第一讲 比较分数的大小
同学们从一开始接触数学,就有比较数的大小问题。比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。 对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是: 分母相同的两个分数,分子大的那个分数比较大; 分子相同的两个分数,分母大的那个分数比较小。 第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。下面我们介绍另外几种方法。 1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
前一个差比较小,所以m<n。
(3)对于分数m和n,若k-m<k-n,则m>n。 (2)对于分数m和n,若m-k>n-k,则m>n。 6.借助第三个数进行比较。有以下几种情况: (1)对于分数m和n,若m>k,k>n,则m>n。
- 1 -
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。 2.化为小数。
注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两个分数m和n。
这种方法对任意的分数都适用,因此也叫万能方法。但在比较大小时是否简便,就要看具体情况了。 3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
利用这一点,当两个已知分数不容易比较大小,新分数
4.根据倒数比较大小。
与其中一个已知分数容易比较大小时,就可以借助于这个新分数。
(4)把两个已知分数的分母、分子分别相加,得到一个新分数。新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。也就是说,
比较分数大小的方法还有很多,同学们可以在学习中不断发现总结,但无论哪种方法,均来源于:“分母相同,分子大的分数大;分子相同,分母小的分数大”这一基本方法。 练习1
1.比较下列各组分数的大小:
在例1~例4中,两次改变的都是分子,或都是分母,如果分子、分母同时变化,那么会怎样呢?
- 2 -
数a。
第二讲 巧求分数
我们经常会遇到一些分数的分子、分母发生变化的题目,例如分子或分母加、减某数,或分子与分母同时加、减某数,或分子、分母分别加、减不同的数,得到一个新分数,求加、减的数,或求原来的分数。这类题目变化很多,因此解法也不尽相同。
求这个自然数。
数。
例7 一个分数的分子与分母之和是23,分母增加19后得到一个新分数,
个分数。
,这个分数是多少?
练习2
- 3 -
是多少?
第三讲 分数运算的技巧
对于分数的混合运算,除了掌握常规的四则运算法则外,还应该掌握一些特殊的运算技巧,才能提高运算速度,解答较难的问题。 1.凑整法
与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数……从而使运算得到简化。
2.约分法
练习3
- 4 -
3.裂项法
若能将每个分数都分解成两个分数之差,并且使中间的分数相互抵消,则能大大简化运算。
例7 在自然数1~100中找出10个不同的数,使这10个数的倒数的和等于1。
4.代数法
5.分组法
8.在自然数1~60中找出8个不同的数,使这8个数的倒数之和等于1。
答案与提示 练习3 1.3。
8.2,6, 8, 12, 20, 30, 42, 56。
9.5680。
解:从前向后,分子与分母之和等于2的有1个,等于3的有2个,等于4的有3个人……一般地,分子与分母之和等于n的有(n-1)个。分子与分母之和小于9+99=108的有1+2+3+…+106=5671(个)
- 5 -
5671+9=5680(个)。
第四讲 循环小数与分数
任何分数化为小数只有两种结果,或者是有限小数,或者是循环小数,而循环小数又分为纯循环小数和混循环小数两类。那么,什么样的分数能化成有限小数?什么样的分数能化成纯循环小数、混循环小数呢?我们先看下面的分数。
(1)中的分数都化成了有限小数,其分数的分母只有质因数2和5,化
因为40=23
×5,含有3个2,1个5,所以化成的小数有三位。
(2)中的分数都化成了纯循环小数,其分数的分母没有质因数2和5。
(3)中的分数都化成了混循环小数,其分数的分母中既含有质因数2或5,又含有2和5以外的质因数,化成的混循环小数中的不循环部分的位数与
5,所以化成混循环小数中的不循环部分有两位。 于是我们得到结论:
一个最简分数化为小数有三种情况:
(1)如果分母只含有质因数2和5,那么这个分数一定能化成有限小数,并且小数部分的位数等于分母中质因数2与5中个数较多的那个数的个数;
(2)如果分母中只含有2与5以外的质因数,那么这
个分数一定能化成纯循环小数;
(3)如果分母中既含有质因数2或5,又含有2与5以外的质因数,那么这个分数一定能化成混循环小数,并且不循环部分的位数等于分母中质因数2与5中个数较多的那个数的个数。
例1判断下列分数中,哪些能化成有限小数、纯循环小数、混循环小数?能化成有限小数的,小数部分有几位?能
化成混循环小数的,不循环部分有几位?
分析与解:上述分数都是最简分数,并且 32=25
,21=3×7,250=2×53
,78=2×3×13,
117=33
×13,850=2×52
×17, 根据上面的结论,得到:
不循环部分有两位。
将分数化为小数是非常简单的。反过来,将小数化为分数,同学们可能比较熟悉将有限小数化成分数的方法,而对将循环小数化成分数的方法就不一定清楚了。我们分纯循环小数和混循环小数两种情况,讲解将循环小数化成分数的方法。 1.将纯循环小数化成分数。
将上两式相减,得将上两式相减,得
从例2、例3可以总结出将纯循环小数化成分数的方法。 纯循环小数化成分数的方法:
分数的分子是一个循环节的数字组成的数,分母的各位数都是9,9的个数与循环节的位数相同。
2.将混循环小数化成分数。
将上两式相减,得
- 6 -
将上两式相减,得
从例4、例5可以总结出将混循环小数化成分数的方法。 混循环小数化成分数的方法:
分数的分子是小数点后面第一个数字到第一个循环节的末位数字所组成的数,减去不循环数字所组成的数所得
的差;分母的头几位数字是9,末几位数字都是0,其中9的个数与循环节的位数相同,0的个数与不循环部分的位数相同。
掌握了将循环小数化成分数的方法后,就可以正确地进行循环小数的运算了。 例6 计算下列各式:
练习4
1.下列各式中哪些不正确?为什么?
2.划去小数0.27483619后面的若干位,再添上表示循环节的两个圆点,得到一个循环小数,例如0.274836。请
找出这样的小数中最大的与最小的。 3.将下列纯循环小数化成最简分数:
4.将下列混循环小数化成最简分数:
5.计算下列各式:
答案与提示 练习4
1.(1)(3)(4)不正确。
第五讲 工程问题(一)
顾名思义,工程问题指的是与工程建造有关的数学问题。其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。
在分析解答工程问题时,一般常用的数量关系式是: 工作量=工作效率×工作时间, 工作时间=工作量÷工作效率, 工作效率=工作量÷工作时间。
工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可
工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。
工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。但在不引起误会的情况下,一般不写工作效率的单位。
例1 单独干某项工程,甲队需100天完成,乙队需150天完成。甲、乙两队合干50天后,剩下的工程乙队干还需多少天?
- 7 -
分析与解:以全部工程量为单位1。甲队单独干需100天,甲的工作效
例2 某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天?
分析:将题目的条件倒过来想,变为“乙队先干18天,后
面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。
答:甲队干了12天。
例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。问:甲队实际工作了几天?
分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了
例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。这批零件共有多少个?
分析与解:这道题可以分三步。首先求出两人合作完成需要的时间,
例5 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果一开始是空池,打开放水管1时后又打开排水管,那么再过多
长时间池内将积有半池水
例6 甲、乙二人同时从两地出发,相向而行。走完全程甲需60分钟,乙需40分钟。出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。甲再出发后多长时间两人相遇?
分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答。甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟。我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间?由此看出,这道题应该用工程问题的解法来解答。
答:甲再出发后15分钟两人相遇。 练习5
1.某工程甲单独干10天完成,乙单独干15天完成,他们合干多少天才可完成工程的一半?
2.某工程甲队单独做需48天,乙队单独做需36天。甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。求乙队在中间单独工作的天数。 3.一条水渠,甲、乙两队合挖需30天完工。现在合挖12天后,剩下的乙队单独又挖了24天挖完。这条水渠由甲队单独挖需多少天?
则完成任务时乙比甲多植50棵。这批树共有多少棵? 5.修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?
6.蓄水池有甲、乙两个进水管,单开甲管需18时注满,单开乙管需24时注满。如果要求12时注满水池,那么甲、乙两管至少要合开多长时间?
7.两列火车从甲、乙两地相向而行,慢车从甲地到乙地需8时,比快车从
40千米。求甲、乙两地的距离。 - 8 -
答案与提示 练习5
2.14天。
3.120天。
4.350棵。
5.6000米。
6.8时。
提示:甲管12时都开着,乙管开
7.280千米。
第六讲 工程问题(二)
上一讲我们讲述的是已知工作效率的较简单的工程问题。
在较复杂的工程问题中,工作效率往往隐藏在题目条件里,这时,只要我们灵活运用基本的分析方法,问题也不难解决。 例1 一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先做20天,那么乙接着做8天可完成。如果甲、乙合做,那么多少天可以完成?
分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:
从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。于是可
用“乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24(天)
问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?
- 9 -
分析与解:同时打开1,2,3号阀门1分钟,再同时打开2,3,4号阀门1分钟,再同时打开1,3,4号阀门1分钟,再同时打开1,2,4号阀门1分钟,这时,1,2,3,4号阀门各打开了3分钟,放水量等于一
甲、乙合做这一工程,需用的时间为
例2 一项工程,甲、乙两队合作需6天完成,现在乙队先做7天,然后
例5 某工程由一、二、三小队合干,需要8天完成;
么还要几天才能完成?
分析与解:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作
由二、三、四小队合干,需要10天完成;由一、四小队合干,需15天完成。如果按一、二、三、四、一、二、三、四、……的顺序,每个小队干一天地轮流干,那么工程由哪 个队最后完成?
分析与解:与例4类似,可求出一、二、三、四小队的
们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再单独
工作效率之和是
例6 甲、乙、丙三人做一件工作,原计划按甲、乙、
丙的顺序每人一天轮流去做,恰好整天做完,并且结束工作的是乙。若按乙、丙、甲的顺序轮流
例3 单独完成一件工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。如果甲、乙二人合做2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。问:甲、乙二人合做需多少天完成?
分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的
件工作,要用多少天才能完成?
分析与解:把甲、乙、丙三人每人做一天称为一轮。在一轮中,无论谁先谁后,完成的总工作量都相同。所以三种顺序前面若干轮完成的工作量及用的天数都相同(见下图虚线左边),相差的就是最后一轮(见下图虚线右边)。
,乙需要10+5=15(天)。甲、乙合作需要
由最后一轮完成的工作量相同,得到
例4 放满一个水池的水,若同时打开1,2,3号阀门,则20分钟可以完成;若同时打开2,3,4号阀门,则21分钟可以完成;若同时打开1,3,4号阀门,则28分钟可以完成;若同时打开1,2,4号阀门,则30分钟可以完成。
解:由下页图知,王干2时等于李干3时,所以单独
- 10 -
干李需12+6÷2×3=21(时),王需21÷3×2=14(时)。所求为
练习6
1.甲、乙二人同时开始加工一批零件,每人加工零件总数的一半。甲完成
有多少个?
需的时间相等。问:甲、乙单独做各需多少天?
3.加工一批零件,王师傅先做6时李师傅再做12时可完成,王师傅先做8时李师傅再做9时也可完成。现在王师傅先做2时,剩下的两人合做,还需要多少小时?
独修各需几天?
5.蓄水池有甲、乙、丙三个进水管,甲、乙、丙管单独灌满一池水依次需要10,12,15时。上午8点三个管同时打开,中间甲管因故关闭,结果到下午2点水池被灌满。问:甲管在何时被关闭?
6.单独完成某项工作,甲需9时,乙需12时。如果按照甲、乙、甲、乙、……的顺序轮流工作,每次1时,那么完成这项工作需要多长时间?
7.一项工程,乙单独干要17天完成。如果第一天甲干,第二天乙干,这样交替轮流干,那么恰好用整天数完成;如果第一天乙干,第二天甲干,这样交替轮流干,那么比上次轮流的做法多用半天完工。问:甲单独干需要几天? 答案与提示练习6 1.360个。
7.8.5天。
解:如果两人轮流做完的天数是偶数,那么不论甲先还是乙先,两种轮流做的方式完成的天数必定相同(见左下图)。
甲乙甲乙……甲乙甲乙甲乙……甲乙 甲
2.甲18天,乙12天。
现在乙先比甲先要多用半天,所以甲先时,完成的天数一定是奇数,于是得到右上图,其中虚线左边的工作量相同,
右边的工作量也相同,说明乙做1天等于甲做半天,所以乙做17天等于甲做8.5天。 第七讲 巧用单位“1”
在工程问题中,我们往往设工作总量为单位“1”。在许多分数应用题中,都会遇到单位“1”的问题,根据题目条件
3.7.2时。
正确使用单位“1”,能使解答的思路更清晰,方法更简捷。
6.10时15分。
5.上午9时。
- 11 -
分析:因为第一天、第二天都是与全书比较,所以应以全书的页数为单位
图书室原来共有图书
答:这本故事书共有240页。
分析与解:与例3类似,甲、乙组人数都发生了变化,不变量是甲、乙组的总人数,所以以甲、乙组的总人数为单位“1”。
分析与解:本题条件中单位“1”的量在变化,依次是“全书的页数”、“第一天看后余下的页数”、“第二天看后余下的页数”,出现了3个不同的单位“1”。按照常规思路,需要统一单位“1”,转化分率。但在本题中,不统一单位“1”反而更方便。我们先把全书看成“1”,
看成“1”,就可以求出第三天看后余下的部分占全书的
例5 公路上同向行驶着三辆汽车,客车在前,货车在
中,小轿车在后。在某一时刻,货车与客车、小轿车的距离相等;走了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车,再过多少分钟,货车追上客车? 分析与解:根据“在某一时刻,货车与客车、小轿车的 距离相等”,设这段距离为单位“1”。由“走了10分钟,小轿车追上了货车”,可知小轿
共有多少本图书?
分析与解:故事书增加了,图书的总数随之增加。题中出现两个分率,
可知小轿车(10+5)分钟比客车多行了两个这样的距离,每分 钟多行这段距离的
这给计算带来很多不便,需要统一单位“1”。统一单位“1”的一个窍门就是抓“不变量”为单位“1”。
本题中故事书、图书总数都发生了变化,而其它书的本数没有变,可以以
- 12 -
两班各有多少人?
4.384千克。
乙班有84-48=36(人)。 练习7
树上原有多少个桃?
6.男生15人,女生21人。
剩下的部分收完后刚好又装满6筐。共收西红柿多少千克?
7.一班45人,二班49人。
第八讲 比和比例
比的概念是借助于除法的概念建立的。
7.六年级两个班共有学生94人,其中女生有39人,已知一班的女生占本
比值。
答案与提示 练习7 1.35个。
表示两个比相等的式子叫做比例(式)。如,3∶7=9∶21。判断两个比是否成比例,就要看它们的比值是否相等。两个比的比值相等,这两个比能组成比例,否则不能组成比例。 在任意一个比例中,两个外项的积等于两个内项的积。
2.60个。
即:如果a∶b=c∶d,那么a×d=b×c。
两个数的比叫做单比,两个以上的数的比叫做连比。例如a∶b∶c。连比中的“∶”不能用“÷”代替,不能把连比看成连除。把两个比化为连比,关键是使第一个比的后项等于第二个比的前项,方法是把这两项化成它们的最小公倍
3.吨。
数。例如,
甲∶乙=5∶6,乙∶丙=4∶3,
两个数相除叫做两个数的比。例如,5÷6可记作5∶6。
因为[6,4]=12,所以
5∶ 6=10∶ 12, 4∶3=12∶9, 得到甲∶乙∶丙=10∶12∶9。 例1 已知3∶(x-1)=7∶9,求x。 解: 7×(x-1)=3×9, x-1=3×9÷7,
例2 六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。求现在的男、女生人数之比。 分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3∶2知,如果将人数分为5份,那么男生占3份,女生占2份。由此求出
女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为 24∶20=6∶5。 在例2中,我们用到了按比例分配的方法。 将一个总量按照一定的比分成若干个分量叫做按比例分配。按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。 例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1∶2∶12,现在要配制这种农药2700千克,求各种原料分别需要多少千克。
分析:总量是2700千克,各分量的比是1∶2∶12,总份数是1+2+12=15,
答:生石灰、硫磺粉、水分别需要180,360和2160千克。 在按比例分配的问题中,也可以先求出每份的量,再求出各个分量。如例3中,总份数是1+2+12=15,每份的量是2700÷15=180(千克),然后用每份的量分别乘以各分量的份数,即用180千克分别乘以1,2,12,就可以求出各个分量。 例4 师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟。完成任务时,师傅比徒弟多加工多少个零件?
分析与解:解法很多,这里只用按比例分配做。师傅与徒弟的工作效率
- 13 -
有多少学生?
按比例分配得到
例6 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。某日通过该收费站的大客车和小客车数量之比是5∶6,小客车与小轿车之比是4∶11,收取小轿车的通行费比大客车多210元。求这天这三种车辆通过的数量。
分析与解:大客车、小轿车通过的数量都是与小客车相比,如果能将5∶6中的6与4∶11中的4统一成[4,6]=12,就可以得到大客车∶小客车∶小轿车的连比。 由5∶6=10∶12和4∶11=12∶33,得到 大客车∶小客车∶小轿车=10∶12∶33。
以10辆大客车、12辆小客车、33辆小轿车为一组。因为每组中收取小轿车的通行费比大客车多10×33-30×
10=30(元),所以这天通过的车辆共有210÷30=7(组)。这天通过
大客车=10×7=70(辆), 小客车=12×7=84(辆), 小轿车=33×7=231(辆)。 练习8
1.一块长方形的地,长和宽的比是5∶3,周长是96米,求这块地的面积。
2.一个长方体,长与宽的比是4∶3,宽与高的比是5∶4,体积是450分米3
。问:长方体的长、宽、高各多少厘米?
3.一把小刀售价6元。如果小明买了这把小刀,那么小明与小强的钱数之比是3∶5;如果小强买了这把小刀,那么小明与小强的钱数之比是9∶11。问:两人原来共有多少钱?
5.甲、乙、丙三人分138只贝壳,甲每取走5只乙就取走4只,乙每取走5只丙就取走6只。问:最后三人各分到多少只贝壳?
6.一条路全长60千米,分成上坡、平路、下坡三段,各段路程的长度之比是1∶2∶3,某人走各段路程所用的时间之比是3∶4∶5。已知他走平路的速度是5千米/时,他走完全程用多少时间?
7.某俱乐部男、女会员的人数之比是3∶2,分为甲、乙、丙三组,甲、乙、丙三组的人数之比是10∶8∶7。如果甲组中男、女会员的人数之比是3∶1,乙组中男、女会员的人数之比是5∶3,那么丙组中男、女会员的人数之比是多少? 答案与提示练习8 1.540米2
。
2.长100厘米,宽75厘米,高60厘米。 解:长∶宽∶高=20∶15∶12, 450000÷(20×15×12)=125=53
。
长=20×5=100(厘米),宽=15×5=75(厘米), 高=12×5=60(厘米)。 3.86元。
解:设小明有x元钱。根据小强的钱数可列方程
36+50=86(元)。 4.20元。
5.甲50只,乙40只,丙48只。
解:甲∶乙∶丙=25∶20∶24,138÷(25+20+24)=2, 甲=2×25=50(只),乙=2×20=40(只), 丙=2×24=48(只)。 6.12时。
- 14 -
7.5:9
第九讲 百分数
百分数有两种不同的定义。
(1)分母是100的分数叫做百分数。这种定义着眼于形式,把百分数作为分数的一种特殊形式。
(2)表示一个数(比较数)是另一个数(标准数)的百分之几的数叫做百分数。这种定义着眼于应用,用来表示两个数的比。所以百分数又叫百分比或百分率。
百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。
在第二种定义中,出现了比较数、标准数、分率(百分数),这三者的关系如下:
比较数÷标准数=分率(百分数), 标准数×分率=比较数, 比较数÷分率=标准数。
根据比较数、标准数、分率三者的关系,就可以解答许多与百分数有关的应用题。
例1 纺织厂的女工占全厂人数的80%,一车间的男工占全厂男工的25%。问:一车间的男工占全厂人数的百分之几?
