高考物理动量守恒定律技巧(很有用)及练习题(1)
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.
①求弹簧恢复原长时乙的速度大小;
②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值. 【答案】v乙=6m/s. I=8N 【解析】 【详解】
(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:
又知
,方向向右。
联立以上方程可得
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:
2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为mA=1kg、mB=2kg、mC=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:
(1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1)【解析】
试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:
;(2)
;(3)零.
碰后A、B的共同速度
损失的机械能
(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大
根据动量守恒定律有:三者共同速度
最大弹性势能
(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.
弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:
根据机械能守恒定律:此时A、B的速度
,C的速度
可知碰后A、B已由向左的共同速度的最小速度为零 .
考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.
【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答
减小到零后反向加速到向右的
,故B
3.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于
450.
【答案】最多碰撞3次 【解析】
解:设小球m的摆线长度为l
小球m在下落过程中与M相碰之前满足机械能守恒:m和M碰撞过程是弹性碰撞,故满足: mv0=MVM+mv1 ②
③
联立 ②③得:
④
①
说明小球被反弹,且v1与v0成正比,而后小球又以反弹速度和小球M再次发生弹性碰撞,满足: mv1=MVM1+mv2 ⑤
⑥
解得:
⑦
整理得:
⑧
故可以得到发生n次碰撞后的速度:
⑨
而偏离方向为450的临界速度满足:
⑩
联立①⑨⑩代入数据解得,当n=2时,v2>v临界 当n=3时,v3<v临界
即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题.
分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n次后的速度表达式,再根据机械能守恒定律求出碰撞n次后反弹的最大角度,结合题意讨论即可.
点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n次反弹后的速度和最大角度,再结合题意求解.
4.(1)(6分)一质子束入射到静止靶核13AI上,产生如下核反应:p+13AI→x+n式中p代表质子,n代表中子,x代表核反应产生的新核。由反应式可知,新核x的质子数为 ,中子数为 。
(2)(9分)在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d。现给A一初速度,使A与B发生弹性正碰,碰撞时间极短:当两木块都停止运动后,相距仍然为d。已知两木块与桌面之间的动摩擦因数均为μ,B的质量为A的2倍,重力加速度大小为
2727g。求A的初速度的大小。
【答案】(1)14 13 (2)5.6gd 127271【解析】(1)由1H13Al14X0n,由质量数守恒定律和电荷数守恒可得,新核的
质子数为14,中子数为13。
(2)设物块A的初速度为v0,运动距离d的速度为v,A、B碰后的速度分别为v1、v2,运动的距离分别为x1、x2,由于A、B发生弹性正碰,时间极短,所以碰撞墙后动量守恒,动能守恒,有
mAvmAv1mBv2 ①
111mAv2mAv12mBv22 ② 222①②联立解得v1mAmB2mA12vv ③ v2vv ④
mAmB3mAmB3A、B与地面的动摩擦因数均为,有动能定理得mAgx1012mv1⑤ 212 ⑥ mBgx20mv22由题意知x1x2d ⑦ 再由mAgd112 ⑧ mAv2mAv022联立③至⑧式解得v028gd5.6gd ⑨ 5另解:由牛顿第二定律得mgma,⑤ 所以A、B的加速度均为ag ⑥
A、B均做匀减速直线运动
22对A物体有:碰前vv02ad ⑦
2碰后:A物体反向匀减速运动:0v12ax1 ⑧
2对B物体有0v22ax2 ⑨
由题意知x1x2d ⑩ ②③⑤⑦⑧⑨联立解得v将上式带入⑥解得v018gd (11) 528gd5.6gd (12) 5【考点定位】动量守恒定律、弹性正碰、匀减速直线运动规律、动能定理、牛顿第二定律。
5.用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”.1932年,查德威克用铍“辐射”分别照射(轰击)氢和氨(它们可视为处于静止状态).测得照射后沿铍“辐射”方向高速运动的氨核和氦核的质量之比为7:0.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子.假设铍“辐射”中的中性粒子与氢或氦发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量.(质量用原子质量单位u表示,1u等于1个
12
C原子质量的十二分之一.取氢核和氦核的质量分别为1.0u和14u.)
【答案】m=1.2u 【解析】
设构成铍“副射”的中性粒子的质量和速度分别为m和v,氢核的质量为mH.构成铍“辐射”的中性粒子与氢核发生弹性正碰,碰后两粒子的速度分别为v′和vH′.由动量守恒与能量守恒定律得 mv=mv′+mHvH′ ①
1211mv=mv′2+mHvH′2② 222解得
vH′=
2mv③
mmH同理,对于质量为mN的氮核,其碰后速度为
2mvVN′=④
mmN由③④式可得
mNvN'mHvH'm=⑤
vH'vN'根据题意可知 vH′=7.0vN′ ⑥
将上式与题给数据代入⑤式得
m=1.2u ⑦
6.卢瑟福用α粒子轰击氮核发现质子。发现质子的核反应为:
。已
知氮核质量为mN=14.00753u,氧核的质量为mO=17.00454u,氦核质量mHe=4.00387u,质子(氢核)质量为mp=1.00815u。(已知:1uc2=931MeV,结果保留2位有效数字)求: (1)这一核反应是吸收能量还是放出能量的反应?相应的能量变化为多少?
