateoftheexemplarsandthetransi-tionmatrix,wefirstobtainaninitialestimateofanorderedsetofexemplarsfromthesequenceandthetransitionmatrixandsucces-sivelyrefinetheestimate.Theinitialestimatefortheexemplars,
issuchthattheonlytransitionsallowed
arefromthestatetoeithertheorthe
state.Acorrespondinginitialestimateofthetransitionmatrix,(withobtained.Theinitialprobabilites,andareallsetothertobeequalto)isalso.
Weobservethatthegaitsequenceisquasi-periodicandweusethisfacttoobtaintheinitialestimatesequenceinto“cycles”,whereacycleisdefined.Weasthatcansegmentdividetheofthesequenceboundedbysilhouetteswherethesubjecthasarmsbyhis/hersideandlegsapproximatelyalignedwitheachother.Wecanfurtherdivideeachcycleintotemporallyadjacentclustersofapproximatelyequalsize.Wevisualizetheframesoftheclusterofallcyclestobegeneratedfromthestate.Thuswecangetagoodinitialestimateoflongingtothecluster.Forexample,fromassumethefeaturethatthevectorstrainingbe-sequenceisgivenby.Wecanpartitionthesequenceintosetcycles,withthecyclegivenbyframesinthe,whereandaretheindexofthefirstframeofthecycle,andthelengthof
the
cyclerespectively.Wedefinethefirstclustertocompriseofframeswithindices
.
Weneedtorobustlyestimatethecycleboundariessothatwecanpartitionthesequenceintoclustersandobtaintheinitiales-timatesoftheexemplars.Ifthesumsoftheforegroundpixelsofeachimageareplottedwithrespecttotime,then,asperourdefinitionofacycle,theminimasshouldcorrespondtothecy-cleboundaries.Wedenotethesumoftheforegroundpixelsofthesilhouetteintheframeasmaycontainseveralspuriousminima..HoweverThissignalweiscannoisyexploitandthequasi-periodicityofthesignalandfilterthesignaltoremovethenoisebeforeidentifyingtheminima.Methodssuchasmedianfilteringordifferentialsmoothingofarenotveryrobustastheydonottakeintoaccountthefrequencyofthegait.Amore
robustmethodwouldbetoanalyse
time-frequencydomain,usingband-passfiltersintheorfrequencytheShortorTimetheFourierTransform(STFT).
Thespecificationsoftheband-passfilteraresuchastoallowfrequenciesthataretypicalforafastwalk.Thevideoiscapturedat30framespersecond,andthesamplingfrequency,andcorresponding.Themaximumtoacyclegaitperiodfrequencyofisassumedtobe
mingwindowoflengthisobtainedbysymmetricallyisextendingused.Theextended.AHam-resultant.Thereforesequencetheissequencefilteredusinghasabandpasslengthinbothsequence
directionsfilter(with.by
upperThecut-offfrequencydelay.Thedistancesbetween),theinbothminimasdirectionsofthefilteredtoremovesequencephaseleadustoanestimateofthecycleperiod.Thecyclefrequencyisestimatedastheinverseofthemedianofcycleperiods.Usingthisrevisedestimateofthefrequencyofthegait,,anewfilteriscon-structedwithuppercutofffrequencysequences,STFTtechniquescouldbeusedinsteadofstraightfor-.Forlongwardfilteringinordertoaccountforaslowlyvaryingfrequencyofgait.Figure2illustratestheperformanceofseveralalgorithmsinidentifyingthecycleboundaries.AmanualexaminationofallthesequencesintheGalleryrevealeda100%detectionratewithhardlyanyfalsedetectionofcyclebouldaries.Wealsoobservedfromthetheinitialexemplarsobtainedusingthecycleregistration
resultsfromthefilteringmethodthatthefrequencybasedfilteringmethodismoreaccurateandrobustcomparedtotheothermeth-ods.
3.2.TrainingtheHMMParameters
Theiterativerefiningoftheestimatesisperformedintwosteps.Inthefirststep,aViterbievaluation[11]ofthesequenceisper-formedusingthecurrentvaluesfortheexemplarsandthetran-sitionmatrix.Thusfeaturevectorsareclusteredaccordingtothemostlikelystatetheyoriginatedfrom.Theexemplarsforthestatesarenewlyestimatedfromtheseclusters.Usingthecurrentvaluesoftheexemplars,andthetransitionmatrix,,Viterbide-codingisperformedonthesequencetoobtainthemostprobablepath,whereisthestateattime.Thusthesetofobservationindices,whosecorrespondingobserva-tionisestimatedtohavebeengeneratedfromstateisgivenby
.Wenowhaveasetofframesforeachstate
andwewouldliketoselecttheexemplarssoastomaximisetheprobabilityin(3).Ifweusethedefinitionin(1),(4)follows.
(3)(4)
Theactualmethodforminimisingthedistancein(4)howeverde-pendsonthedistancemetricused.Wehaveexperimentedwiththreedifferentdistancemeasures,namelytheEuclidean(EUCLID)distance,theinnerproduct(IP)distance,andthesumofabsolutedifference(SAD)distancewhicharegivenby(5),(6),and(7)re-spectively.Notethatthoughandare2-dimensionalimages,
foreaseoftheyarerepresentedasvectorsofdimension
notation.isavectorofones.
(5)(6)
(7)
TheequationsforupdatingtheelementoftheexemplarsintheEUCLIDdistance,IPdistanceandtheSADdistancecasesarepre-sentedin(8),(9)and(10)respectively.denotesthenormalizedvectoranddenotesthecardinalityoftheset.
Cumulative Match Scores (Training Set is Gallery)100908070Cumulative Match Scores6050403020100ProbeAProbeBProbeCProbeDProbeEProbeFProbeGIP
A(GAL)[66]B(GBR)[37]C(GBL)[37]D(CAR)[62]E(CBR)[39]F(CAL)[62]G(CBL)[38]
(atrank1)EuclidSAD
100%
92%92%62%54%47%48%
100%92%92%60%54%46%48%
100%92%92%59%59%44%45%
0246810Rank
1214161820Fig.4.CMSplotsofProbesA-GtestedagainstGallery
100908070Identification rate (%)6050403020100Baseline − rank 1HMM − rank 1Baseline − rank 5HMM − rank 5ABCDProbesEFGFig.5.Detectionratesatranks1and5forthebaselineandHMMalgorithms
IPdistancemeasurebetweenfeaturevectorsintheformofCumu-lativeMatchScores(CMS)plots[10]areinFigure4.Table1givesabriefsummaryoftheexperimentsconducted(GandCdenotegrassandconcretesurfaces,AandBdenotedifferentshoetypes,andRandLdenotedifferentcameraviews).Weobservethatthedistancemeasurethatworksbestandismostsimpletoimplementistheinnerproductdistance.Theperformancecomparisonwiththebaseline[10]isillustratedinFigure5.
5.CONCLUSION
Inthispaper,wehaveproposedageneralHMM-basedframeworktorepresentandrecognizehumans.Theframeworkprovidesal-gorithmstotraintheHMMparametersandtoidentifyprobese-quences.Ithasthepotentialtoworkwithsuitablycomplexfeaturevectorsanddistancemeasuresthatarelesssusceptibletoviewinganglesorotherfactors,thoughwehaveusedsequenceswithacon-
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务