分析与解:因为“女工占全厂人数的80%”,所以男工占全厂人数的1-80%=20%。
又因为“一车间的男工占全厂男工的25%”,所以一车间的男工占全厂人数的20%×25%=5%。
例2 学校去年春季植树500棵,成活率为85%,去年秋季植树的成活率为90%。已知去年春季比秋季多死了20棵树,那么去年学校共种活了多少棵树?
分析与解:去年春季种的树活了500×85%=425(棵),死了500-425=75(棵)。去年秋季种的树,死了75-20=55(棵),活了 55÷(1-90%)×90%=495(棵)。所以,去年学校共种活425+495=920(棵)。
例3 一次考试共有5道试题。做对第1,2,3,4,5题的人数分别占参加考试人数的85%,95%,90%,75%,80%。如果做对三道或三道以上为及格,那么这次考试的及格率至少是多少?
分析与解:因为百分数的含义是部分量占总量的百分之几,所以不妨设总量即参加考试的人数为100。
由此得到做错第1题的有100×(1-85%)=15(人); 同理可得,做错第2,3,4,5题的分别有5,10,25,20人。
总共做错15+5+10+25+20=75(题)。
一人做错3道或3道以上为不及格,由75÷3=25(人),推知至多有25人不及格,也就是说至少有75人及格,及格率至少是75%。
例4 育红小学四年级学生比三年级学生多25%,五年级学生比四年级学生少10%,六年级学生比五年级学生多10%。如果六年级学生比三年级学生多38人,那么三至六年级共有多少名学生?
分析:以三年级学生人数为标准量,则四年级是三年级的125%,五年级是三年级的125%×(1-10%),六年级是三年级的125%×(1-10%)×(1+10%)。因为已知六年级比三年级多38人,所以可根据六年级的人数列方程。 解:设三年级有x名学生,根据六年级的人数可列方程: x×125%×(1-10%)×(1+10%)=x+38, x×125%×90%×110%=x+38, 1.2375x=x+38, 0.2375x=38, x=160。
三年级有160名学生。
四年级有学生 160×125%=200(名)。 五年级有学生200×(1-10%)=180(名)。 六年级有学生 160+38=198(名)。 160+200+180+198=738(名)。 答:三至六年级共有学生738名。
在百分数应用题中有一类叫溶液配比问题。我们都知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。如果水的量不变,那么糖加得越多,糖水就越甜,也就是说,糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者重量的比值决定的,这个比值就叫糖水的含糖量或糖含量。类似地,酒精溶于水中,纯酒精与酒精溶液二者重量的比值就叫酒精含量。溶质、溶剂、溶液及溶质含量有如下基本关系:
溶液重量=溶质重量+溶剂重量, 溶质含量=溶质重量÷溶液重量, 溶液重量=溶质重量÷溶质含量, 溶质重量=溶液重量×溶质含量。
溶质含量通常用百分数表示。例如,10克白糖溶于90克水中,含糖量(溶
例5 有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?
分析与解:在600克含糖量为7%的糖水中,有糖(溶质)600×7%=42(克)。
- 15 -
设再加x克糖,可使其含糖量加大到10%。此时溶
质有(42+x)克,溶液有(600+x)克,根据溶质含量可得方程
需要再加入20克糖。
例6 仓库运来含水量为90%的一种水果100千克,一星期后再测,发现含水量降低到80%。现在这批水果的总重量是多少千克?
分析与解:可将水果分成“水”和“果”两部分。一开始,果重
100×(1-90%)=10(千克)。
一星期后含水量变为80%,“果”与“水”的比值为
因为“果”始终是10千克,可求出此时“水”的重量为 所以总重量是10+40=50(千克)。
练习9
1.某修路队修一条路,5天完成了全长的20%。照此计算,完成任务还需多少天?
2.服装厂一车间人数占全厂的25%,二车间人数比一车间少20%,三车间人数比二车间多30%。已知三车间有156人,全厂有多少人?
3.有三块地,第二块地的面积是第一块地的80%,第三块地的面积比第二块多20%,三块地共69公顷,求三块地各多少公顷。
4.某工厂四个季度的全勤率分别为90%,86%,92%,94%。问:全年全勤的人至少占百分之几?
5.有酒精含量为30%的酒精溶液若干,加了一定数量的水后稀释成酒精含量为24%的溶液,如果再加入同样多的水,那么酒精含量将变为多少?
6.配制硫酸含量为20%的硫酸溶液1000克,需要用硫酸含量为18%和23%的硫酸溶液各多少克?
7.有一堆含水量14.5%的煤,经过一段时间的风干,含水量降为10%,现在这堆煤的重量是原来的百分之几? 答案与提示 练习9 1.20天。
解:5÷20%-5=20(天)。
2.600人。解:156÷[(1-20%) × (1+30%)]÷25%=600(人)。
3.第一、二、三块依次为25,20和24公顷。解:第一块地的面积为69÷[1+80%+80%×(1+20%)]=25(公顷),
第二块地为25×80%=20(公顷),第三块地为69-25=24(公顷)。
4.62%。解;设全厂有100人,则四个季度没有全勤的共有10+14+8+6=38(人次)。当四个季度没有全勤的人互不相同时,全年没有全勤的人最多,为38人,所以至少有100-36=62(人)全勤,即全年全勤率至少为62%。 5.20%。
解:设酒精含量为30%的酒精溶液有100克,则溶质为30克。稀释成酒精含量为24%的酒精溶液需加水30÷24%-100=25(克)。若再加入25克水,则酒精含量变为 30÷(100+25+25)=20%。 6.600克,400克。
提示:设需要18%的溶液x克,则需要23%的溶液(100-x)克。根据溶质重量可得
x×18%+(1000-x)×23%=1000×20%。解得x=600。 7.95%。
解:设原有100吨煤,则有水份14.5吨。又设风干掉水份x吨,则由含
现在煤的重量为100-5=95(吨),是原来的95%。 第十讲 商业中的数学
市场经济中有许多数学问题。同学们可能都有和父母一起去买东西的经历,都知道商品有定价,但是这个价格是怎样定的?这就涉及到商品的成本、利润等听起来有些陌生的名词。
这一讲的内容就是小学数学知识在商业中的应用。 利润=售出价-成本,
例如,一件商品进货价是80元,售出价是100元,则这件商品的利润是100-80=20(元),利润率是
在这里我们用“进货价”代替了“成本”,实际上成本除了进货价,还包括运输费、仓储费、损耗等,为简便,有时就忽略不计了。
例1某商品按每个7元的利润卖出13个的钱,与按每个11元的利润卖出12个的钱一样多。这种商品的进货价是每个多少元?
解:设进货价是每个x元。由“售出价=进货价+利润”,根据前、后两次卖出的钱相等,可列方程 (x+7)×13=(x+11)×12, 13x+91=12+132 x=41。 答:进货价是每个41元。
- 16 -
例2 租用仓库堆放3吨货物,每月租金7000元。这些货物原计划要销售3个月,由于降低了价格,结果2个月就销售完了,由于节省了租仓库的租金,所以结算下来,反而比原计划多赚了1000元。问:每千克货物的价格降低了多少元?
分析与解:原计划租仓库3个月,现只租用了2个月,节约了1个月的租金7000元。如果不降低价格,那么应比原计划多赚7000元,但现在只多赚了1000元,说明降价损失是7000-1000=6000(元)。
因为共有3吨,即3000千克货物,所以每千克货物降低了6000÷3000=2(元)。
例3 张先生向商店订购了每件定价100元的某种商品80件。张先生对商店经理说:“如果你肯减价,那么每减价1元,我就多订购4件。”商店经理算了一下,若减价5%,则由于张先生多订购,获得的利润反而比原来多100元。问:这种商品的成本是多少元?
分析与解:设这种商品的成本是x元。减价5%就是每件减100×5%=5(元),张先生可多买4×5=20(件)。由获得利润的情况,可列方程
(100-x)×80 +100=(100-5-x)×(80 + 20), 8000-80x+100=9500-100x, 20x=1400, x=70, 这种商品的成本是70元。
由例2、例3看出,商品降价后,由于增加了销售量,所以获得的利润有时反而比原来多。
例4 某商店到苹果产地去收购苹果,收购价为每千克1.20元。从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.50元。如果在运输及销售过程中的损耗是10%,商店要想实现25%的利润率,零售价应是每千克多少元?
分析与解:本题的成本包括收购价、运费、损耗。每千克的收购价加运费是1.20+1.50×400÷1000=1.80(元)。 因为有10%的损耗,所以每千克的成本为1.80÷(1-10%)=2.00(元)
售出价=成本×(利润率+1) =2.00×(25%+1) =2.50(元),
即零售价应是每千克2.50元。
例5 小明到商店买了相同数量的红球和白球,红球原价2元3个,白球原价3元5个。新年优惠,两种球都按1元2
个卖,结果小明少花了8元钱。问:小明共买了多少个球?
解得x=5(元)。10个瓜都在第三天买要花 5×10×80%×80%=32(元), 少花38-32=6(元)。 3.90双。
解:(88+14.8×5)÷(14.8-13)=90(双)。 4.足球32元,篮球35元。
例6 某厂向银行申请甲、乙两种贷款共40万元,每年需付利息5万元。甲种贷款年利率为12%,乙种贷款年利率为14%。该厂申请甲、乙两种贷款的金额各是多少? 解:设申请甲种贷款x万元,则申请乙种贷款(40-x)万元。根据需付利息可得方程
x×12%+(40-x)×14%=5, 0.12x+5.6-0.14x=5, 0.02x=0.6, x=30(万元)。 40-30=10(万元)。 答:申请甲种贷款30万元,乙种贷款10万元。 练习10
1.商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。这批钢笔的进货价每支多少元?
2.某种蜜瓜大量上市,这几天的价格每天都是前一天的80%。妈妈第一天买了2个,第二天买了3个,第三天买了5个,共花了38元。若这10个蜜瓜都在第三天买,则能少花多少钱?
3.商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。问:这批凉鞋共多少双?
4.体育用品商店用3000元购进50个足球和40个篮球。零售时足球加价9%,篮球加价11%,全部卖出后获利润298元。问:每个足球和篮球的进价是多少元?
5.某种商品的利润率是20%。如果进货价降低20%,售出价保持不变,那么利润率将是多少?
6.某商店到苹果产地去收购苹果,收购价为每千克1.20元。从产地到商店的距离是400千米,运费为每吨货物每运1千米收费1.50元。如果不计损耗,那么商店要想实现25%的利润率,零售价应是每千克多少元?
本书中如无特殊说明,圆周率都取π=3.14。 圆的面积=πr, 圆的周长=2πr,
2
- 17 -
解:设50个足球的进价为x元,则40个篮球的进价为(3000-x)元。根据利润可得方程 x×9%+(3000-x)×11%=298。
解得x=1600。每个足球的进价为1600÷50=32(元),每个篮球的进价为(3000-x)÷40=35(元)。 5.50%。
解:设原来进价为1元,则售出价为1×(1+20%)=1.2(元)。 现在的进价为1×(1-20%)=0.8(元),利润率为(1.2-0.8)÷0.8=50%。 6.2.25元。
解:(1.20+1.50×400÷1000)×(1+25%)=2.25(元)。 7.250本。
解:将售出的挂历分组,每组5本,其中原价的2本,减价的3本。每组可获利润18×2+8×3=60(元),推知共有3000÷60=50(组),
所以共售出5×50=250(本)。 第11讲 圆与扇形
五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
例1 如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。已知每条跑道宽1.22米,那
减价10元出售,全部售完,共获利润3000元。书店共售出这种挂历多少本? 答案与提示 练习10 1.7元。
解:(10×20-11×15)÷(20-15)=7(元)。 2.6元。
解:设第一天每个蜜瓜x元。由 2x+3x×80%+5x×80%=38,
分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起么外道的起点在内道起点前面多少米?(精确到0.01米)
点就要向前移,移的距离等于外道弯道与内道弯道的长度差。虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为 πR-πr=π(R-r)
=3.14×1.22≈3.83(米)。 即外道的起点在内道起点前面3.83米。
例2 有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?
分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360°,所以BC弧所对的圆心角是60°,6个BC弧等于直径5厘米的圆的周长。而线段AB等于塑料管的直径,由此知绳长=5×6+5×3.14=45.7(厘米)。
例3 左下图中四个圆的半径都是5厘米,求阴影部分的面积。
分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。右上图的阴影部分的面积与原图相同,等于一个正方形与4个半圆(即2个圆)的面积之和,为(2r)2
+πr2
×2=102
+3.14×50≈257(厘米2
)。
例4 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。问:这只羊能够活动的范围有多大?
分析与解:如右上图所示,羊活动的范围可以分为A,B,C三部分,
所以羊活动的范围是
- 18 -
例5 右图中阴影部分的面积是2.28厘米2
,求扇形的半径。
分析与解:阴影部分是扇形与等腰直角三角形相差的部分。
所以,扇形的半径是4厘米。
例6 右图中的圆是以O为圆心、径是10厘米的圆,求阴影部分的面积。
分析与解:解此题的基本思路是:
从这个基本思路可以看出:要想得到阴影部分S1 的面积,就必须想办法求出S2和S3的面积。
S3的面积又要用下图的基本思路求:
现在就可以求出S3的面积,进而求出阴影部分的面积了。
S2
3=S4-S5=50π-100(厘米),
S1=S2
2-S3=50π-(50π-100)=100(厘米)。 练习11
1.直角三角形ABC放在一条直线上,斜边AC长20厘米,直角边BC长10厘米。如下图所示,三角形由位置Ⅰ绕A点转动,到达位置Ⅱ,此时B,C点分别到达B1,C1点;再绕B1点转动,到达位置Ⅲ,此时A,C1点分别到达A2,C2点。求C点经C1到C2走过的路径的长。
2.下页左上图中每个小圆的半径是1厘米,阴影部分的周长是多少厘米?
3.一只狗被拴在一个边长为3米的等边三角形建筑物的墙角上(见右上图),绳长是4米,求狗所能到的地方的总面积。
5.右上图是一个400米的跑道,两头是两个半圆,每一半圆的弧长是100米,中间是一个长方形,长为100米。求两个半圆的面积之和与跑道所围成的面积之比。
6.左下图中,正方形周长是圆环周长的2倍,当圆环绕正方形无滑动地滚动一周又回到原来位置时,这个圆环转了几圈?
- 19 -
7.右上图中,圆的半径是4厘米,阴影部分的面积是14π厘米2
,求图中三角形的面积。 答案与提示 练习11 1.68厘米。
2.62.8厘米。
解:大圆直径是6厘米,小圆直径是2厘米。阴影部分周长是6π+2π×7=62.8(厘米)。 3.43.96米2
。
解:如下页右上图所示,可分为半径为4米、圆心角为300°的扇形与两个半径为1米、圆心角为120°的扇形。面积为
4.60°。
解:设∠CAB为n度,半圆ADB的半径为r。由题意有
解得n=60。 5.1∶3。
6.3圈。
7.8厘米2
。
解:圆的面积是42
π=16π(厘米2
),空白扇形面积占圆面积的1-
的等腰直角三角形,面积为4×4÷2=8(厘米2
)。 第12讲 圆柱与圆锥
这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。
例1 如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系。
这表明容器可以装8份5升水,已经装了1份,还能装水5×(8-1)=35(升)。
例2 用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。这样做成的铁桶的容积最大是多少?(精确到1厘米3
)
分析与解:铁桶有以60厘米的边为高和以40厘米的边为高两种做法。
时桶的容积是
桶的容积是 - 20 -
例3 有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3
。现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。问:瓶内现有饮料多少立方分米?
分析与解:瓶子的形状不规则,并且不知道底面的半径,似乎无法计算。比较一下正放与倒放,因为瓶子的容积不变,
装的饮料的体积不变,所以空余部分的体积应当相同。将正放与倒放的空余部分变换一下位置,可以看出饮料瓶的容积应当等于底面积不变,高为 20+5=25(厘米)
例4 皮球掉进一个盛有水的圆柱形水桶中。皮球的直径为15厘米,水桶
中后,水桶中的水面升高了多少厘米?
解:皮球的体积是
水面升高的高度是450π÷900π=0.5(厘米)。 答:水面升高了0.5厘米。
例5 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。如果将这个零件接触空气的
部分涂上防锈漆,那么一共要涂多少平方厘米?
分析与解:需要涂漆的面有圆柱体的下底面、外侧面、上面的圆环、圆孔的侧面、圆孔的底面,其中上面的圆环与圆孔的底面可以拼成一个与圆柱体的底面相同的圆。涂漆面积为
例6 将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。
解:被熔的圆锥形铝块的体积:
被熔的圆柱形铝块的体积:π×302×20=18000π(厘米3
)。 熔成的圆柱形铝块的高:(3600π+18000π)÷(π×152
) =21600π÷225π=96(厘米)。 答:熔铸成的圆柱体高96厘米。 练习12
1.右图是一顶帽子。帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。如果帽顶的半径、高与帽沿的宽都是a厘米,那么哪种颜色的布用得多?
2.一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。当圆锥体取出后,桶内水面将降低多少?
3.用直径为40厘米的圆钢锻造长300厘米、宽100厘米、厚2厘米的长方形钢板,应截取多长的一段圆钢?
容器高度的几分之几?
- 21 -
5.右上图是一个机器零件,其下部是棱长20厘米的正方体,上部是圆柱形的一半。求它的表面积与体积。 6.有两个盛满水的底面半径为10厘米、高为30厘米的圆锥形容器,将它们盛的水全部倒入一个底面半径为20厘米的圆柱形容器内,求水深。 答案与提示
练习12 1.一样多。
2.5.4厘米。
3.47.8厘米。
解:(300×100×2)÷(3.14×202)≈47.8(厘米)。
解:设水面高度是容器高度的x倍,则水面半径也是容
器底面半径的x倍。根据题意得到
5.表面积2942厘米2
,体积11140厘米3
。
6.5厘米。
第13讲 立体图形(一)
我们学过的立体图形有长方体、正方体、圆柱体、圆锥体等。这一讲将通过长方体、正方体及其组合图形,讲解有关的计数问题。
例1 左下图有多少个面?多少条棱?