(2)若入射氦核以v0=3×107m/s的速度沿两核中心连线方向轰击静止氮核。反应生成的氧核和质子同方向运动,且速度大小之比为1:50。求氧核的速度大小。 【答案】(1)吸收能量,1.20MeV;(2)1.8×106m/s 【解析】
(1)这一核反应中,质量亏损:△m=mN+mHe-mO-mp=14.00753+4.00387-17.00454-1.00815=-0.00129u
由质能方程,则有△E=△m c2=-0.00129×931=-1.20MeV 故这一核反应是吸收能量的反应,吸收的能量为1.20MeV (2)根据动量守恒定律,则有:mHe v0=mH vH+mOvO 又:vO:vH=1:50 解得:vO=1.8×106m/s
7.如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线、同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)
【答案】4v0 【解析】 【分析】
在抛货物的过程中,乙船与货物组成的动量守恒,在接货物的过程中,甲船与货物组成的系统动量守恒,在甲接住货物后,甲船的速度小于等于乙船速度,则两船不会相撞,应用动量守恒定律可以解题. 【详解】
设抛出货物的速度为v,以向右为正方向,由动量守恒定律得:乙船与货物:
12mv0=11mv1-mv,甲船与货物:10m×2v0-mv=11mv2,两船不相撞的条件是:v2≤v1,解得:v≥4v0,则最小速度为4v0. 【点睛】
本题关键是知道两船避免碰撞的临界条件是速度相等,应用动量守恒即可正确解题,解题时注意研究对象的选择以及正方向的选择.
8.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低点B时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A.求男演员落地点C与O点的水平距离s.已知男演员质量m1和女演员质量m2之比m1∶m2=2,秋千的质量不计,秋千的摆长为R,C点比O点低5R.
【答案】8R 【解析】 【分析】 【详解】
两演员一起从从A点摆到B点,只有重力做功,机械能守恒定律,设总质量为m,则
1mgRmv2
2女演员刚好能回到高处,机械能依然守恒:m2gR1m2v12 2女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:
(m1m2)vm2v1m1v2③
根据题意:m1:m22 有以上四式解得:v222gR 接下来男演员做平抛运动:由4R因而:sv2t8R; 【点睛】
两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;本题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.
8R12gt,得t g2
9.如图所示,固定的光滑圆弧面与质量为6kg的小车C的上表面平滑相接,在圆弧面上有
一个质量为2kg的滑块A,在小车C的左端有一个质量为2kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C的动摩擦因数均为μ=0.5,小车C与水平地面的摩擦忽略不计,取g=10m/s2. 求: (1)滑块A与B弹性碰撞后瞬间的共同速度的大小; (2)小车C上表面的最短长度.
【答案】(1) v=2.5m/s (2) L=0.375m 【解析】
【试题分析】(1)根据机械能守恒求解块A滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A与B碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C上表面的最短长度.
(1)设滑块A滑到圆弧末端时的速度大小为v1,由机械能守恒定律有:mAgh代入数据解得v12gh5m/s.
设A、B 碰后瞬间的共同速度为v2,滑块A 与B 碰撞瞬间与小车C 无关,滑块A 与B 组成的系统动量守恒, mAv1mAmBv2 代入数据解得v22.5m/s.
(2)设小车C 的最短长度为L,滑块A 与B 最终没有从小车C 上滑出,三者最终速度相同设为v3,
根据动量守恒定律有:mAmBv2mAmBmCv3 根据能量守恒定律有:mAmBgL=联立以上两代入数据解得L0.375m
【点睛】本题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.