分析与解:如右上图所示,可以分前、后、左、右、上、下六个方向看这个立体图形。
前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1个面。所以共有 1+1+1+2+2+1= 8(个)面。
前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱6+6+6=18(条)。
例2 右图是由18个边长为1厘米的小正方体拼成的,求它的表面积。
分析与解:如果一面一面去数,那么虽然可以得到答案,但太麻烦,而且容易出错。仔细观察会发现,这个立体的上面与下面、左面与右面、前面与后面的面积分别相等。
如上图所示,可求得表面积为 (9+7+8)×2=48(厘米2
)。
例3 右图是由22个小正方体组成的立体图形,其有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?
分析与解:正方体只可能有两种: 由1个小正方体构成的正方体,有22个;
由8个小正方体构成的2×2×2的正方体,有4个。 所以共有正方体 22+4=26(个)。
由两个小正方体组成的长方体,根据摆放的方向可分为下 图所示的上下位、左右位、前后位三种,其中上下位有13个,左右位有13个,前后位有14个,共有13+13+14=40(个)。
例4 有一个棱长为5厘米的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(见下页左上图),求这个立体图形的表面积。
- 22 -
分析与解:由于正方体中间被穿了孔,表面积不好计算。我们可以将这个立体图形看成由8个棱长为2厘米的正方体和12个棱长为1厘米的立方体粘合而成。如右上图所示,八个棱长为2厘米的正方体分别在8个顶角,12个棱长1厘米的正方体分别在12条棱的中间。由于每个小正方体都有2个面分别粘接两个较大正方体,相对于不粘接,减少了表面积4厘米2
,所以总的表面积为
(2×2×6)×8+(1×1×6)×12-4×12=216(厘米2
)。 例5 右图是由120块小立方体构成的4×5×6的立方体,如果将其表面涂成红色,那么其中一面、二面三面被涂成红色的小立方体各有多少块?
分析与解:一个长方体有8个角、12条棱、6个面,角上的8个小立方体三面涂有红色,在棱上而不在角上的小立方体两面涂有红色,在面上而不在棱上的小立方体一面涂有红色,不在面上的小立方体没有涂上红色。 根据上面的分析得到:
三面涂有红色的小立方体有8块;
两面涂有红色的小立方体,因为每条棱上要去掉两头的2块,故有[(4-2)+(5-2)+(6-2)]×4=36(块); 一面涂有红色的小立方体,因为每个面上要去掉周围一
圈的小立方体,故有
[(4-2)×(5-2)+(4-2)×(6-2)+(5-2)×(6-2)]×2= 52(块)。
一般地,当a,b,c都不小于2时,对于a×b×c的立方体: 三面涂有红色的小立方体有8块; 两面涂有红色的小立方体的块数是: [(a-2)+(b-2)+(c-2)]×4; 一面涂有红色的小立方体的块数是:
[(a-2)×(b-2)+(a-2)×(c-2)+(b-2)×(c-2)]×2;
没有被涂上红色的小立方体的块数是: (a-2)×(b-2)×(c-2)。
例6 给一个立方体的每个面分别涂上红、黄、蓝三种颜色中的一种,每种颜色涂两个面,共有多少种不同涂法?(两种涂法,经过翻动能使各种颜色的位置相同,认为是相同的涂法。)
分析与解:根据两个红色面相对还是相邻可分为两情况。
(1)两个红色面相对。此时,有蓝蓝相对和蓝蓝相邻两种涂法。
(2)两个红色面相邻。此时,除蓝蓝相对和黄黄相对两种涂法外,当蓝黄相对时,按右图摆放,底面有蓝或黄两种涂法。
所以共有6种不同涂法。
练习13
1.下页左上图有多少个面?多少条棱?
2.有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色。求被涂成红色的表面积。 3.有一个正方体,红、黄、蓝色的面各有两面。在这个正方体中,有一些顶点是三种颜色都不同的面的交点,这种顶点最多有几个?最少有几个?
4.将一个表面涂有红色的长方体分割成若干个体积为1厘米3
的小正方体,其中一点红色都没有的小立方体只有3块。求原来长方体的体积。
5.将一个5×5×5的立方体表面全部涂上红色,再将其分割成1×1×1的小立方体,取出全部至少有一个面是红色的小立方体,组成表面全部是红色的长方体。那么,可组成的长方体的体积最大是多少?
6.在边长为3分米的立方体木块的每个面的中心打一个直穿木块的洞,洞口呈边长为1分米的正方形(见左下图)。求挖洞后木块的体积及表面积。
7.把正方体的六个表面都划分成9个相等的正方形(右上图)。用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个? 答案与提示 练习13
1.9个面,21条棱。 2.56米2
。
解:4×4+(1+2+3+4)×4=56(米2
)。 3.8个;2个。
- 23 -
提示:颜色相同的面两两相对时有8个; 颜色相同的面两两相邻时有2个。 4.45厘米3
。
解:由3块小立方体构成的长方体体积为1×1×3厘米3
,故原来长方体的体积为
(1+2)×(1+2)×(3+2)=45(厘米3
)。 5.96。
解:至少有一个面是红色的小立方体有53
-33=98(个),其中三面红的8个,两面红的36个,一面红的54个。可以组成4×4×6的表面全是红色的长方体,体积是4×4×6=96。
6.20分米3;72分米3
。 7.22个。
解:一个面最多有5个方格可染成红色(见左下图)。因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格。
其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图)。因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格。
最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图)。
所以,红色方格最多有5×2+4×2+2×2=22(个)。 第14讲 立体图形(二)
本讲主要讲长方体和立方体的展开图,各个面的相对位置,提高同学们的看图能力和空间想象能力。
例1 在下面的三个图中,有一个不是右面正四面体的展开图,请将它找出来。
分析与解:观察四面体容易看出,每个顶点都是三个面的交点,即四面体的每个顶点只与三个面相连,而在图2中,“中心点”与四个面相连,所以图2不是正四面体的展开图。 例2 在下面的四个展开图中,哪一个是右图所示立方体的展开图?
分析与解:观察立方体图形,A,B,C三个面两两相邻,即三个面有一个公共顶点。再看四个展开图,图1中A与C不相邻,是相对的两个面,不合题意;图3中C与B是相对的两个面,也不合题意;图2、图4中A,B,C三个面都相邻,还需进步判别。我们看下面的两个立方体图形:
这两个图虽然相似,但是A,B,C三个面的相对位置不同。
我们可以借助一个现成工具——右手,帮助判断三个面的相对位置。伸出右手,让除大姆指外的四指从A向B弯曲,此时,左上图中C位于大姆指指向的方向,右上图中C位于大姆指指向的相反方向。所以两个图A,B,C三个面的相对位置不同。用这种方法判断三个面相对位置的方法称为右手方法。(这也是建立空间坐标系的方法)。
用右手方法很容易判断出,图4是所求的展开图。 例3 右图是一个立方体纸盒的展开图,当折叠成纸盒时,1 点与哪些点重合?
分析与解:直接想象将展开图折叠成纸盒时的情景,也可以得到答案。现在我们从另一个角度来分析。在左下图所示的立方体上观察8个顶点,其中与A点不在一个
表面上的只有B点,也就是说,沿着表面走,这两个点的路程最远。在展开图上,这两个点恰好是相邻两个小正方形所构成的长方形的对角线上的两个端点。在上页右下图中,1,2,6点都距9点最远,也就是说,1,2,6点都与9点不在一个表面上。而与9点不在一个表面上的只有一个点,所以1,2,6点是同一个点,即折叠成纸盒时,1,2,6点重合。
例4 有两块六个面上分别写着1~6的相同的数字积木,摆放如下图。在这两块积木中,相对两个面上的数字的乘积最小是多少?
- 24 -
分析与解:由两图看出,5与1,3,4,6都相邻,所以5的对面只能是2;对右上图使用右手方法,四指由5向4弯曲,大姆指指向6,将5,4,6的这个关系移到左上图,立刻得到1的对面是4,3的对面是6。 5×2=10,1×4=4,3×6=18, 相对两个面上的数字的乘积最小是4。
例5 有五颗相同的骰子放成一排(如下图),五颗骰
子底面的点数之和是多少?
分析与解:五颗骰子有三颗露出了5,并且5和1,2,3,6相邻,所以5的对面是4;2与1,3,5相邻,因为5
与4相对,故2也与4相邻,所以2的对面是6;剩下的1与3必相对。
五颗骰子底面的点数从左至右依次是4,6,3,1,4,其和为4+6+3+1+4=18。
例6 用一平面去截一个立方体,把立方体截成两个部分,截口是一个矩形的。问:这两个部分各是几个面围成的? 分析与解:截的方法有多种,所以一定要分情况讨论。截口通过1条棱是1种情况,截口通过2条棱是1种情况,截口不通过任何棱有2种情况。所以共有下图所示的四种可能。
练习14
1.在下列各图中,哪些是正方体的展开图?
2.将左下图沿虚线折成一个立方体,它的相交于一个顶点处的三个面上的数字之和的最大值是多少?最小值是多少?
3.有四枚相同的骰子,展开图如右上图(1)。问:在右上图(2)中,从上往下数第二、三、四枚骰子的上顶面的点数之和是多少?
4.将一个立方体纸盒沿棱剪开,使之展开成右图所示的图形,一共要剪开几条棱?
5.左下图是图(1)(2)(3)中哪个正方体的展开图?
6.在一个立方体的六个面上分别写有A,B,C,D,E五个字母,其中两个面写有相同的字母。下图是它的三个视图。问:哪个字母被写了两遍?
7.右图中第1格内放着一个立方体木块,木块六个面上分别写着A,B,C,D,E,F六个字母,其中A与D,B与E,C与F相对。如果将木块沿着图中方格滚动,那么当木块滚动到第21个格时,木块向上的面写的是哪个字母?
- 25 -
答案与提示 练习14
1.(2)(3)(6)(8)(9)(12)(14)(16)(17)(19)(20)共11个。 2.13;8。
提示:最大是6+4+3=13;最小是1+2+5=8。 3.12。
提示:用右手方法可得,第二、三、四枚骰子上顶面的点数依次为3,6和1。 4.7条。
提示:每剪开一条棱,展开图的周长就会增加2条棱长。
展开图的周长是14条棱长,所以剪开了14÷2=7(条)棱。 注:沿棱剪,无论剪成哪种连通的展开图,都要剪开7条棱。也就是说,无论哪种展开图,周长都等于14条棱长。 5.图(1)。
提示:图(2)正面有两个相连的阴影的正方形,展开图中找不到,所以不是图(2);图(3)正面与右侧面各有两个阴影正方形,这四个阴影正方形没有相邻的边,而展开
图中有两个阴影正方形的面,折叠后有两个阴影正方形相邻,所以不是图(3)。 6.C。
解:假设C只写了一遍。因为C与A,B,D,E都相邻,所以被写了两遍的字母在C的对面。与C相邻的四个字母的相互位置是确定的。图(2)(3)都有D,C,用右手方法判断,图(2)与图(3)不符。这个矛盾的出现,是因为假
设C只写了一遍,所以C写了两遍。 7.A。
提示:木块沿直线滚动4格,与原来的状态相同,所以木块到第5,9,13,17,21格时,与在第1格的状态相同。 第15讲 棋盘的覆盖
同学们会下棋吗?下棋就要有棋盘,下面是中国象棋的棋盘(图1),围棋棋盘(图2)和国际象棋棋盘(图3)。
用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题。实际上,这里并不要求一定是某种棋盘,只要是有关覆盖若干行、若干列的方格网的问题,就是棋盘的覆盖问题。
棋盘的覆盖问题可以分为两类:一是能不能覆盖的问题,二是有多少种不同的覆盖方法问题。
例1 要不重叠地刚好覆盖住一个正方形,最少要用多少个右图所示的图形?
分析与解:因为图形由3个小方格构成,所以要拼成的正方形内所含的小方格数应是3的倍数,从而正方形的边长应是3的倍数。经试验,不可能拼成边长为3的正方形。所以拼成的正方形的边长最少是6(见右图),需要用题目所示的图形
36÷3= 12(个)。
分析与解:在五年级学习“奇偶性”时已经讲过类似问题。左上图共有34个小方格,17个1×2的卡片也有34个小方格,好象能覆盖住。我们将左上图黑白相间染色,得到右上图。细心观察会发现,右上图中黑格有16个,白格有18个,而1×2的卡片每次只能盖住一个黑格与一个白格,所以17个1×2的卡片应当盖住黑、白格各17个,不可能盖住左上图。
例3 下图的七种图形都是由4个相同的小方格组成的。现在要用这些图形拼成一个4×7的长方形(可以重复使用某些图形),那么,最多可以用上几种不同的图形?
分析与解:先从简单的情形开始考虑。显然,只用1种图形是可以的,例如用7个(7);用2种图形也没问题,例如用1个(7),6个(1)。经试验,用6种图形也可以拼成4×7的长方形(见下图)。
- 26 -
能否将7种图形都用上呢?7个图形共有4×7=28(个)小方格,从小方格的数量看,如果每种图形用1个,那么有可能拼成4×7的长方形。但事实上却拼不成。为了说明,我们将4×7的长方形黑、白相间染色(见右图),图中黑、白格各有14个。在7种图形中,除第(2)种外,每种图形都覆盖黑、白格各2个,共覆盖黑、白格各12个,还剩下黑、白格各2个。第(2)种图形只能覆盖3个黑格1个白格或3个白格1个黑格,因此不可能覆盖住另6种图形覆盖后剩下的2个黑格2个白格。
综上所述,要拼成 4×7的长方形,最多能用上 6种图形。 例4 用1×1,2×2,3×3的小正方形拼成一个11×11的大正方形,最少要用1×1的正方形多少个?
分析与解:用3个2×2正方形和2个3×3正方形可以拼成1个5×6的长方形(见左下图)。用4个5×6的长方形和1 个 1×1的正方形可以拼成 1个11×11的大正形(见右下图)。
上面说明用1个1×1的正方形和若干2×2,3×3的正方形可以拼成 11×11的大正方形。那么,不用1×1的正方形,只用2×2,3×3的正方形可以拼成11×11的正方形吗? 将11×11的方格网每隔两行染黑一行(见下页右上
图)。将2×2或3×3的正方形沿格线放置在任何位置,都将覆盖住偶数个白格,所以无论放置多少个2×2或3×3的正方形,覆盖住的白格数量总是偶数个。但是,右图中的白格有11×7=77(个),是奇数,矛盾。由此得到,不用1×1的正方形不可能拼成11×11的正方形。
综上所述,要拼成11×11的正方形,至少要用1个1×1的小正方形。
例5 用七个1×2的小长方形覆盖下图,共有多少种不同的覆盖方法?
分析与解:盲目无章的试验,很难搞清楚。我们采用分类讨论的方法。
- 27 -
5.有若干个边长为1、边长为2、边长为3的小正方形,从中选出一些拼成一个边长为4的大正方形,共有多少种不同
如下图所示,盖住A所在的小格只有两种情况,其中左下图中①②两个小长方形只能如图覆盖,其余部分有4种覆盖方法:右下图中①②③三个小长方形只能如图覆盖,其余部分有3种覆盖方法。所以,共有7种不同覆盖方法。 例6 有许多边长为1厘米、2厘米、3厘米的正方形硬纸片。用这些硬纸片拼成一个长5厘米、宽3厘米的长方形的纸板,共有多少种不同的拼法?(通过旋转及翻转能相互得到的拼法认为是相同的拼法)
解:有一个边长3厘米纸片有如下3种拼法:
7.能不能用9个1×4的长方形卡片拼成一个6×6的正方形?
答案与提示 练习15
有两个边长2厘米纸片的有如下4种拼法:
1.3个。提示:左下图是一种放法。
拼法?(只要选择的各种小正方形的数目相同就算相同的拼法)
有一个边长2厘米及11个边长1厘米纸片的有2种拼法,边长全是1 厘米纸片的有1种拼法。
2.图(2)。
提示:图(1)的小方格数不是3的倍数;图(3)的小方格数是3的倍数但拼不成;图(2)的拼法见右上图。 3.不能。
提示:右图中黑、白格各18个,每张卡片盖住的黑格
共有不同的拼法3+4+2+1=10(种)。 答:共有10种不同的拼法。 练习15
在不重叠的情形下,不能再在正方形中多放一个这样的卡片?(要求卡片的边缘与格线重合)
数是奇数,9张卡片盖住的黑格数之和仍是奇数,不可能盖住18个黑格。
4.25种。
形如图(A)(B)(C)(D)的依次有3,10,6,6种。
5.6种。
解:用小正方形拼成边长为4的大正方形有6种情形: (1)1个3×3,7个1×1;(2)1个2×2,12个1×1; (3)2个2×2,8个1×1;(4)3个2×2,4个1×1; (5)4个2×2;(6)16个1×1。 6.5种。
4.小明有8张连在一起的电影票(如右图),他自己要留下4张连在一起的票,其余的送给别人。他留下的四张票可以有多少种不同情况?
提示:盖住A有下图所示的5种方法,其中左下图所示的3种都无法覆盖;下中图中,①放好后,左下方和右上方各有2种放法,共有4种覆盖方法;右下图只有1种覆盖方法。
7.不能。
提示:用1,2,3,4对6×6棋盘中的小方格编号(见右图)。一个1×4的矩形一次只能覆盖1,2,3,4号各一个,而1,2,3,4号数目不等,分别有9,10,9,8个。
第16讲 找规律
同学们从三年级开始,就陆续接触过许多“找规律”的题目,例如发现图形、数字或数表的变化规律,发现数列的变化规律,发现周期变化规律等等。这一讲的内容是通过发现某一问题的规律,推导出该问题的计算公式。 例1 求99边形的内角和。
分析与解:三角形的内角和等于180°,可是99边形的内角和怎样求呢?我们把问题简化一下,先求四边形、五边形、六边形……的内角和,找一找其中的规律。
如上图所示,将四边形ABCD分成两个三角形,每个三角形的内角和等于180°,所以四边形的内角和等于180°×2= 360°;同理,将五边形ABCDE分成三个三角形,得到五边形的内角和等于180°×3=540°;将六边形ABCDEF分成四个三角形,得到六边形的内角和等于180°×4=720°。 通过上面的图形及分析可以发现,多边形被分成的三角形数,等于边数减2。由此得到多边形的内角和公式: n边形的内角和=180°×(n-2)(n≥3)。 有了这个公式,再求99边形的内角和就太容易了。 99边形的内角和=180°×(99-2)=17460°。 例2 四边形内有10个点,以四边形的4个顶点和这10个点为三角形的顶点,最多能剪出多少个小三角形? 分析与解:在10个点中任取一点A,连结A与四边形的四个顶点,构成4个三角形。再在剩下的9个点中任取一点B。如果B在某个三角形中,那么连结B与B所在的三角形的三个顶点,此时三角形总数增加2个(见左下图)。如
- 28 -
果B在某两个三角形的公共边上,那么连结B与B所
在边相对的顶点,此时三角形总数也是增加2个(见右下图)。
类似地,每增加一个点增加2个三角形。 所以,共可剪出三角形 4+ 2× 9= 22(个)。 如果将例2的“10个点”改为n个点,其它条件不变,那么由以上的分析可知,最多能剪出三角形 4+2×(n-1)=2n+2=2×(n+1)(个)。 同学们都知道圆柱体,如果将圆柱体的底面换成三角形,那么便得到了三棱柱(左下图);同理可以得到四棱柱(下中图),五棱柱(右下图)。
如果底面是正三角形、正四边形、正五边形……那么相应的柱体就是正三棱柱、正四棱柱、正五棱柱…… 例3 n棱柱有多少条棱?如果将不相交的两条棱称为一对,那么n棱柱共有多少对不相交的棱?
分析与解:n棱柱的底面和顶面都是n边形,每个n边形有n个顶点,所以n棱柱共有2n个顶点。观察三棱柱、四棱柱、五棱柱的图形,可以看出,每个顶点都与三条棱相连,而每条棱连接 2个顶点,所以n棱柱共有棱 2n×3÷2=3n(条)。
进一步观察可以发现,n棱柱中每条棱都与4条棱相交,与其余的3n-4-1 =(3n-5)条棱不相交。共有3n条棱,所
以不相交的棱有 3n×(3n- 5)(条),因为不相交的棱是成对出现的,各计算一遍就重复了一遍,所以不相交的棱共有 3n×(3n-5)÷2(对)。
例4 用四条直线最多能将一个圆分成几块?用100条直线呢?
分析与解:4条直线时,我们可以试着画,100条直线就不可能再画了,所以必须寻找到规律。如下图所示,一个圆是1块;1条直线将圆分为2块,即增加了1块;2条直线时,当2条直线不相交时,增加了1块,当2条直线相交时,增加了2块。由此看出,要想分成的块尽量多,应当使后画的直线尽量与前面已画的直线相交。
再画第3条直线时,应当与前面2条直线都相交,这样又增加了3块(见左下图);画第4条直线时,应当与前面
3条直线都相交,这样又增加了4块(见右下图)。所以4条直线最多将一个圆分成1+1+2+3+4=11(块)。
由上面的分析可以看出,画第n条直线时应当与前面已画的(n—1)条直线都相交,此时将增加n块。因为一开始的圆算1块,所以n条直线最多将圆分成 1+(1+2+3+…+n) =1+n(n+1)÷2(块)。 当n=100时,可分成
1+100×(100+1)÷2=5051(块)。
例5 用3个三角形最多可以把平面分成几部分?10个三角形呢?
分析与解:平面本身是1部分。一个三角形将平面分成三角形内、外2部分,即增加了1部分。两个三角形不相交时将平面分成3部分,相交时,交点越多分成的部分越多(见下图)。
由上图看出,新增加的部分数与增加的交点数相同。所以,再画第3个三角形时,应使每条边的交点尽量多。对于每个三角形,因为1条直线最多与三角形的两条边相交,所以第3个三角形的每条边最多与前面2个三角形的各两条边相交,共可产生3×(2×2)= 12(个)交点,即增加12部分。因此, 3个三角形最多可以把平面分成 1+1+6+12= 20(部分)。
由上面的分析,当画第n(n≥2)个三角形时,每条边最多与前面已画的(n—1)个三角形的各两条边相交,共可产生交点
3×[(n—l)×2]=6(n—1)(个),能新增加6(n-1)部分。因为1个三角形时有2部分,所以n个三角形最多将平面分成的部分数是
2+6×[1+2+…+(n—1)]
当n=10时,可分成2+3×10×(10—1)=272(部分)。 练习16
1.求12边形的内角和。
2.五边形内有8个点。以五边形的5个顶点和这8个点为三角形的顶点,最多能剪出多少个小三角形? 3.已知n棱柱有14个顶点,那么,它有多少条棱? 4.n条直线最多有多少个交点?
- 29 -
5.6条直线与2个圆最多形成多少个交点? 6.两个四边形最多把平面分成几部分? 答案与提示练习16 1.1800°。 2.19个。
提示:与例2类似可得5+2×(8-1)=19(个)。 3.21条棱。提示:n棱柱有2n个顶点,3n条棱。
4.n(n-1)÷2。
解:1+2+3+…+(n-1)=n(n-1)÷2。 5.41个。
解:6条直线有交点6×(6-1)÷2=15(个),每条直线与两个圆各有2个交点,两个圆之间有2个交点,共有交点15+6×4+2=41(个)。 6.10部分。
提示:见右图。与例5类似,当画第n(n≥2)个四边形时,每条边应与已画的(n-1)个四边形的各2条边相交,共可产生交点
4×[(n-1)×2]=8(n-1)(个),新增加8(n-1)部分。因为1个四边形有2部分,所以n个四边形最多将平面分成2+8×[1+2+…+(n-1)]=2+4n(n-1)(部分)。
第17讲 操作问题
所谓操作问题,实际上是对某个事物按一定要求进行的一种变换,这种变换可以具体执行。例如,对任意一个自然数,是奇数就加1,是偶数就除以2。这就是一次操作,是可以具体执行的。操作问题往往是求连续进行这种操作后可能得到的结果。
例1 对于任意一个自然数 n,当 n为奇数时,加上121;当n为偶数时,除以2。这算一次操作。现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么? 讨论:同学们碰到这种题,可能会“具体操作”一下,得到
这个过程还可以继续下去,虽然一直没有得到100,但
也不能肯定得不到100。当然,连续操作下去会发现,数字一旦重复出现后,这一过程就进入循环,这时就可以肯定不会出现100。因为这一过程很长,所以这不是好方法。 解:因为231和121都是11的倍数,2不是11的倍数,所以在操作过程中产生的数也应当是11的倍数。100不是11的倍数,所以不可能出现。
由例1看出,操作问题不要一味地去“操作”,而要找到解决问题的窍门。
例2 对任意两个不同的自然数,将其中较大的数换成这两数之差,称为一次变换。如对18和42可进行这样的连续变换:
18, 42—→ 18, 24—→ 18, 6—→ 12, 6—→ 6, 6。直到两数相同为止。问:对12345和54321进行这样的连续变换,最后得到的两个相同的数是几?
分析与解:如果两个数的最大公约数是a,那么这两个数之差与这两个数中的任何一个的最大公约数也是a。因此在每次变换的过程中,所得两数的最大公约数始终不变,所以最后得到的两个相同的数就是它们的最大公约数。因为12345和54321的最大公约数是3,所以最后得到的两个相同的数是3。
注:这个变换的过程实际上就是求两数最大公约数的辗转相除法。
例3 右图是一个圆盘,中心轴固定在黑板上。开始时,圆盘上每个数字所对应的黑板处均写着0。然后转动圆盘,每次可以转动90°的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上。问:经过若干次后,黑板上的四个数是否可能都是999?
解:不可能。因为每次加上的数之和是 1+2+3+4=10,所以黑板上的四个数之和永远是10的整数倍。 999×4=3996,不是10的倍数,所以黑板上的四个数不可都是999。 例4 在左下图中,对任意相邻的上下或左右两格中的数字同时加1或减1,这算作一次操作。经过若干次操作后,左下图变为右下图。问:右下图中A格中的数字是几?
分析与解:每次操作都是在相邻的两格,我们将相邻的两格染上不同的颜色(见右图)。因为每次操作总是一个黑格与一个白格的数字同时加1或减1,所以所有黑格内的数字之和与所有白格内的数字之和的差保持不变。因为原题左图的这个差是13,所以原题右图的这个差也是13。由(A+12)-12=13解得 A=13。
例5 将1~10十个数随意排成一排。如果相邻两个数中,前面的数大于后面的数,那么就交换它们的位置。如此操作下去,直到前面的数都小于后面的数为止。当1~10十个数如下排列时,需交换多少次? 8,5,2,6,10,7,9,1,4,3。
- 30 -
分析与解:为了不打乱仗,我们按照一定的方法来交
换。例如,从最大的数10开始交换,将10交换到它应在的位置后,再依次对9,8,7,…实施交换,直至按从小到大排列为止。
因为10后面有5个比它小的数,所以对10连续交换5次,10到了最右边,而其它各数的前后顺序没有改变;再看9,9后面有3个比它小的数,需交换3次,9到了右边第二位,排在10前面;再依次对8,7,6,…实施这样的交换。 10后面有5个比它小的数,我们说10有5个逆序;9后面有3个比它小的数,我们说9有3个逆序;类似地,8,7,6,5,4,3,2依次有7,3,3,4,1,0,1个逆序。因为每个数要交换的次数就是它的逆序数,所以需交换 5+3+7+3+3+4+1+0+1= 27(次)。
例6右图是一个5×6的方格盘。先将其中的任意5个方格染黑。然后按以下规则继续染色:
如果某个格至少与两个黑格都有公共边,那么就将这个格染黑。
这样操作下去,能否将整个方格盘都染成黑色?
分析与解:以一个方格的边长为1,开始时5个黑格的总周长不会超过4×5=20。以后每染一个格,因为这个格至少与两个黑格都有公共边,所以染黑后所有黑格的总周长不
会增加。左下图中,A与4个黑格有公共边,染黑后,黑格的总周长将减少4;下中图中,A与3个黑格有公共边,染黑后,黑格的总周长将减少2;右下图中,A与2个黑格有公共边,染黑后,黑格的总周长不变。也就是说按照这种方法染色,所有黑格的总周长永远不会超过20,而5×6方格盘的周长是 22,所以不能将整个方格盘染成黑色。
练习17
1.黑板上写着1~15共15个数,每次任意擦去两个数,再写上这两个数的和减1。例如,擦掉5和11,要写上15。经过若干次后,黑板上就会只剩下一个数,这个数是几? 2.在黑板上任意写一个自然数,然后用与这个自然数互质并且大于1的最小自然数替换这个数,称为一次操作。问:最多经过多少次操作,黑板上就会出现2?
3.口袋里装有101张小纸片,上面分别写着1~101。每次从袋中任意摸出5张小纸片,然后算出这5张小纸片上各数的和,再将这个和的后两位数写在一张新纸片上放入袋中。经过若干次这样的操作后,袋中还剩下一张纸片,这张纸片上的数是几?
4.在一个圆上标出一些数:第一次先把圆周二等分,在两个分点分别标上2和4。第二次把两段半圆弧分别二等分,
在分点标上相邻两分点两数的平均数3(见右图)。第三次把四段弧再分别二等分,在四个分点分别标上相邻两分点两数的平均数。如此下去,当第8次标完后,圆周上所有标出的数的总和是多少?
5.六个盘子中各放有一块糖,每次从任选的两个盘子中各取一块放入另一个盘子中,这样至少要做多少次,才能把所有的糖都集中到一个盘子中?
6.将1~10十个数随意排成一排。如果相邻两个数中,前面的大于后面的,那么就交换它们的位置。如此操作下去,直到前面的数都小于后面的数为止。已知10在这列数的第4位,那么最少要交换多少次?最多要交换多少次? 7.在右图的方格表中,每次给同一行或同一列的两个数加1,经过若干次后,能否使表中的四个数同时都是5的倍数?为什么?
答案与提示 练习17 1.106。
提示:操作一次,黑板上的数减少1个,数字总和减少1。经过14次操作,剩下的一个数是 (1+2+…+15)-14=106。 2.2次。
提示:若写的是奇数,则只需1次操作;若写的是大于2的偶数,则经过1次操作变为奇数,再操作1次变为2。 3.51。
提示:口袋中所有纸片的数字之和的后两位数保持不变。 4.758。
提示:第一次标完数后,以后每次标上的数字之和都等于上次圆周上的所有数字之和,即每次标完数后,圆周上的所有数字之和是原来的2倍。第8次标完后的总和是 6×28-1
=6×27
=768。 5.4次。
提示:将各次操作表示如下:
(1,1,1,1,1,1)—→(0,3,1,1,1,0)—→(2,2,1,1,0,0)—→(4,1,1,0,0,0)—→(6,0,0,0,0,0)。 6.6次;42次。
提示:与例5类似,当十个数按1,2,3,10,4,5,6,7,8,9排列时,交换的次数最少,要交换6次;当十个数按9,8,7,10,6,5,4,3,2,1排列时,交换的次数最多,要交换42次。 7.不能。
- 31 -
解:要使第一列的两个数1,4都变成5的倍数,第一行应比第二行多变(3+5n)次;要使第二列的两个数2,3都变成5的倍数,第一行应比第二行多变(1+5m)次。 因为(3+5n)除以5余3,(1+5m)除以5余1,所以上述两个结论矛盾,不能同时实现。 注:m,n可以是0或负数。 第18讲 取整计算
任何一个小数(或分数)都可以分成整数和纯小数(或
真分数)两部分。在数学计算中,有时会略去数字的小数部分,而只取它的整数部分。比如,做
得到正确答案是2件。为了方便,我们引进符号[ ]: [a]表示不超过数a的最大整数,称为a的整数部分。
与+,-,×,÷符号一样,符号[]也是一种运算,叫取整运算。显然,取整运算具有以下性质:对于任意的数字a,b,
(1)[a]≤a;
(2)a≤[a]+1;
(3)[a]+[b]≤[a+b]; (4)若a≤b,则[a]≤[b];
( 5)若n是整数,则[ a+n]=[a]+n。 同学们可以自己举些例子来验证这五条性质。 例 1计算[13÷[π]×4]。 解:[13÷[π]×4] [13÷3×4]
例2 1000以内有多少个数能被7整除?
分析与解:同学们在三年级“包含与排除”一节中就见过这类题目,现在我们用取整运算来重新计算。1000以内能被7整除的数,从1开始每7个数有1个,所以共有
例3 求1~1000中能被2或3或5整除的数的个数。
与分母约分后,分母还剩两个因子3。 所以,约简后的分母是9。
- 32 -
注意:在上面的计算中,并不需要真的这样计算。因为
式中的分子都是1000,分母依次是3,3,3,…后面一个是前面一个的3倍,所以在取整运算中,只需口算:1000除以3等于333(小数部分舍掉,下同),333除以3等于
都被重复计算了,应当减去。另外,同时能被2,3,5整除的数,开始被加了三遍,后来又被减了三遍,所以还应当补上
111,111除以3等于37,37除以3等于12,12除以3等于4,4除以3等于1。于是得到
333+111+37+12+4+1=498(个)。
在上面的运算中,当得数小于3时就自然停止,事先不必求出分母最大是3的几次方。
例6 在下面的等式中,M,n都是自然数,n最大可以取几? 1×2×3×…×99×100=12n×M。
分析与解:因为12=2×3,所以只要求出等号左边有多少个因子2、多少个因子3,这些因子2和因子3能“凑”
例4 1000以内有多少个数既不是3也不是7的倍数? 分析:在1~1000中,除去“既不是3也不是7的倍数”的数,剩下的数或者是3的倍数,或者是7的倍数。用例3的方法可求出这部分数的个数。1000与这部分数的个数之差即为所求。
=50+25+12+6+3+1=97(个);
出多少个12,问题就解决了。与例5类似,可求出等号左边因子2和因子3分别有
2
2
3
因为97个因子2与48个因子3最多可以“凑”出48个12,所以n最大是48。
例5求下式约简后的分母:
2.请给出三个数a,b,c,使满足:
[a]+[b]=[a+b],[a]+[c]<[a+c]。
分析与解:因为 6=2×3,所以分母中的500个6相乘,等于2×3。只要我们求出分子中有多少个因子2、多少个因子3,就可以与分母中的因子2和因子3约分了。因为分子的1000个因数中有500个偶数,所以至少有500个因子2,这样分母中的500个因子2将被全部约掉。分子中有因子3的数,有的只有1个因子3,有的有2个因子3,等等。因为
3=729<1000<3=2187,所以分子的每个因数最多有6个因子3。
7.求下式约简后的分母:
6
7
500
500
练习18
3.在1000~2000中,有多少个数是8的倍数? 4.500以内有多少个数能被3或者能被5整除? 5.在 10000以内,既不是 2也不是 3也不是 5的倍数的数有多少个?
6.K是自然数,且下式是整数,求K的最大值。
答案与提示 练习18 1.55。
2.例如,a=1.4,b=1.5,c=1.6。 3.126个。
4.233个。
5.2666个。
=5000+3333+2000-1666-1000-666+333=7334, 10000-7334=2666(个)。 6.215。
解:1~699中因子7的个数为
1~2000中因子7的个数为
K=330-115=215。 7.72。
解:1~100中因子2的个数为
因子3的个数为
分子中有97个因子2和48个因子3,而分母中有100个因子2和50个因子3,所以约简后的分母有3个因子2和2个因子3,是23
×32
=72。 第19讲 近似值与估算
在计数、度量和计算过程中,得到和实际情况丝毫不差的数值叫做准确数。但在大多数情况下,得到的是与实际情况相近的、有一定误差的数,这类近似地表示一个量的准确值的数叫做这个量的近似数或近似值。例如,测量身高或体重,得到的就是近似数。又如,统计全国的人口数,由于地域广人口多,统计的时间长及统计期间人口的出生与死亡,得到的也是近似数。
用位数较少的近似值代替位数较多的数时,要有一定的取舍法则。要保留的数位右边的所有数叫做尾数,取舍尾数的主要方法有:
(1)四舍五入法。四舍,就是当尾数最高位上的数字是不大于4的数时,就把尾数舍去;五入,就是当尾数最高位上的数字是不小于5的数时,把尾数舍去后,在它的前一位加1。例如:7.39…,截取到千分位的近似值是7.396,截取到百分位的近似值是7.40。
(2)去尾法。把尾数全部舍去。例如:7.39…,截取到千分位的近似值是7.396,截取到百分位的近似值是7.39。
- 33 -
(3)收尾法(进一法)。把尾数舍去后,在它的
前一位加上1。例如:7.39…,截取到千分位的近似值是7.397,截取到百分位的近似值是7.40。 表示近似值近似的程度,叫做近似数的精确度。
在上面的三种方法中,最常用的是四舍五入法。一般地,用四舍五入法截得的近似数,截到哪一位,就说精确到哪一位。 例1有13个自然数,它们的平均值精确到小数点后一位数是26.9。那么,精确到小数点后两位数是多少?