12mAv1 211mAmBv22mAmBmCv32 22
10.(20分)如下图所示,光滑水平面MN左端挡板处有一弹射装置P,右端N与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ的长度L=8m,皮带轮逆时针转动带动传送带以v = 2m/s的速度匀速转动。MN上放置两个质量都为m = 1 kg的小物块A、B,它们与传送带间的动摩擦因数μ = 0.4。开始时A、B静止,A、B间压缩一轻质弹簧,其弹性势能Ep = 16 J。现解除锁定,弹开A、B,并迅速移走弹簧。取g=10m/s。
2
(1)求物块B被弹开时速度的大小;
(2)求物块B在传送带上向右滑行的最远距离及返回水平面MN时的速度vB′; (3)A与P相碰后静止。当物块B返回水平面MN后,A被P弹出,A、B相碰后粘接在一起向右滑动,要使A、B连接体恰好能到达Q端,求P对A做的功。 【答案】(1)vB4.0m/s(2)vB'2m/s(3)W=162 J 【解析】
试题分析:(1)(6分)解除锁定弹开AB过程中,系统机械能守恒:
Ep1212mvAmvB ……2分 22设向右为正方向,由动量守恒mvB mvA0 ……2分 解得vBvA4.0m/s ①……2分
(2)(6分)B滑上传送带做匀减速运动,当速度减为零时,滑动的距离最远。 由动能定理得 mgsM012mvB ……2分 2vB22m ……1分 ② 解得SM2g物块B在传送带上速度减为零后,受传送带给它的摩擦力,向左加速,若一直加速,则受力和位移相同时,物块B滑回水平面MN时的速度vB'4m/s ,高于传送带速度,说明B滑回过程先加速到与传送带共速,后以2m/s的速度做匀速直线运动。……1分 物块B滑回水平面MN的速度vB'v2m/s ……2分
③
,碰撞后A、B共同(3)(8分)弹射装置将A弹出后与B碰撞,设碰撞前A的速度为vAmvB2mV 的速度为V,根据动量守恒定律,mvA
A、B恰好滑出平台Q端,由能量关系有
……2分
④
12mV22mgL ……2分⑤ 2 ……2分 ⑥ 设弹射装置对A做功为W,W=mvA由④⑤⑥ 解得W=162 J ……2分 考点:相对运动 动能定理 动量守恒
122
11.如图所示,在光滑的水平面上,质量为4m、长为L的木板右端紧靠竖直墙壁,与墙壁不粘连.质量为m的小滑块(可视为质点)以水平速度v0滑上木板左端,滑到木板右端时速度恰好为零.现小滑块以水平速度v滑上木板左端,滑到木板右端时与竖直墙壁发生弹
性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求
的值. 0
【答案】【解析】
试题分析:小滑块以水平速度v0右滑时,有:fL=0-12mv0(2分) 21212mv1-mv(2分) 22滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为v2,
小滑块以速度v滑上木板到运动至碰墙时速度为v1,则有fL=则有mv1=(m4m)v2(2分) 由总能量守恒可得:fL=上述四式联立,解得
1212mv1-(m4m)v2(2分) 22v3(1分) v02考点:动能定理,动量定理,能量守恒定律.
12.如图所示,装置的左边是足够长的光滑水平台面,一轻质弹簧左端固定,右端连接着质量M=1kg的小物块A.装置的中间是水平传送带,它与左、右两边的台面等高,并能平滑对接.传送带始终以v=1m/s的速率逆时针转动,装置的右边是一光滑曲面,质量m=0.5kg的小物块B从其上距水平台面高h=0.8m处由静止释放.已知物块B与传送带之间的动摩擦因数0.35,l=1.0m.设物块A、B间发生的是对心弹性碰撞,第一次碰撞前物块A处于静止状态.取g=10m/s2.
(1)求物块B与物块A第一次碰撞前的速度大小; (2)物块A、B间发生碰撞过程中,物块B受到的冲量;
(3)通过计算说明物块B与物块A第一次碰撞后能否运动到右边的曲面上?
(4)如果物块A、B每次碰撞后,弹簧恢复原长时都会立即被锁定,而当它们再次碰撞前锁定被解除,试求出物块B第n次碰撞后的运动速度大小.
11【答案】(1)3m/s;(2)2kgm/s;(3)l,所以不能;(4)73【解析】
n1m
s【分析】
物块B沿光滑曲面下滑到水平位置由机械能守恒列出等式,物块B在传送带上滑动根据牛顿第二定律和运动学公式求解;物块A、B第一次碰撞前后运用动量守恒,能量守恒列出等式求解;当物块B在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B运动到左边台面是的速度大小为v1,继而与物块A发生第二次碰撞.物块B与物块A第三次碰撞、第四次碰撞…,根据对于的规律求出n次碰撞后的运动速度大小. 【详解】
(1) 设物块B沿光滑曲面下滑到水平位置时的速度大小为v0,由机械能守恒定律可得:
mgh12mv0 2解得:v04m
s设物块B在传送带上滑动过程中因受摩擦力所产生的加速度大小为a,则有:μmg=ma, 设物块B通过传送带后运动速度大小为v,有:v12-v02=-2al,
解得:v1=3m/s>v=1m/s,则物块B与物块A第一次碰撞前的速度大小为3m/s; (2)设物体A、B第一次碰撞后的速度分别为vA、vB,取向右为正方向 由动量守恒定律得:mv1MvAmvB 由机械能守恒定律得:
121212mv1mvBMvA 222解得:vA=-2m/s,vB=1m/s,(vA=0m/s,vB=-3m/s不符合题意,舍去)
m ,方向水平向右; IPmvBmv12kg?s(3) 碰撞后物块B在水平台面向右匀速运动,设物块B在传送带上向右运动的最大位移为l',则有: 0-vB2=-2al′, 解得:l1l 7所以物块B不能通过传送带运动到右边的曲面上;
(4) 当物块B在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B运动到左边台面是的速度大小为vB,继而与物块A发生第二次碰撞 由(2)可知,vB=
1v1 313132同理可得:第二次碰撞后B的速度:vB1=vB()v1 第n次碰撞后B的速度为:vB(n-1)=()v1()【点睛】
本题是多过程问题,分析滑块经历的过程,运用动量守恒,能量守恒、牛顿第二定律和运动学公式结合按时间顺序分析和计算,难度较大.
13n13n1m s