分析与解:13个自然数之和必然是整数,因为此和不是13的整数倍,所以平均值是小数。由题意知,26.85≤平均值<26.95,所以13个数之和必然不小于26.85的13倍,而小于26.95的13倍。 26.85×13=349.05, 26.95×13=350.35。
因为在349.05与350.35之间只有一个整数350,所以
13个数之和是350。 350÷13=26.923…
当精确到小数点后两位数时,是26.92。
例1中所用的方法可称为“放缩法”。对于一个数,如例1中13个数的平均数,如果不知道它的确切数值,那么可以根据题设条件,适当地将它放大或缩小,再进一步确定
它的具体数值。当然,这里的“放大”与“缩小”都要适当,如果放得过大或缩得过小,则可能无法确定正确值,这时“放缩”就失败了。
分析与解:真正计算出这个算式,再取近似值,几乎是不可能的。因为题目要求精确到小数点后三位数,所以只要能大概知道小数点后四位数的情况就可以了。
若分子缩小、分母扩大,则分数变小;若分子扩大、分母缩小,则分数变大。利用这一点,使用放缩法就能估计算式的值的范围。分子、分母各取两位小数,有
…由0.2037… <原式<0.2549…,无法确定原式小数点后三位的近似值。缩放的范围太大,应使范围缩小些。 分子、分母各取三位小数,有
仍然无法确定,还应使范围缩小。 分子、分母各取四位小数,有
由 0.2395…<原式<0.2398…知,原式小数点后三位肯定是“239”,第四位在5和8之间。按四舍五入法则,精确到小数点后三位数的近似值是0.240。
由例2进一步看出“放缩”适度的重要性。取的位数少了,范围太大,无法确定;取的位数多了,例如取十位小数,计算量太大,繁琐且没有必要。 例3 求下式的整数部分: 分析与解:对分母使用放缩法,有
所以199.1<原式<200,原式整数部分是199。 例4 求下式的整数部分:
1.22×8.03+1.23×8.02+1.24×8.01。
分析与解:在1.22×8.03, 1.23×8.02与1.24×8.01中,各式的两个因数之和都相等。当两个数的和一定时,这两个数越接近,这两个数的乘积越大,于是得到 1.22×8.03<1.23×8.02<1.24×8.01。 因为1.22×8.03>1.22×8,所以 原式>1.22×8×3=29.28; 因为 1.24×8.01<1.25×8,所以 原式<1.25×8×3=30。
由29.28<原式<30知,原式的整数部分是29。 前面讲过,四舍五入的方法是取近似值最常用的方法。但在实际问题中,一定要注意灵活运用,特别要注意有些问题不宜使用四舍五入的原则。
例5某人执行爆破任务时,点燃导火线后往70米开外的安全地带奔跑,其奔跑的速度为7米/秒。已知导火线燃烧的速度是0.112米/秒。问:导火线的长度至少多长才能确保安全?(精确到0.1米) 解:0.112×(70÷5) =0.112×10 =1.12≈1.2(米) 答:导火线至少长1.2米。
此题采用收尾法。如果你的答案是1.1米,执行任务的人还没跑到安全地带,炸药就被引爆,那可就太危险了。 例6某飞机所载油料最多只能在空中连续飞行4时,飞去时速度为900千米/时,飞回时速度为850千米/时。问:该飞机最远飞出多少千米就应返回?(精确到1千米) 解:设该飞机最远能飞出x千米,依题意有
- 34 -
答:飞机最远飞出1748千米就应返回。 此题采用去尾法。如果按照四舍五入的原则,那么得到x≈1749,当飞机真的飞出1749千米再返回时,恐怕在快着陆的瞬间就要机毁人亡了。 练习19
1.有17个自然数,它们的平均值精确到小数点后一位数是21.3,那么精确到小数点后三位数是多少? 2.老师在黑板上写了14个自然数,让小明计算平均数(保
留三位小数),小明计算出的答案是16.387。老师说小数点后第二位错了,其它的数字都对。正确答案应该是多少? 3.计算下式的精确到小数点后三位数的近似值:
1357902468÷82097531。 4.求下式的整数部分:
11×22+12×33+13×44+…+17×88。 5.求下式的整数部分:
2. 45×4.05+2.46×4.04+2.47×4.03+ 2. 48×4.02+2.49×4.01。
6.为了修水电站,需要在极短的时间内向河道中投入300米3
石料,以截断河流。如果每台大型运输车一次可运石料17.5米3
,那么为保障一次截流成功,至少需多少台运输车? 7.一条单线铁路全长240千米,每隔20千米有一个会车站(当两车相遇时,一车停在会车站内,另一车可通过)。甲、乙两列火车同时从两端出发,甲车每小时行75千米,乙车每小时行45千米。为保证快车正点运行,慢车应给快车让路。为使等候时间尽量短,乙车应在出发后的第几个会车站等候甲车通过? 答案与提示练习19 1.21.294。
提示:21.25×17=361.25,21.35×17=362.95。由361.25≤17个数之和<362.95得到,17个数之和是362。 2.16.357。
提示:16.3×14=228.2,16.4×14=229.6。由228.2≤14个数之和<229.6得到,14个数之和是229。 3.0.157。
4.1。
提示:设原分式的分母为A。A=11×(11×2+12×3+13×4+…+17×8)。因为A>11×11×(2+3+4+…+8)=11×11×35,所以
因为A<11×17×(2+3+4+…+8)=11×17×35,所以
由上可知,原式的整数部分是1。 5.49。
提示:与例4类似。因为5个乘积都小于2.5×4,都大于2.45×4,所以2.45×4×5=49<原式<2.5×4×5=50。 6.18台。
提示:采用收尾法。 7.第4个。
提示:如不等候,则两车相撞时乙车行了
用去尾法得到90÷20=4.5≈4。 第20讲 数值代入法
有一些看起来缺少条件的题目,按常规解法似乎无法求解,但是仔细分析发现,题中只涉及几个存在着倍数或比例关系的数量,而题目中缺少的条件,对于答案并无影响,这时就可以采用“数值代入法”,即对于题目中“缺少”的条件,假设一个数代入进去(当然假设的这个数应尽量方便计算),然后求出解答。
例1 足球赛门票15元一张,降价后观众增加一倍,收入增加五分之一。问:一张门票降价多少元?
分析与解:初看似乎缺少观众人数这个条件,实际上观众人数与答案无关。因为降价前后观众人数存在倍数关系,收入也存在比例关系,所以可以使用数值代入法。我们随意假设观众人数,为了方便,假设原来只有一个观众。
,则降价后每张票价为9元,每张票降价15-9=6(元)。 例2 某幼儿园中班的小朋友平均身高115厘米,其中男孩人数比女孩人
分析与解:题中没有男、女孩的人数,我们可以假设女孩有5人,则男孩有6人。这时总身高为: 115×(5+6)=1265(厘米)。
例3 甲、乙分别由A,B两地同时出发,甲、乙两人步行的速度比是7∶5。如果相向而行,那么0.5时后相遇;如果按从A到B的方向同向而行,那么甲追上乙需要多少小时? 分析与解:设甲、乙的速度分别为7千米/时和5千米/时,则A,B两地相距(7+5)×0.5=6(千米)。
- 35 -
同向而行,甲追上乙需要65÷(7—5)=3(时)。 需要说明的是,A,B两地的距离并不一定是6千米,6千米是根据假设甲、乙的速度分别为7千米/时和5千米/时而计算出来的。假设不同的速度,会得出不同的距离,因为假设的速度与计算出的距离成正比,所求的时间是“距离÷速度差”,所以不影响结论的正确性。
例4五年级三个班的人数相等,一班的男生人数与二班女生人数相等,三
几?
分析:由“三个班人数相等,一班男生数与二班女生数相等”知,一班女生数等于二班男生数,因此一、二班男生人数的和
以及一、二班女生人数的和给三班的男生人数设一个具体数值,那么就可依次求出全部男生人数以及一、二班男生人数的和(即每班人数),问题就迎刃而解了。
个班
在上面的例题中,将假设的数值代入解题过程,便得到正确答案。对于这类题目,假设不同的数值,都会得到相同的答案。还有一类题目,也可以使用数值代入法,但因为题中涉及的量不仅仅是倍数关系,所以假设的数不同,结果就不同,需要通过比较所得结果与已知结果来修正假设的数,从而得出正确解答。
例5 用绳子测量井深,把绳三折来量,井外余4米;把绳四折来量,井外余1米。求井深和绳长。
分析与解:由题意可知,三折后的绳子比四折后的绳子多4-1=3(米)。假设这根绳长12米,那么三折后的绳长
比四折后的绳长长12÷3-12÷
井深=36÷4-1=8(米)。
例6 甲车从A地到B地需行6时,乙车从B地到A地需行10时。现在甲、乙两车分别从A,B两地同时出发,相向而行,相遇时甲车比乙车多行90千米,求A,B两地的距离。
分析与解:假设A,B相距30千米(既是6的倍数又是10的倍数),那么
甲车的速度为 30÷6=5(千米/时), 乙车的速度为 30÷10=3(千米/时), 两车相遇需 30÷(5+3)=3.75(时), 相遇时甲车比乙车多行
(5-3)×3.75=2×3.75=7.5(千米)。
题目条件“甲车比乙车多行90千米”是7.5千米的90÷7.5= 12(倍),说明A,B两地距离是假设的30千米的12倍,即
30×12=360(千米)。 练习20
1.上山的速度是3千米/时,下山的速度是6千米/时。求上山后又下山的平均速度。
7.360块。
- 36 -
解:设这堆砖有120块。由此推知每分钟甲搬120÷40=3(块),乙搬120÷60=2(块)。两人合搬需120÷(3+2)=24(分),甲比乙多搬(3-2)×24=24(块)。 实际的72块是24块的72÷24=3(倍),所以共有砖120×3=360(块)。 第21讲 枚举法
我们在课堂上遇到的数学问题,一般都可以列出算式,然后求出结果。但在数学竞赛或生活中却经常会遇到一些有趣的题目,由于找不到计算它们的算式,似乎无从下手。但是,如果题目所述的情况或满足题目要求的对象能够被一一列举出来,或能被分类列举出来,那么问题就可以通过枚举法获得解决。所谓枚举法,就是根据题目要求,将符合要求的结果不重复、不遗漏地一一列举出来,从而解决问题的方法。
例1 小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。试判断他们两人谁获胜的可能性大。 分析与解:将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。 出现7的情况共有6种,它们是: 1+6,2+5,3+4,4+3,5+2,6+1。 出现8的情况共有5种,它们是:
高为132厘米。问:女生平均身高是多少厘米?
3.一堆糖果,分给大、小幼儿班,每人可得6块;只分给大班,每人可得10块。若只分给小班,则每人可得几块?
那么不及格同学的平均分是多少?
2+6,3+5,4+4,5+3,6+2。 所以,小明获胜的可能性大。
注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。 例2 数一数,右图中有多少个三角形。
能当选?
6.一个数除以5与除以3的商相差4,余数都是1,求这个数。
7.甲、乙两人搬一堆砖,甲单独搬完需40分钟,乙单独搬完需60分钟。现在两人同时开始搬,搬完时甲比乙多搬72块砖。这堆砖共有多少块? 答案与提示练习20
1.4千米/时。提示:设山路长6千米。 2.128厘米。提示:设有2个男生3个女生。 3.15块。提示:设有30块糖果。 4.40分。提示:设有4人参加考试。
分析与解:图中的三角形形状、大小都不相同,位置也很凌乱,不好数清楚。为了避免数数过程中的遗漏或重复,我们将图形的各部分编上号(见右图),然后按照图形的组成规律,把三角形分成单个的、由两部分组成的、由3部分组成的……再一类一类地列举出来。
单个的三角形有6个:1 ,2,3,5,6,8。
由两部分组成的三角形有4个:
(1,2),(2,6),(4,6),(5,7)。
6.31。
提示:设这个数减1后是15。15÷3-15÷5=2,实际的4是2的2倍,所以这个数是15×2+1=31。
由三部分组成的三角形有1个:(5,7,8)。 由四部分组成的三角形有2个: (1,3,4,5),(2,6,7,8)。
由八部分组成的三角形有1个: (1,2,3,4,5,6,7,8)。 总共有6+4+1+2+1=14(个)。
对于这类图形的计数问题,分类型数是常用的方法。 例3 在算盘上,用两颗珠子可以表示多少个不同的四位数?
分析与解:上珠一个表示5,下珠一个表示1。分三类枚举:
(1)两颗珠都是上珠时,可表示5005,5050,5500三个数;
(2)两颗珠都是下珠时,可表示1001,1010,1100,2000四个数;
(3)一颗上珠、一颗下珠时,可表示5001,5010,5100,1005,1050,1500,6000七个数。
一共可以表示 3+4+7=14(个)四位数。
由例1~3看出,当可能的结果较少时,可以直接枚举,即将所有结果一一列举出来;当可能的结果较多时,就需要分类枚举,分类枚举是我们需重点学习掌握的内容。分类一定要包括所有可能的结果,这样才能不遗漏,并且类与类之间不重叠,这样才能不重复。
例4 有一只无盖立方体纸箱,将它沿棱剪开成平面展开图。那么,共有多少种不同的展开图?
分析与解:我们将展开图按最长一行有多少个正方形(纸箱的面)来分类,可以分为三类:
最长一行有4个正方形的有2种,见图(1)(2); 最长一行有3个正方形的有5种,见图(3)~(7); 最长一行有2个正方形的有1种,见图(8)。
不同的展开图共有2+5+1=8(种)。
例5 小明的暑假作业有语文、算术、外语三门,他准备每天做一门,且相邻两天不做同一门。如果小明第一天做语文,第五天也做语文,那么,这五天作业他共有多少种不同的安排?
分析与解:本题是分步进行一项工作,每步有若干种选择,求不同安排的种数(有一步差异即为不同的安排)。这类问题简单一些的可用乘法原理与加法原理来计算,而本题中由于限定条件较多,很难列出算式计算。但是,我们可以根据实际的安排,对每一步可能的选择画出一个树枝状的图,非常直观地得到结果。这样的图不妨称为“枚举树”。
- 37 -
由上图可知,共有6种不同的安排。
例6 一次数学课堂练习有3道题,老师先写出一个,然后每隔5分钟又写出一个。规定:(1)每个学生在老师写出一个新题时,如果原有题还没有做完,那么必须立即停下来转做新题;(2)做完一道题时,如果老师没有写出新题,那么就转做前面相邻未解出的题。解完各题的不同顺序共有多少种可能?
分析与解:与例5类似,也是分步完成一项工作,每步有若干种可能,因此可以通过画枚举树的方法来求解。但必须考虑到所有可能的情形。
由上图可知,共有5种不同的顺序。 说明:必须正确理解图示顺序的实际过程。如左上图的下一个过程,表示在第一个5分钟内做完了第1题,在第二个5分钟内没做完第2题,这时老师写出第3题,只好转做第3题,做完后再转做第2题。
例7 是否存在自然数n,使得n2
+n+2能被3整除? 分析与解:枚举法通常是对有限种情况进行枚举,但是本题讨论的对象是所有自然数,自然数有无限多个,那么能否用枚举法呢?我们将自然数按照除以3的余数分类,有整除、余1和余2三类,这样只要按类一一枚举就可以了。 当n能被3整除时,因为n2
,n都能被3整除,所以 (n2
+n+2)÷3余2;
当n除以3余1时,因为n2
,n除以3都余1,所以
(n2
+n+2)÷3余1;
当n除以 3余 2时,因为n2
÷3余1,n÷3余2,所以 (n2
+n+2)÷3余2。
因为所有的自然数都在这三类之中,所以对所有的自然数n,(n2+n+2)都不能被3整除。 练习21 1.10种。
解:6=1+5=2+4=3+3=1+1+4=1+2+
3=2+2+2=1+1+1+3=1+1+2+2=1+1+1+1+2=1+1+1+1+1+1。 2.9种。
解:一天吃完有1种:(10);两天吃完有5种:(3,7),(4,6),(5,5),(6,4),(7,3);三天吃完有3种:(3,3,4),(3,4,3),(4,3,3)。共1+5+3=9(种)。
3.8种。
解:如下图所示,只有1个小矩形竖放的有3种,有3个小矩形竖放的有4种,5个小矩形都竖放的有1种。共3+4+1=8(种)。
4.6个。
解:15个球分成数量不同的四堆的所有分法有下面6种:(1,2,3,9),(1,2,4,8,)(1,2,5,7),(1,3,4,7),(1,3,5,6),(2,3,4,6)。 可以看出,分成的四堆中最多的那一堆至少有6个球。 5.10个。
提示:由一块、两块、三块、四块组成的三角形依次有4,3,2,1个,共有4+3+2+1=10(个)。 6.6种。
提示:将各盘获胜者写出来,可画出枚举树如下:
7.14种。
提示:按四封信的完成顺序可画出枚举树如下:
练习21
1.将6拆成两个或两个以上的自然数之和,共有多少种不同拆法?
2.小明有10块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?
3.用五个1×2的小矩形纸片覆盖右图的2×5的大矩形,共有多少种不同盖法?
- 38 -
4.15个球分成数量不同的四堆,数量最多的一堆至少有多少个球?
5.数数右图有多少个三角形?
6.甲、乙比赛乒乓球,五局三胜。已知甲胜了第一盘,并最终获胜。问:各盘的胜负情况有多少种可能? 7.经理有4封信先后交给打字员,要求打字员总是先打
最近接到的信,比如打完第3封信时第4封信还未到,此时如果第2封信还未打完,那么就应先打第2封信而不能打第1封信。打字员打完这4封信的先后顺序有多少种可能? 答案与提示 练习21 1.10种。
解:6=1+5=2+4=3+3=1+1+4=1+2+
3=2+2+2=1+1+1+3=1+1+2+2=1+1+1+1+2=1+1+1+1+1+1。 2.9种。
解:一天吃完有1种:(10);两天吃完有5种:(3,7),(4,6),(5,5),(6,4),(7,3);三天吃完有3种:(3,3,4),(3,4,3),(4,3,3)。共1+5+3=9(种)。 3.8种。
解:如下图所示,只有1个小矩形竖放的有3种,有3
个小矩形竖放的有4种,5个小矩形都竖放的有1种。共3+4+1=8(种)。
4.6个。
解:15个球分成数量不同的四堆的所有分法有下面6种:(1,2,3,9),(1,2,4,8,)(1,2,5,7),(1,3,4,7),(1,3,5,6),(2,3,4,6)。
可以看出,分成的四堆中最多的那一堆至少有6个球。 5.10个。
提示:由一块、两块、三块、四块组成的三角形依次有4,3,2,1个,共有4+3+2+1=10(个)。 6.6种。
提示:将各盘获胜者写出来,可画出枚举树如下:
7.14种。
提示:按四封信的完成顺序可画出枚举树如下:
第22讲 列表法
在四年级讲还原问题(逆推法)和逻辑问题时,我们使用的就是列表法。对于一些计算比较简单,而且多次重复计算的问题,使用列表法,表达简洁,不易出错,如例1;有些问题,条件不断变化,不便统一列式计算,也应采用列表法,如例2、例3;还有些问题,无法列式计算,只能采用列表推演,如例4、例5。总之,使用列表法可以解决许多复杂而有趣的问题。
例1 一个运动队进行翻山训练,往返于一座山两侧山脚下的A,B两地。从A地出发,上山路长3000米,每分钟行75米;下山每分钟行100米,用42分钟到达B地。如果上、下山的速度不变,那么从A地到B地,再从B地返回A地,共需多长时间?
分析与解:这是一道很简单的题目,只需利用时间、路程、速度的关系,就可以得到结果。因为从A地到B地,要先上山再下山,从B地返回A地,又要先上山再下山,中间经过四次变化。为了减少计算错误,可以利用列表法。 先将已知的数据填入下表:
再根据时间、路程、速度的关系,从上到下,由已知的两个求出另一个,边计算边填表,得到下表:
- 39 -
由上表得到往返所需时间为
40+42+56+30=168(分)=2时48分。
例2 有100个人,第一位带了3元9角钱,以后每位都比前一位多带1角钱。每人把自己的钱全部用来买练习本。练习本有每本8角与每本5角的两种。如果每人尽可能买5角一本的,那么这100人共买了多少本每本8角的练习本? 分析与解:因为每人带的钱数不同,所以不可能统一列式计算。可以采用列表法,然后从表中发现规律。填表计算时注意,一要尽量多买5角一本的,二要把钱用完。
由于44角比39角多5角,所以可多买1本5角的,而8角1本的买的数量相同。类似地,45角比40角多5角等等。由此看出,所买8角一本的本数随钱数增加呈周期规律,一个周期内有五个数:3,0,2,4,1(本)。所以100个人共买8角一本的
(3+0+2+4+1)×(100÷5)=200(本)。 例3 甲、乙二人进行汽车比赛。第一分钟内甲的速度是6.6米/秒,乙的速度是2.9米/秒。以后每分钟内的速度,甲总是前一分钟的2倍,乙总是前一分钟的3倍。问:出发后多长时间乙追上甲?
分析与解:因为两人的速度都在变化,不好统一列式计算,我们可以列一个表观察一下。
由上表看出,乙在出发后3分多钟追上甲。从3分钟后开始计算,乙追上甲还需
(2772-2262)÷(2.9×33
-6.6×23
) =510÷25.5=20(秒)。
所以,出发后3分20秒乙追上甲。
例4 一只大桶装了10升水,另外有恰好能装3升和7升水的桶各一只。怎样才能只利用这三只桶把这10升水平均分为两份?
分析与解:这道“桶分液体”的古题根本无法列式计算,就是找到了正确方法,叙述整个倒水过程也很繁杂不便。我
们列表来表示具体倒法,其中箭头表示从箭头尾部的桶中将水倒入箭头指向的桶中。列表使倒水的过程一目了然,既有利于对问题的思考,又简化了文字叙述。
在例4中,始终按从大桶向7升桶倒水,从7升桶向3升桶倒水,从3升桶向大桶倒水的方向操作。如果在倒水的过程中,出现从这桶倒向那桶,又从那桶倒回这桶(这两步不一定挨着),那么这个操作毫无意义,肯定可以简化掉。 例5甲、乙、丙三只盘子里分别盛着6个苹果。小明按下面的方法搬动5次:
第1次,把1个苹果从一只盘子里搬到另一只盘子里去; 第2次,把2个苹果从一只盘子里搬到另一只盘子里去; 第3次,甲盘不动,把3个苹果从一只盘子里搬到另一只盘子里去;
第4次,乙盘不动,把4个苹果从一只盘子里搬到另一只盘子里去;
第5次,丙盘不动,把5个苹果从一只盘子里搬到另一只盘子里去。
最后发现,甲、乙、丙三只盘子里依次盛有4,6,8个苹果。你知道小明是怎样搬动的吗?
分析与解:关键在于确定每次搬动是从哪只盘子里搬到哪只盘子里。前两次搬动,每次可以有6种不同选择;后三次搬动,因为固定了一只盘子,所以每次只有2种不同选择。显然,从后向前逆推比较容易。逆推过程见下页表,其中圈起来的数字是题目条件规定不动的,箭头表示从哪只盘子里搬到哪只盘子里。
因为第五次丙盘不动,由搬动后甲盘中只有4个苹果,它不可能是接受5个苹果的,所以第五次是从甲盘中搬走5个苹果到乙盘。于是得到下表中“第四次”后的情况。 第四次乙盘不动,或者从甲盘搬到丙盘,或者从丙盘搬到甲盘。若是从甲盘搬到丙盘,因为搬完后甲盘有9个苹果,搬前应有9+4=13(个)苹果,可是甲盘初始时有6个苹果,就是前三次搬动的苹果都给甲盘,也只有6+1+2+3=12(个)苹果,与13个苹果矛盾。所以第四次是从丙盘搬4个苹果到甲盘。于是得到下表中“第三次后”的情况。
- 40 -
类似地可以得到“第二次后”的情况。
最后,为满足“初始状态”各盘都是6个苹果,可得到第一次、第二次搬动的情况。 练习22
1.小明骑自行车从A地到B地去送信,先走了一段上坡路,用了14分钟,又走了一段3000米长的平路,最后下坡用了11分40秒。已知小明骑车上坡、走平路、下坡时的速度分别为2.5米/秒、4米/秒、6米/秒,求小明从A地到B地,再返回A地所用的时间。
2.北京、上海、天津、山东、江苏、广东六个足球队进行单循环比赛,即每个队都与其他各队赛一场。请将下面的比赛日程表补全:
3.下图是一个跑道的示意图,沿ACBEA走一圈是400米,沿ACBDA走一圈是275米,其中A到B的直线距离是75米。甲、乙二人同时从A点出发练长跑,甲沿ACBDA的小圈跑,每100米用24秒,乙沿ACBEA的大圈跑,每100米用21秒。问:.
(1)乙跑第几圈时第一次与甲相遇? (2)出发后多长时间甲、乙再次在A点相遇?
4.有一堵墙厚3.1米,大、小两鼠从墙的两边对着挖,大鼠第一天挖了7.5厘米,小鼠第一天挖了40厘米,从第二天起,大鼠后一天挖的是前一天的2倍,小鼠后一天挖的是前一天的一半。问:两鼠几天能把洞挖通?挖通时各挖了多少厘米?
5.一只大桶装了12千克水,另外有两个恰好能装5千克和7千克的桶各一只。利用这三只桶,最少倒几次,就可以把水分成两个6千克?
6.有一路公共汽车,包括起点和终点共有12个车站。如果一辆车除终点外,每一站上车的乘客中,恰好各有一位
乘客到这一站以后的每一站下车。问:公共汽车内最多时有多少位乘客? 答案与提示 练习22 1.84.5分。
解:
- 41 -
第23讲 图解法
共用
(840+750+700+1680+750+350)÷60=84.5(分)。 2.
有许多应用题,其中的数量关系比较复杂,而通过画图可以把数量之间的关系变得直观明了,从而达到解题目的。这种通过画图帮助解题的方法就是图解法。
我们通过下面几道例题来讲解在各种类型的应用题中如何使用图解法解题。
例1 甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘。到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘。问:小强已经赛了几
提示:第一、三天山东分别对上海、广东,所以第二天山东只能对北京,另一场是上海对广东;同理,第三天天津只能对北京,另一场是上海对江苏;第一天天津只能对广东,另一场是北京对江苏;第四、五天类似可填出。 3.(1)第5圈;(2)15分24秒。
提示:(1)从A到B长200米,乙比甲快6秒,所以如果乙在甲经过A点6秒以内到达A点,乙在此圈就可以追上甲。甲经过A点的时间依次为(单位:秒) 66,132,198,2,330,396,… 乙经过A点的时间依次为(单位:秒)
84,168,252,336,420,…由336-330=6知,乙在第5圈的B点追上甲。
(2)[66,84]=924(秒)=15分24秒。
4.5天挖通;大鼠挖232.5厘米,小鼠挖77.5厘米。 提示:大、小鼠每天挖的速度在变化,可以列表帮助分析:
因为丁只赛了1盘,所以丁只与甲有线段相连。 因为乙赛了3盘,除了丁以外,乙与其他三个点都有线段相连(见右上图)。
因为丙赛了2盘,右上图中丙已有两条线段相连,所以丙只与甲、乙赛过。
由上页右图清楚地看出,小强赛过2盘,分别与甲、乙比赛。
例2 一群人在两片草地上割草,大的一片草地比小的正好大1倍。他们先全体在大的一片草地干了半天,下午留下一半人在大草地上继续干,收工时正好把草割完;另一半
5.11次。 解:
人到小草地上干,收工时还余下一块,这块再用1人经1天也可割完。问:这群干活的人共有多少位?
本题有多种解法,其中利用图解法十分简洁。 分析与解:
设一半人干半天的工作量为1份。因为在大草地上全体人干了半天,下午一半人又干了半天,正好割完,所以大草地的工作量是3份。由题意,小草地
盘?分别与谁赛过?
分析与解:这道题按照常规思路似乎不太好解决,我们画个图试试。用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连结起来。 因为甲已经赛了4盘,除了甲以外还有4个点,所以甲与其他4个点都有线段相连(见左下图)。
6.36位。
提示:第n站有(12-n)人上车,(n-1)人下车,车上人数见下表:
因为下午有一半人在小草地上干了半天,即干了1份,所以小草地没干完的是
分析与解:把加完水和酒精后的酒精溶液分成5
- 42 -
份,因为酒精含量是40%,所以其中有2份纯酒精,3份水 (见左下图,△表示纯酒精,○表示水)。加入纯酒精前酒
例3 A,B两地间有条公路,甲从A地出发步行到B地,乙骑摩托车从B地同时出发,不停顿地往返于A,B两地之间。80分钟后他们第一次相遇,又过了20分钟乙第一次超越甲。求甲、乙速度之比。
分析与解:在行程问题中,通常先画出运行图,这样直观清晰,可以帮助我们分析各个量之间的关系。依照题意画运行图如下:
第一次相遇时甲、乙各行了80分钟,到第一次超越时,甲共行100分钟,而乙在第一次相遇到第一次超越的这20分钟内行的路程,相当于甲行80+100=180(分)的路。所以甲、乙的速度之比为 20∶180=1∶9。
例4 两名运动员在长为50米的游泳池里来回游泳。甲运动员的速度是1米/秒,乙运动员的速度是0.5米/秒,他们同时分别在游泳池的两端出发,来回共游了5分钟,如果不计转向时间,那么在这段时间里共相遇了几次? 分析与解:甲游完一个全程要50÷1=50(秒),乙游完一个全程要50÷0.5=100(秒),画出这两人的运行图。
图中实线段和虚线段的每个交点表示两运动员相遇了一次,从图上可以看出,甲、乙两运动员在5分钟内共相遇了5次,其中,有2次在游泳池的两端相遇。
例4中,如果按照相遇、追及……的过程分别计算,是十分麻烦的。通过画出运行图,结果一目了然。 例5 容器中有某种酒精含量的酒精溶液,加入一杯水后酒精含量降为25%;再加入一杯纯酒精后酒精含量升为40%。那么原来容器中酒精溶液的酒精含量是多少?
精含量为25%,即纯酒精与水之比是1∶3,因此应该是1
个△和3个○(见下中图),推知加入的一杯纯酒精相当于1个△,则一杯水是1个○,原来容器中有1个△和2个○(见右下图),酒精含量为33.3%。
例6 有三堆围棋子,每堆棋子数相等。第一堆中的黑子与第二堆中的白子
部棋子的几分之几?
分析与解:因为三堆围棋子数量相同,我们可以用三条长度相等的线段分别表示三堆棋子,每条线段又分成两段分别表示黑子和白子(见下页图)。
从图中看出,黑1与黑2正好等于一条线段的长,即等于全
练习23
1.A,B两地相距1000米,甲、乙二人分别从A,B两地同时出发,在A,B两地间往返散步。如果两人第一次相遇时距A,B两地的中点100米,那么,两人第二次相遇地点距第一次相遇地点多远?
2.小马虎上学忘了带书包,爸爸发现后立即骑车去追,把书包交给他后立即返回家。小马虎接到书包后又走了10分钟到达学校,这时爸爸也正好到家。如果爸爸的速度是小
马虎速度的4倍,那么小马虎从家到学校共用多少时间? 3.某人沿公路前进,迎面来了一辆汽车,他问司机:“后面有骑自行车的人吗?”司机回答:“10分钟前我超过一个骑自行车的人。”这人继续走了10分钟,遇到了这个骑自行车的人。如果自行车的速度是人步行速度的3倍,那么,汽车速度是人步行速度的多少倍?
4.公共汽车从甲站开往乙站,每5分钟发车一趟,全程要15分钟。有一人从乙站骑自行车去甲站,出发时恰有一辆车到达乙站,在路上他又遇到10辆迎面开来的汽车才到
甲站,到站时恰有一辆汽车从甲站开出。问:他从乙站到甲站共用了多少分钟?
5.甲、乙两地相距15千米,每天8点开始从乙地每隔15分钟开出一辆公共汽车到甲地去,车速是30千米/时。某人8点20分骑车从甲地到乙地去,速度是15千米/时。他在路上可以看到几辆从乙地开出的公共汽车?
6.某区举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人;及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍。求参赛的总人数。
7.1,2,3,4,5,6号六名运动员进行乒乓球单打循环赛。到现在为止,1,2,3,4,5号运动员已参加比赛的场数正好等于他们的编号数。问:6号运动员已经赛了几场? 答案与提示 练习23 1.400米。
解:由下图看出,第一次相遇时两人共走一个单程,第二次相遇时两人共走三个单程。由第一次相遇时两人走的路程相差200米,推知第二次相遇时相差600米,所以两次相遇地点相距(200+600)÷2=400(米)。
2.50分。
解:由下图看出,爸爸把书包交给小马虎后,小马虎到学校用10分,爸爸返回家用10分,这段路小马虎走了40分。所以小马虎从家到学校共用10+40=50(分)。
3.7倍。
解:由下图看出,汽车追上骑车人后10分遇到步行人,此时骑车人到达B地;又过10分,步行人与骑车人在B点相遇。所以,汽车10分的路等于步行10分加骑车20分的路,也等于步行10+20×3=70(分)的路。所以汽车速度是步行速度的70÷10=7(倍)。
4.40分。
解:根据出发时恰有一辆车到达乙站和到达甲站时恰好遇到第11辆车出发,画出汽车和骑车人的运行图。
- 43 -
从图中可以看出骑车人从第15分出发,第55分到达,中间经过了55-15=40(分)。 5.6辆。 提示:
6.392人。
解:由“不低于80分的比80分以下的4倍还多2人”可画出左下图,由“及格的比不低于80分的多22人”可画出右下图。
因为及格人数是不及格人数的6倍,由右上图知, 22+22×4+2=112(人)
是不及格人数的2倍,所以参赛总人数为
(112÷2)×(1+6)=392(人)。
7.3场。
提示:与例1类似(见右图)。 第24讲 时钟问题
“时间就是生命”。自从人类发明了计时工具——钟表,人们的生活就离不开它了。什么时间起床,什么时间吃饭,什么时间上学……全都依靠钟表,如果没有钟表,生活就乱套了。
时钟问题就是研究钟面上时针和分针关系的问题。大家都知道,钟面的一周分为60格,分针每走60格,时针正好走5格,所以时针的速度是分针速度
垂直、两针成直线、两针成多少度角提出问题。因为时针与分针的速度不同,并且都沿顺时针方向转动,所以经常将时钟问题转化为追及问题来解。
例1 现在是2点,什么时候时针与分针第一次重合? 分析:如右图所示,2点分针指向12,时针指向2,分针在时针后面
例2 在7点与8点之间,时针与分针在什么时刻相互垂直? 分析与解:7点时分针指向12,时针指向7(见右图),分针在时针后 面5×7=35(格)。时针与分针垂直,即时针与分针相差15格,在7点与8点之间,有下图所示的两种情况:
(1)顺时针方向看,分针在时针后面15格。从7点开始,分针要比时针多走35-15=20(格),需
(2)顺时针方向看,分针在时针前面15格。从7点开始,分针要比时针多走35+15=50(格),需
例3 在3点与4点之间,时针和分针在什么时刻位于一条直线上?
分析与解:3点时分针指向12,时针指向3(见右图),分针在时针后 面5×3=15(格)。时针与分针在一条直线上,可分为时针与分针重合、时针与分针成180°角两种情况(见下图):
(1)时针与分针重合。从3点开始,分针要比时针多走15格,需15÷
- 44 -
(2)时针与分针成180°角。从3点开始,分针要比时针多走15+30
例4 晚上7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。这部动画片播出了多长时间?
分析与解:这道题可以利用例3的方法,先求出开始的
时刻和结束的时刻,再求出播出时间。但在这里,我们可以简化一下。因为开始时两针成180°,结束时两针重合,分针比时针多转半圈,即多走30格,所以播出时间为
例1~例4都是利用追及问题的解法,先找出时针与分针所行的路程差是多少格,再除以它们的速度差求出准确时间。但是,有些时钟问题不太容易求出路程差,因此不能用追及问题的方法求解。如果将追及问题变为相遇问题,那么有时反而更容易。
例5 3点过多少分时,时针和分针离“3”的距离相等,并且在“3”的两边?
分析与解:假设3点以后,时针以相反的方向行走,时针和分针相遇的时刻就是本题所求的时刻。这就变成了相遇
问题,两针所行距离和是15个格。
例6 小明做作业的时间不足1时,他发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。小明做作业用了多少时间?
分析与解:从左上图我们可以看出,时针从A走到B,分针从B走到A,两针一共走了一圈。换一个角度,问题可以化为:时针、分针同时从B出发,反向而行,它们在A点相遇。两针所行的
时间是:你
练习24
1.时针与分针在9点多少分时第一次重合?
2.王师傅2点多钟开始工作时,时针与分针正好重合在一起。5点多钟完工时,时针与分针正好又重合在一起。王师傅工作了多长时间?
3.8点50分以后,经过多长时间,时针与分针第一次在一条直线上?
4.小红8点钟开始画一幅画,正好在时针与分针第三次垂直时完成,此时是几点几分?
5.3点36分时,时针与分针形成的夹角是多少度? 6.3点过多少分时,时针和分针离“2”的距离相等,并且在“2”的两边?
7.早晨小亮从镜子中看到表的指针指在6点20分,他赶快起床出去跑步,可跑步回来妈妈告诉他刚到6点20分。问:小亮跑步用了多长时间? 答案与提示 练习24
解:分针比时针多转5-2=3(圈),所以王师傅工作了
解:从9点开始,分针还要比时针多走15格,所求时间为
解:8点分针在时针后面40格,第一次垂直分针要比时针多走40-15=25(格),第三次垂直要多走25+30×2=85(格),
5.108°。
解:分针走36格,时针走36÷12=3(格)。3点36分时,分针在时针前面36-(5×3+3)=18(格),它们形成的夹角是
360°×(18÷60)=108°。
- 45 -
解:与例5类似,假设2点以后,时针以相反的方向走,时针与分针第2次相遇的时刻就是所求的时刻。第一次相遇,两针共走5×2=10(格),第二次相遇,两针还要共走一圈,即60格。所以需要
7.40分。
提示:镜子中的影像左右位置互换了,所以镜子中看到的6点20分(左下图),实际上是5点40分(右下图)。
第25讲 时间问题
同学们都知道,任何一块手表或快或慢都会有些误差,所以手表指示的时刻并不一定是准确时刻。这一讲的内容是与不准确时钟有关的时间问题。这类题目的变化很多,无论怎样变,关键是抓住单位时间内的误差,然后根据某一时间段内含多少个单位时间,就可求出这一时间段内的误差。 例1 肖健家有一个闹钟,每小时比标准时间慢半分钟。有一天晚上8点整时,肖健对准了闹钟,他想第二天早晨5点55分起床,于是他就将闹钟的铃定在了5点55分。这个闹钟将在标准时间的什么时刻响铃?
分析与解:因为这个闹钟走得慢,所以响铃时间肯定在5点55分后面。
,闹钟走595分相当于标准时间的
响铃时是标准时间的6点整。
例2 爷爷的老式时钟的时针与分针每隔66分重合一次。如果早晨8点将钟对准,到第二天早晨时针再次指示8点时,实际上是几点几分?
分析与解:由上一讲知道,时针与分针两次重合的时间间隔为
所以老式时钟每重合一次就比标准时间慢
时钟24时重合多少次呢?我们观察从12点开始的24时。分针转24圈,时针转2圈,分针比时针多转22圈,即22次追上时针,也就是说 24时正好
例3 小明家有两个旧挂钟,一个每天快20分,一个每天慢30分。现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?
分析与解:由时钟的特点知道,每隔12时,时针与分针的位置重复出现。所以快钟和慢钟分别快或慢12时的整数倍时,将重新显示标准时间。 快钟
快12时,需经过
(60×12)÷20=36(天),
即快钟每经过36天显示一次标准时间。慢钟慢12时需要
(60×12)÷30=24(天),
即慢钟每经过24天显示一次标准时间。
因为[36,24]=72,所以两个钟同时再次显示标准时间,至少要经过72天。
例4 一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分。若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整。此时的标准时间是多少?何时将两个钟同时调准的?
分析与解:因为两个钟是同时调准的,所以当两个钟相差60分时,快钟20÷1=20(时),所以是20时前(12点40分)将两个钟同时调准的。
当然,本题也可以由慢钟求出结果。同学们不妨试试。 例5 某科学家设计了一只怪钟,这只怪钟每昼夜10时,每小时100分钟(见右图)。当这只钟显示5点整时,实际上是中午12点整。当这只钟显示3点75分时,实际上是什么时间?实际时间下午5点24分时,这只钟显示什么时间?
分析与解:怪钟每天100×10=1000(分),而实际即正常的钟是每天60×24=1440(分),所以怪钟的1分等于实际的
1440÷1000=1.44(分),实际的1分等于怪钟的
怪钟的10点整相当于正常钟的12点整。怪钟从10点到3点75分经过了375分,等于实际的
- 46 -
1.44×375=540(分)=9(时)。所以怪钟的3点75分就是实际的上午9点整。
从0点(即半夜12点)到下午5点24分,正常钟走了 60×(12+5)+24=1044(分), 等于怪钟的
所以实际时间下午5点24分时,怪钟显示7点25分。 例6 李叔叔下午要到工厂上3点的班,他估计快到上班的时间了,就到屋里去看钟,可是钟停在了12点10分。他赶快给钟上足发条,匆忙中忘了对表就上班去了,到工厂一看离上班时间还有10分钟。夜里11点下班,李叔叔回到家一看,钟才9点钟。如果李叔叔上、下班路上用的时间相同,那么他家的钟停了多长时间?
分析与解:这道题看起来很“乱”,但我们透过钟面显示的时刻,计算出实际经过的时间,问题就清楚了。 钟从12点10分到9点共经过8时50分,这期间李叔叔上了8时的班,再减去早到的10分钟,李叔叔上、下班路上共用8时50分-8时-10分=40(分)。李叔叔到工厂时是2点50分,上班路上用了20分钟,所以出发时间是2点30分。
因为出发时钟停在12点10分,所以钟停了2时20分。 练习25
1.钟敏家有一个闹钟,每小时比标准时间快2分钟。星期天早晨7点整时,钟敏对准了闹钟,然后定上铃,想让闹钟在11点30分闹铃,提醒她帮助妈妈做饭。钟敏应当将闹钟的铃定在几点几分上?
2.小明晚上8点将手表对准,到第二天下午4点发现手表慢了3分钟。小明的手表一天慢几分几秒?
3.有一个钟每小时快15秒,它在7月1日中午12点时准确,下一次准确的时间是什么时候?
4.一辆汽车的速度是72千米/时,现有一块每小时慢20秒的表,用这块表计时,测得这辆汽车的速度是多少?(保留一位小数)
5.高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走得不正
挂钟最早在什么时间恰好快3分?
6.某人有一块手表和一个闹钟,手表比闹钟每小时慢30秒,而闹钟比标准时间每小时快30秒。问:这块手表一昼夜比标准时间差多少秒?
7.小明上午8点要到学校上课,可是家里的闹钟早晨5点50分就停了,他上足发条但忘了对表就急急忙忙上学去了,到学校一看还提前了20分钟。中午12点放学,小明回
到家一看钟才11点整。假定小明上学、下学在路上用的时间相同,那么,他家的闹钟停了多少分钟? 答案与提示
练习25
1.11点39分。
提示:每小时快2分,4.5时快9分。 2.3分36秒。
解:3÷20×24=3.6(分)=3分36秒。 3.10月29日中午12点。
解:每天快15×24=360(秒)=6(分),快12时需60×12÷6=120(天),7,8,9月共31+31+30=92(天),120-92=28(天),所以下次准确的时间是10月29日中午12点。 4.72.4千米/时。
解:这块表的3580秒等于实际的3600秒,所以这块表的1时等于实际的
5.10月16日傍晚。
6.慢6秒。
7.1时25分。
解:小明早晨离家到中午回到家共经过5时10分,减去在学校的4时和提前到校的20分,路上共用50分,上、下学各25分。8点减去提前到校的20分,再减去上学路上用的25分,小明离家时是7点15分,所以闹钟停了1时25分。 第26讲 牛吃草问题
“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1 牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天?
分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。总草量可以分为牧场上原有的草和新生长出来的草两部分。牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,
- 47 -
所以这片草地每天新长出的草的数量相同,即每天新
长出的草是不变的。下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。前者的总草量是200份,后者的总草量是150份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的草。 200-150=50(份),20—10=10(天),
说明牧场10天长草50份,1天长草5份。也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。由此得出,牧场上原有草
(l0—5)× 20=100(份)或(15—5)×10=100(份)。 现在已经知道原有草100份,每天新长出草5份。当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃
原有的草,吃完需100÷20=5(天)。 所以,这片草地可供25头牛吃5天。 在例1的解法中要注意三点: (1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天。 例2 一个水池装一个进水管和三个同样的出水管。先打开进水管,等水池存了一些水后,再打开出水管。如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3
个出水管,那么5分钟后水池空。那么出水管比进水管晚开多少分钟?
分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似。
出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水。因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题。
设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量。两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是
有的水,可以求出原有水的水量为
解:设出水管每分钟排出的水为1份。每分钟进水量
答:出水管比进水管晚开40分钟。
例3 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。照此计算,可供多少头牛吃10天?
分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量。
设1头牛1天吃的草为1份。20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草。由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草 (20+10)×5=150(份)。
由 150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天。 例4 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级?
分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题。
上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度。男孩5分钟走了20×5= 100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级。由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有 (20+10)×5=150(级)。 解:自动扶梯每分钟走
(20×5-15×6)÷(6—5)=10(级), 自动扶梯共有(20+10)×5=150(级)。 答:扶梯共有150级。
例5 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。如果同时打开7个检票口,那么需多少分钟?
- 48 -
分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解。
旅客总数由两部分组成:一部分是开始检票前已经在排
队的原有旅客,另一部分是开始检票后新来的旅客。 设1个检票口1分钟检票的人数为1份。因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客
(4×30-5×20)÷(30-20)=2(份)。
假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为 (4-2)×30=60(份)或(5-2)×20=60(份)。 同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要 60÷(7-2)=12(分)。
例6 有三块草地,面积分别为5,6和8公顷。草地上的草一样厚,而且长得一样快。第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。问:第三块草地可供19头牛吃多少天?
分析与解:例1是在同一块草地上,现在是三块面积不同的草地。为了解决这个问题,只需将三块草地的面积统一起来。
[5,6,8]=120。
因为 5公顷草地可供11头牛吃10天, 120÷5=24,所以120公顷草地可供11×24=2(头)牛吃10天。 因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天。 120÷8=15,问题变为: 120公顷草地可供19×15=285(头)牛吃几天?
因为草地面积相同,可忽略具体公顷数,所以原题可变为:
“一块匀速生长的草地,可供2头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?” 这与例1完全一样。设1头牛1天吃的草为1份。每天新长出的草有
(240×14-2×10)÷(14-10)=180(份)。草地原有草(2—180)×10=840(份)。可供285头牛吃 840÷(285—180)=8(天)。 所以,第三块草地可供19头牛吃8天。 练习26
1.一牧场上的青草每天都匀速生长。这片青草可供27头牛吃6周或供23头牛吃9周。那么,可供21头牛吃几周? 2.一牧场上的青草每天都匀速生长。这片青草可供17头牛吃30天,或供19头牛吃 24天。现有一群牛,吃了6天后卖掉4头,余下的牛又吃了2天将草吃完,这群牛原来有多少头?
3.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年。假设地球新生成的资源增长速度是一定的,为使人类有不断发展的潜力,地球最多能养活多少亿人?
4.有一水池,池底有泉水不断涌出。用10部抽水机20时可以把水抽干;用15部同样的抽水机,10时可以把水抽干。那么,用25部这样的抽水机多少小时可以把水抽干? 5.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。如果同时开放3个检票口,那么40分钟检票口前的队伍恰好消失;如果同时开放4个检票口,那么25分钟队伍恰好消失。如果同时开放8个检票口,那么队伍多少分钟恰好消失?
6.两只蜗牛由于耐不住阳光的照射,从井顶逃向井底。白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每个白天爬20分米,另一只爬15分米。黑夜里往下滑,两只蜗牛滑行的速度却是相同的。结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底。那么,井深多少米?
7.两位顽皮的孩子逆着自动扶梯的方向行走。在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟到达另一端,女孩走了3分钟到达另一端。问:该扶梯共多少级? 答案与提示练习26 1.12周。
解:设1头牛1周吃的草为1份。牧场每周新长草 (23×9-27×6)÷(9-6)=15(份)。
草地原有草(27-15)×6=72(份),可供21头牛吃72÷(21-15)=12(周)。 2.40头。
解:设1头牛1天吃的草为1份。牧场每天新长草(17×30-19×24)÷(30-24)=9(份)。 草地原有草(17-9)×30=240(份)。
这群牛8天应吃掉草240+9×8+4×2=320(份), 所以这群牛有320÷8=40(头)。 3.70亿。
解:设1亿人生活1年的资源为1份。地球每年新生成资源
(80×300-100×100)÷(300-100)=70(份)。 当新生成的资源不少于每年消耗掉的资源时,地球上的资源才不致减少。所以地球最多能养活70亿人。 4.5时。
解:设1部抽水机1时抽出的水为1份。水池中每小时涌出泉水(10×20-15×10)÷(20-10)=5(份)。 水池中原有水(10-5)×20=100(份)。25部抽水机抽干需100÷(25-5)=5(时)。 5.10分。
解:设1个检票口1分钟通过的旅客人数为1份。每分钟新来旅客
- 49 -
6.15米。
解:每夜下滑(20×5-15×5)÷(6-5)=10(分米),井深(20+10)×5=150(分米)=15米。 7.54级。
解:自动扶梯每分钟走
[24×(180÷20)-27×(120÷20)]÷(3-2)=54(级)。自动扶梯共有27×(120÷20)-54×2=54(级)。 第27讲 运筹学初步(一)
- 50 -
- 51 -
- 52 -
第28讲 运筹学初步(二) 本讲主要研究分配工作问题。
实际工作中经常会碰到分配工作的问题。由于工作任务的性质不同,每个人的工作能力不同,因而完成这些任务所需的时间和花费的代价也不同。我们希望通过合理分配工
作,使所用时间最少或花费代价最小。
例1 甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天做裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服。两厂合并后,每月(按30天计算)最多能生产多少套衣服?
分析与解:应让善于生产上衣或裤子的厂充分发挥特长。甲厂生产上衣和裤子的时间比为8∶7,乙厂为2∶3,可见甲厂善于生产裤子,乙厂善于生产上衣。
因为甲厂 30天可生产裤子 448÷14×30=960(条),乙厂30天可生产上衣720÷12×30=1800(件),960<1800,所以甲厂应专门生产裤子,剩下的衣裤由乙厂生产。 设乙厂用x天生产裤子,用(30-x)天生产上衣。由甲、乙两厂生产的上衣与裤子一样多,可得方程 960+720÷18×x=720÷12×(30-x), 960+40x=1800-60x, 100x=840, x=8.4(天)。
两厂合并后每月最多可生产衣服 960+40×8.4=1296(套)。
例2 某县农机厂金工车间共有77个工人。已知每天每个工人平均可加工甲种部件5个,或乙种部件4个,或丙种部件3个。每3个甲种部件、1个乙种部件和9个丙种部件恰好配成一套。问:分别安排多少人加工甲、乙、丙三种部件时,才能使生产出来的甲、乙、丙三种部件恰好都配套?
分析与解:如果采用直接假设,那么就要用三个字母分别代替加工甲、乙、丙三种部件的人数,这已经超出了我们的知识范围。由题目条件看出,每套成品中,甲、乙、丙三种部件的件数之比是3∶1∶9,因为是配套生产,所以生产出的甲、乙、丙三种部件的数量之比也应是3∶1∶9。 设每天加工乙种部件x个,则加工甲种部件3x个,丙种部件9x个。从而
加工甲、乙、丙三种部件应分别安排12人、5人和60人。 例3 有4辆汽车要派往五个地点运送货物,右图○中的数字分别表示五个地点完成任务需要的装卸工人数,五个地点共需装卸工20人。如果有些装卸工可以跟车走,那么应如何安排跟车人数及各点的装卸工人数,使完成任务所用的装卸工总人数最少?
分析与解:可用试探法。因为五个地点中需装卸工最多的是5个人,所以如果每辆车跟5个工人,那么每辆车到达任何一个地点,都能正常进行装卸。由此得到,跟车人数的试探范围是1~5个人。
若每车跟车5人,则各点不用安排人,共需20人; 若每车跟车4人,则原来需5人的点还需各安排1人,共需18人;
若每车跟车3人,则原来需5人的点还需各安排2人,原来需4人的点还需各安排1人,共需17人;
同理可求出,每车跟车2人,共需18人;每车跟车1人,共需19人。
- 53 -
可见,安排每车跟车3人,原来需5人的两个点
各安排2人,原来需4人的点安排1人,这时所用的装卸工总人数最少,需17人。
在例3中,我们采用试探法,逐一试算,比较选优。事实上,此类题目有更简捷的解法。假设有m个地点n辆车(n≤m),m个地点需要的人数按从多到少排列为 A1≥A2≥A3≥…≥Am,
则需要的最少总人数就是前n个数之和,即 A1+A2+…+An。
这时每车的跟车人数可以是An+1 至An 之间的任一数。具体到例3,5个点4辆车,5个点中需要人数最多的4个数之和,即5+5+4+3=17(人)就是需要的最少总人数,因为A4=A5=3,所以每车跟车3人。若在例3中只有2辆车,其它条件不变,则最少需要 5+5=10(人),因为A2=5,A3=4,所以每车跟车5人或4人。当每车跟车5人时,所有点不再安排人;当每车跟车4人时,需要5人的两个点各安
排1人,其余点不安排人。
注:如果车辆数大于地点数,即n>m,则跟车人数是0,各点需要人数之和就是总共需要的最少人数。
例4 有17根11.1米长的钢管,要截成1.0米和0.7米的甲、乙两种长度的管子,要求截成的甲、乙两种管子的数量一样多。问:最多能截出甲、乙两种管子各多少根? 分析与解:要想尽量多地截出甲、乙两种管子,残料应当尽量少。一根钢管全部截成1.0米的,余下0.1米,全部
截成0.7米的,余下0.6米。如果这样截,再要求甲、乙管数量相等,那么残料较多。
怎样才能减少残料,甚至无残料呢?我们可以将1.0米的和0.7米的在一根钢管上搭配着截,所得残料长度(单位:米)见下表:
由上表看出,方法3和方法10没有残料,如果能把这两种方法配合起来,使截出的甲、乙两种管子数量相等,那么就是残料最少的下料方案了。
设按方法3截x根钢管,按方法 10截 y根钢管。这样共截得甲管(9x+2y)根,乙管(3x+13y)根。由甲、乙管数量相等,得到 9x+2y=3x+13y, 9x-3x=13y-2y, 6x=11y。
由此得到x∶y= 11∶6。用方法3截11根钢管,用方法10截6根钢管是符合题意的截法,共可截得甲、乙管各 9×11+2×6=111(根),
或3×11+13×6=111(根)。
例5 给甲、乙二人分配A,B两项工作,他们完成这两项工作所需要的时间如下表:
怎样分配工作才能使完成这两项工作所需的总时间最少?
分析与解:因为不同的人要做不同的工作,所以上表中不同行、不同列的两数之和对应一种方案,共两种: (1)甲做 A、乙做 B,需要 7+6=13(时); (2)甲做 B、乙做 A,需要 4+8=12(时)。 显然后一种方案优于前一种方案。
为了能够处理更复杂的问题,我们将上例的数量关系尽量简化。
如果把表中第一行的两数都减去该行的最小数7,变成0和1,那么上面(1)(2)各式也各减少7,不影响它们之间的大小关系,即不影响最优方案的确定。
同理,第二行都减去该行的最小数4,变成0和2,也不影响最优方案的确定。
经上述变换后,原表变成左下表:
此时,再将第二列都减去该列的最小数1,变成0和1,同样不影响最优方案的确定,原表变为右上表。 不同行、不同列的两个数之和代表一种方案,因为 0+0<0+1,
所以最优方案为乙做A、甲做B。上面的化简过程可表示为:
总结上面的方法:对于n个人n项工作的合理分配问题: (1)先将各行都减去该行中最小的数; (2)再将各列都减去该列中最小的数;
(3)最后选择不在同一行,也不在同一列的n个0即可。 在实施上述变换后,如果仍选不出n个不同行也不同列的0,因为我们的目的是选取一组不同行、不同列的n个数,使这n个数之和尽量小,既然得不到n个0,可用表中最小的数代替0(见例6)。
例6 给甲、乙、丙三人分配A,B,C三项工作,他们完成这三项工作的时间如下表:
- 54 -
完成这三项工作所需总时间最少是多少?
分析与解:
因为没有三个不同行也不同列的0,我们用右下角的1代替0,此时,○内的三个数就是我们要找的最佳方案,即甲做B、乙做A、丙做C。所需总时间为 9+7+9=25(时)。 练习28
1.某种健身球由一个黑球和一个白球组成一套。已知两个车间都生产这种
现在两个车间联合起来生产,每月最多能生产多少套健身球?
2.某车间有铣床5台、车床3台、自动机床1台,生产
一种由甲、乙两种零件各1个组成的产品。每台铣床每天生产甲零件10个,或者生产乙零件20个;每台车床每天生产甲零件20个,或者生产乙零件30个;每台自动机床每天生产甲零件30个,或者生产乙零件80个。这些机器每天最多可生产多少套产品?
3.车过河交渡费3元,马过河交渡费2元,人过河交渡费1元。某天过河的车、马数目的比为2∶9,马、人数目的比为3∶7,共收得渡费945元。问:这天渡河的车、马、人的数目各多少?
4.有4辆汽车要派往七个地点运送货物,右图中的数字分别表示这七个地点完成任务需要的装卸工人数。如果装卸工可以跟车,那么最少要安排多少名装卸工才能完成任务?
5.有一批长4.3米的条形钢材,要截成0.7米和0.4米的甲、乙两种毛坯,要求截出的甲、乙两种毛坯数量相同。如何下料才能使残料最少?
6.用10米长的钢筋做原材料,截取3米和4米长的钢筋各100根,至少要用多少根原材料?
7.给甲、乙、丙分配A,B,C三项工作,他们完成这三项工作的时间如下表。怎样分配工作才能使完成这三项工作所需总时间最少?最少用多少时间?
答案与提示 练习28 1.600套。
因为450<900,所以应安排甲车间专门生产黑球,剩下的由乙车间生产。乙车间生产450个白球后,剩下的时间还能生产白球900-450=450(个),因为乙车间生产1个黑球与生产2个白球的时间相同,450÷(1+2)=150,所以这段时间还能生产黑、白球各150个。
两车间联合生产每月最多生产(450+150)=600(套)。 2.100套。
甲零件。安排自动车床专门生产乙零件,车床专门生产甲零件,铣床两种零件都生产,并使其配套。
自动车床一天生产乙零件80个,车床一天生产甲零件20×3=60(个)。铣床一天可生产10×5=50(个)甲零件,补上车床与自动车床的差后,还有生产50-20=30(个)甲零件的时间,这个时间可生产甲、乙零件各20个。 所以,每天最多生产80+20=100(套)产品。 3.42辆车,1匹马,441个人。
解:这天过河的车、马、人的数量之比是2∶9∶21。以2车9马21人为一组,每组收渡费 3×2+2×9+1×21=45(元)。
这天共渡河945÷45=21(组),由此得到,这天渡河的数量为
车:2×21=42(辆); 马:9×21=1(匹);
- 55 -
人:21×21=441(个)。 4.26人。提示:每车跟5人。
5.解:每根钢材有下表所示的7种截法:
无残料的有第2和第6两种方法。用第2种方法的条形钢材数量与用第6种方法的条形钢材数量之比是8∶3,就可使截出的甲、乙两种毛坯的数量相同,且无残料。 6.75根。
解:有三种截法:
(1)截成3米、3米、4米,无残料; (2)截成3米、3米、3米,残料1米; (3)截成4米、4米,残料2米。
尽量用方法(1)。50根用方法(1),截出3米的100根,4米的50根,还差50根4米的。再用方法(2)截25
根原材料,截出50根4米的。共用原材料50+25=75(根)。 7.20时。 解:
由此得到,丙做A,甲做B,乙做C。所需时间为6+6+8=20(时)。
第29讲 运筹学初步(三)
本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,
就是这讲涉及的问题。当然,限于现有的知识水平,我们仅仅是初步探索一下。 1.统筹安排问题
例1 星期天妈妈要做好多事情。擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。妈妈干完所有这些事情最少用多长时间?
分析与解:如果按照题目告诉的几件事,一件一件去做,要95分钟。要想节约时间,就要想想在哪段时间里闲着,能否利用闲着的时间做其它事。最合理的安排是:先洗脏衣服的领子和袖口,接着打开全自动洗衣机洗衣服,在洗衣服的40分钟内擦玻璃和收拾厨房,最后晾衣服,共需60分钟(见下图)。
例1 告诉我们,当有许多事要做时,科学地安排好先后顺序,就能用较少的时间完成较多的事情。 2.排队问题
例2 理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟。怎样安排他们的理发顺序,才能使这五人理发和等候所用时间的总和最少?最少要用多少时间?
分析与解:一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理。甲先给需10分钟的人理发,然后15分钟的,最后24分钟的;乙先给需12分钟的人理发,然后20分钟的。甲给需10分钟的人理发时,有2人等待,占用三人的时间和为(10×3)分;然后,甲给需 15分钟的人理发,有 1人等待,占用两人的时间和为(15×2)分;最后,甲给需 24分钟的人理发,无人等待。
甲理发的三个人,共用(10×3+15×2+24)分,乙理发的两个人,共用(12×2+20)分。总的占用时间为 (10×3+15×2+24)+(12×2+20)=128(分)。 按照上面的安排,从第一人开始理发到五个人全部理完,用了 10+15+24=49(分)。如果题目中再要求从第一人开始理发到五人全部理完的时间最短,那么做个调整,甲依次给需10,12,20分钟的人理发,乙依次给需15,24分钟的人理发,总的占用时间仍是128分钟,而五人全部理完所用时间为
10+12+20=42(分)。
例3 车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为18,30,17,25,20分钟,每台车床停产一分钟造成经济损失5元。现有两名工作效率相同的修理工,怎样安排才能使得修复的时间最短且经济损失最少?
分析与解:因为(18+30+17+25+20)÷2=55(分),经过组合,一人修需18,17和20分钟的三台,另一人修需30和25分钟的两台,修复时间最短,为55分钟。 上面只考虑修复时间,没考虑经济损失,要使经济损失少,就要使总停产时间尽量短,显然应先修理修复时间短的。第一人按需17,18,20分钟的顺序修理,第2人按需25,30分钟的顺序修理,经济损失为
5×[(17×3+18×2+20)+(25×2+30)]=935(元)。 3.最短路线问题
例4 右图是一张道路示意图,每段路上的数字表示小明走这段路所需要的时间(单位:分)。小明从A到B最快要几分钟?
- 56 -
分析与解:我们采用分析排除法,将道路图逐步简化。 从A到O有两条路,A→C→O用6分钟,A→F→O用7分钟,排除后者,可将FO抹去,但AF不能抹去,因为从A到B还有其它路线经过AF,简化为左下图。
从A到E还剩两条路,A→C→G→E用12分钟,A→C→O→E用10分钟,排除前者,可将CG,GE抹去,简化为右上图。 从A到D还剩两条路,A→C→O→D用12分钟,A→H→D用13分钟,排除后者,可将AH,HD抹去,简化为左下图。
从A到B还剩两条路,A→C→O→E→B用17分钟,A→C→O→D→B用16分钟,排除前者,可将OE,EB抹去,简化为右上图。
小明按A→C→O→D→B走最快,用16分钟。 4.场地设置问题
例5 下图是A,B,C,D,E五个村之间的道路示意图,○中数字是各村要上学的学生人数,道路上的数表示两村之间的距离(单位:千米)。现在要在五村之中选一个村建立一所小学。为使所有学生到学校的总距离最短,试确定最合理的方案。
分析与解:我们采用比较学校设在相邻两村的差别的方法。例如比较 A和 C,若设在 A村,则在 C村一侧将集结 20+20+35+50=125(人),这些人都要走 AC这段路;若设在C村,则只有40人走AC这段路。对这两种方案,走其余各段路的人数完全相同,所以设在C村比设在A村好。 从上面比较A和C的过程可以看出,场地设置问题不必考虑场地之间的距离,只需比较两个场地集结的人数多少,哪个场地集结的人数越多,就应设在哪。
同理,经比较得到C比B好,D比E好。最后比较C和D。若设在 C村,则在 D村一侧将集结 35+ 50= 85(人);若设在 D村,则在C村一侧将集结 40+20+20=80(人)。因为在D村集结的人数比C村多,所以设在D村比C村好。 经过上面的比较,最合理的方案是设在D村。 不难发现,本题的解法与第27讲例2的解法十分类似。 例6 某天然气站要安装天然气管道通往位于一条环形线上的A~G七个居民区,每两个居民区间的距离如下图所示(单位:千米)。管道有粗细两种规格,粗管可供所有7个居民区用气,每千米8000元,细管只能供1个居民区用气,每千米3000元。粗、细管的转接处必须在居民区中。问:应怎样搭配使用这两种管道,才能使费用最省?
分析与解:在长度相同的情况下,每根粗管的费用大于2根细管的费用,小于3根细管的费用,所以安装管道时,只要后面需要供气的居民区多于2个,这一段就应选用粗管。从天然气站开始,分成顺时针与逆时针两条线路安装,因为每条线路的后面至多有两个居民区由细管通达,共有7个居民区,所以至少有3个居民区由粗管通达。因为长度相同时,2根或1根细管的费用都低于1根粗管的费用,所以由粗管通达的几个居民区的距离越短越好,而顺时针与逆时针两条线路未衔接部份的距离越长越好。经过计算比较,得到最佳方案:
(1)天然气站经G,F,E到D安装粗管,D到C安装2根细管,C到B安装1根细管; (2)天然气站到A安装1根细管。 此时总费用最少,为
8000×(3+12+8+6)+3000×2×5+3000×(9+10)=319000(元)。 练习29
1.早饭前妈妈要干好多的事:烧开水要15分钟,擦桌椅要8分钟,准备暖瓶要1分钟,灌开水要2分钟,买油条要10分钟,煮牛奶要7分钟。如果灶具上只有一个火,那么全部做完这些工作最少需要多少时间?怎样安排? 2.甲、乙、丙三名车工准备在同样效率的3个车床上加工七个零件,各零件加工所需时间分别为4,5,6,6,8,9,9分钟,三人同时开始工作。问:加工完七个零件最少需多长时间?
3.车间里有5台车床同时出现故障。已知第一台至第五台修复的时间依次为15,8,29,7,10分钟,每台车床停产一分钟造成经济损失5元。问:(1)如果只有一名修理工,那么怎样安排修理顺序才能使经济损失最少?(2)如果有两名修理工,那么修复时间最少需多少分钟?
- 57 -
4.下页左上图是一张道路图,每条路上的数是小王走
这段路所需的时间(单位:分)。小王从A到B,最快需要几分钟?
5.东升乡有8个行政村。分布如右上图所示,点表示村庄,线表示道路,数字表示道路的长(单位:千米)。现在这个乡要建立有线广播网,沿道路架设电线。问:电线至少要架多长?
6.有七个村庄A1,A2,…,A7分布在公路两侧(见下图),由一些小路与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和最小,车站应设在哪里?
7.有一个水塔要供应某条公路旁的A~F六个居民点用水(见下图,单位:千米),要安装水管,有粗细两种水管,粗管足够供应6个居民点用水,细管只能供应1个居民点用水,粗管每千米要7000元,细管每千米要2000元,粗细管怎样互相搭配,才能使费用最省?费用应是多少?
答案与提示练习29 1.22分。
提示:先烧开水后煮牛奶共需22分,其它事情可以在这个期间做,顺序是买油条,准备暖瓶,擦桌椅(水开时暂停,煮上奶),灌开水,继续擦桌椅。 2.17分。
3.(1)780元;(2)36分。
提示:(1)按修复时间需7,8,10,15,29分的顺序修理;(2)一人修需7分和29分的,另一人修需8,10,15分的。 4.48分。
提示:A→E→O→G→B。 5.50千米。
提示:架设的线路如下图。
6.D。
提示:本题可简化为“B,C,D,E,F处分别站着1,1,2,2,1个人(见下页图),求一点,使所有人走到这一点的距离和最小”。
7.从水塔到C点铺粗管,最后三个居民点铺细管,总费用为297000元。
提示:当长度相同时,四根细管的费用超过一根粗管,所以最后三个居民点用细管。 第30讲 趣题巧解
生活中的许多事都蕴含着数学思想,我们先看一个猜数游戏。甲心中想一个32以内的数,乙只许问“比某数大吗?”甲只回答“是”或“不”,那么乙最多5次必可猜中。比如甲想的是23,下面是5次提问与回答:
(1)“比16大吗?”,“是”;(2)“比24大吗?”,“不”;
(3)“比20大吗?”,“是”;(4)“比22大吗?”,“是”;
(5)“比23大吗?”,“不”。于是乙猜中甲想的23。 这里乙用的是对分法。32的一半是16,第1次问话后,乙知道甲想的数在17~32之间; 17~32中间的数是24,第二次问话后,乙知道甲想的数在17~24之间。依此类推,因为32=25
,经5次对分,必猜中。
对分法适用于一次试验仅有两种不同结果的情形。 例1有1000箱外形完全相同的产品,其中999箱重量相同,有1箱次品重量较轻。现有一个称(一次可称量500箱),怎样才能尽快找出这箱次品?
分析与解:因为称量一次只有两种结果:等于规定重量或轻于规定重量,所以可用对分法。先取500箱称,若等于规定重量,则次品在另500箱中;若轻于规定重量,则次品在这500箱中。然后对有次品的500箱再对分,取其中的250箱称……因为1000<1024=210
,所以经过10次称必可查出次品。
若一次试验可以有三种不同的结果,则可用三分法。 例2 现有80粒重量、外形完全相同的珍珠和1粒外形相同、但重量较轻的假珍珠,怎样才能用一台天平尽快地将这粒假珍珠挑出来?
- 58 -
分析与解:因为天平称重有三种结果;①两边一样重,②左边重,③右边重,所以可以用三分法。
先将81粒珍珠三等分,在天平两边各放27粒珍珠,天平下还有27粒。若两边一样重,则假珍珠在天平下的27粒中;若左边重,则假珍珠在天平右边的27粒中;若右边重,则假珍珠在天平左边的27粒中。
然后再将有假珍珠的一堆三等份,继续上面的做法。因
为81=34
,所以只需要称4次就可将假珍珠挑出来。 我们再看看“空瓶换酒问题”。
例3某商店出售啤酒,规定每5个空啤酒瓶能换1瓶啤酒。张叔叔家买了80瓶啤酒,喝完后再按规定用空啤酒瓶去换啤酒,那么他们家前后共能喝到多少瓶啤酒? 分析与解:我们按照实际换酒过程分析: 喝掉80瓶啤酒,用80个空瓶换回16瓶啤酒; 喝掉16瓶啤酒,用16个空瓶换回3瓶啤酒余1个空瓶;
喝掉3瓶啤酒,连上次余下的1个空瓶还剩4个空瓶。此时,再借1个空瓶,与剩下的4个空瓶一起又可换回1瓶啤酒,喝完后将空瓶还了。
所以,他们家前后共喝到啤酒80+16+3+1=100(瓶)。 解例3的关键是:正确运用“5个空瓶可换1瓶啤酒”这个条件,特别是最后一次换瓶的技巧,你不充分利用可就“吃亏了”!但如果一开始酒的瓶数很多,那么这个换酒的过程就会很长。有没有简便的算法呢?注意到“每5个空瓶可换一瓶啤酒”(连酒带瓶)这个条件,可知每4个空瓶就能换到一瓶啤酒(不带瓶),那么喝剩的80个空瓶共能换到20瓶啤酒,所以张叔叔家前后共能喝到80+20=100(瓶)啤酒。综合式是80+80÷(5-1)=100(瓶)。
有了上面的简捷思路,求解类似的问题就简单多了。 例4一块钢锭可以铸成25个机器零件的毛坯,每加工5个机器零件的毛坯所剩的脚料又可以铸成一个机器零件的毛坯。现在有这种钢锭10块,最多可以加工多少个机器零件? 分析与解:这类“铸坯加工零件”问题显然也属于“空瓶换酒”问题。由“每加工5个机器零件的毛坯所剩的脚料又可铸成一个机器零件的毛坯”可知,实际每加工5个机器零件只需要4个机器零件的毛坯(没有脚料),即每
(个)机器零件。注意,此处不能使用四舍五入,只能使用去尾法。综合式是
也可以这样想:因为每加工5个机器零件只需要4个机器零件毛坯(没有
10≈312(个)机器零件。综合式是
例5 5个空瓶可以换一瓶汽水,某班同学喝了1瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买多少瓶?
分析与解:本题告诉了按空瓶换汽水的原则和共能喝到的汽水,反过来求原先至少要买的汽水瓶数。根据“5个空瓶可以换1瓶汽水”(连汽水带瓶)
能喝到1瓶汽水呢?显然至少应买汽水
注意,此处不能使用四舍五入,只能使用收尾法。 综合式是
下面,我们讲讲如何利用对称的思想来分析解决问题。 例6 甲、乙两人轮流往一个圆桌面上放同样大小的硬币。规则是:每人每次只能放一枚,硬币不许重叠,谁放完最后一枚硬币而使对方再也无处可放,谁就获胜。如果甲先放,那么他怎样放才能取胜?
分析与解:这道题初看太抽象,既不知道圆桌的大小,又不知道硬币的大小,谁知道该怎样放呀!我们用对称的思想来分析一下。圆是关于圆心对称的图形,若A是圆内除圆心外的任意一点,则圆内一定有一点B与A关于圆心对称(见右图,其中AO=OB)。所以,圆内除圆心外,任意一点都有一个(关于圆心的)对称点。由此可以想到,只要甲把第一枚硬币放在圆桌面的圆心处,以后无论乙将硬币放在何处,甲一定能找到与之对称的点放置硬币。也就是说,只要乙能放,甲就一定能放。最后无处可放硬币的必是乙。 甲的获胜策略是:把第一枚硬币放到圆桌面的圆心处,以后总在乙上次放的硬币的对称点放置硬币。
- 59 -
这种利用对称思想的获胜策略体现出了一种机
智,而这种机智来源于数学思想。同学们经常进行这种锻炼,就会变得越来越聪明。比如,有两堆火柴,第一堆20根,第二堆25根,甲、乙二人轮流从中取火柴,每次可以从任一堆中取走任意数量的火柴,取走最后一根火柴者胜。甲先
取,怎样才能保证获胜?利用对称的思想分析,只要甲先从第二堆中取走5根,此时两堆火柴的数量相等(也是一种对称),以后无论乙从哪一堆取多少根火柴,甲都对称地从另一堆取相同数量的火柴,只要乙能取,甲就能取,所以最后一根必被甲取走,甲胜。
例7 十个相同的圆摆成左下图所示的形状,过其中两个圆的圆心A和B作直线,求直线右上方圆内总面积与直线左下方圆内总面积的比。
分析与解:我们把直线AB以及AB经过的四个圆单独画
成右上图,此图关于C点对称,所以这四个圆正好被平均分成两部分,即直线两侧的面积各为2个圆面积。所以在左上图中,直线右上侧圆内面积总和是4个圆面积,直线左下侧
圆内面积总和是6个是圆面积,两者的面积比是4/6=2/3。 练习30
1.甲、乙玩猜数游戏。甲在心中想好一个1000以内的数,乙只许问“比某数小吗?”甲只回答“是”或“不是”。那
么乙最少问几次就一定能猜中这个数?
2.现有700粒相同的珍珠和1粒外形相同、重量略轻的假珍珠,用一台天平至少称几次,就一定能把这粒假珍珠挑出来?
3.某校开运动会,学校给同学们买来50箱汽水,每箱24瓶。由于商店规定每6个空瓶可换到一瓶汽水,所以同学们每喝完6瓶汽水就去换一瓶,这样他们共能多喝多少瓶汽水?
4.一块铝锭可铸成20个机器零件毛坯,每4个毛坯车成零件后的铝屑又能铸成一个毛坯。那么7块这样的铝锭最
多能车成多少个机器零件?
5.某校开运动会,打算发给1000位学生每人一瓶汽水,由于商店规定每6个空瓶可换到一瓶汽水,所以学校不必买1000瓶汽水,那么最少要买多少瓶汽水?
6.有一艘轮船停在港口里,轮船的外舷有一软梯,软梯的第一级正好挨着海面,往上每隔20厘米有一级。这时海水正在涨潮,每小时上涨30厘米。问:经过多长时间,海水涨到软梯的第四级?
7.红、蓝墨水各一瓶,用一根滴管从红墨水中吸一滴滴到蓝墨水中,搅拌后,再从蓝墨水中吸一滴同样体积的墨水滴到红墨水中。这时红墨水中的蓝墨水多,还是蓝墨水中的红墨水多?
答案与提示 练习30 1.10次。
提示:2=1024>1000,与例1类似,利用对分法,10次必能猜中。 2.6次。
解:3=729>701,与例2类似,利用三分法,6次必能挑出来。
3.240瓶。解:24×50÷(6-1)=240(瓶)。
6
10
- 60 -
6.因为“水涨船高”,所以永远涨不到。 7.一样多。
提示:变化后两瓶墨水的体积都没变,所以红墨水中进来多少蓝墨水,必然有相同体积的红墨水进入蓝黑水,即红墨水中的蓝墨水与蓝黑水中的红墨水一样多。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务