一.教材分析
(1)这道例题在小数和整数相乘的基础上,教学小数乘小数,初步形成小数乘法的计算法则。计算法则是通过3.62.8(一位小数乘一位小数)和2.81.15(一位小数乘两位小数)两次计算实践概括出来的。可见,教材设计的学习方式是‘探索发现’。即先感受具体的计算,然后归纳出计算策略、步骤以及在积里点小数点的规律。
(2)小数乘小数,积的小数点的位置规律是根据‘积的变化规律’推理得到的。学生在小数乘整数时已经能够把小数乘法先当作整数乘法计算,所以例题和‘试一试’的教学重点都是‘积里的小数点在哪里’。
(3)根据积的变化规律探索小数乘法积的小数点的位置,是演绎推理为主的思维活动,比较抽象,有些难度。所以例题呈现了推理的过程,带领学生把小数乘法转化成整数乘法,体会两个乘数是怎样变化的,积跟着发生怎样的变化,如何把整数乘法的积‘回归’到小数乘法的积。‘试一试’比例题开放一点,为学生准备了‘转化’的框架,让他们按框架开展转化活动,并回归到原来的积上。
(4)教材要求学生总结小数乘法的计算法则,用自己的语言说出计算策略、计算步骤、在积里点小数点的方法。学生总结的法则既和人类已有的计算法则一致,有不机械接受文本法则,具有儿童色彩。
(5)‘练一练’的设计是有层次的。根据两个乘数的小数位数在积里点小数点是教学重点,第1题只要在积里点小数点,突出了重点。在学生学会点小数点以后,才让他们做第2题,完整教学小数乘小数的计算。
(6)配合例1的是练习十五第1、2、3题,也是有层次的:学会正确计算——识别并改正错误——应用计算解决实际问题。第3题的估计,一方面教学小数乘小数的估算方法(把小数看成比较接近的整十数或整数,利用整数乘法的口算估计小数乘法的积大约是多少),另方面利用估算判断笔算结果的合理性。
二.学生分析
(1)已有的小数乘整数的经验会带到小数乘小数里来,看到小数乘小数,会想到看作整数乘法计算。
(2)在学习例题之前,一般不知道积里点小数点的方法,即使知道方法也不明白为什么。这是必须教学的知识!
(3)根据积的变化规律进行演绎推理是比较难的,没有外界(教材和教师)的帮助,很难经历推理过程,很难形成推理结论。
如果学生在教材引领下完成例题里的推理,那么继续进行‘试一试’的推理是有可能的。
(4)学生计算小数乘法会算错,错误根源一般在整数乘法上。如果‘练一练’直接进入第2题,那么学生错误主要不在新知识上,会给教学评价带来被动。
(5)学生总结小数乘法的计算法则会有话可说,但未必说得很好,需要教师的指导与帮助。
三.教学活动设计
(1)3.62.8的笔算不是学生看看教科书就能过去的,更不是让学生计算和交流评价就能过去的。事实上,我们的学生以及教师自己还没有达到这个水平。
列出小数乘法算式和估计得数以后:
可以让学生说出计算策略——看成整数乘法计算;看成哪一个整数乘法?——3628。教师在 3.6 的右边写出 3 6 完成整数乘法
2.8 2 8
比较小数乘法竖式和整数乘法竖式,一个乘数的变化;另一个乘数的变化→引起积的变化。这些变化要连贯起来让学生完整地说清楚。
讨论怎样从整数乘法的积回归小数乘法的积,明白‘积÷100’把小数点向右移动两位,也就是从右边起数出两位点上小数点
回顾这个小数乘法的计算,小结这题的计算策略、计算方法。具体地突出两点,一是看成整数乘法3628相乘;二是在积里点小数点的方法,由于两个乘数一共有两位小数,积里也点出两位小数。
在黑板上计算3.62.8
(2)2.81.15的教学可以放手一点,让学生联系例题里的体会,主动研究新的计算。
列出算式、写出竖式 1.15 以后:
2.8
让学生说说计算策略,应该看成怎样的整数乘法?
说说从小数乘法到整数乘法,乘数的变化、积的变化;
说说怎样从整数乘法的积回归小数乘法的积?
让学生在教科书上再次经历转化与回归的思维和计算
让学生说说两位小数乘一位小数,积里应该有几位小数。
让学生计算2.81.15
(3)总结小数乘法法则
回顾例题的计算:一位小数乘一位小数是怎样计算的?
回顾‘试一试’的计算:两位小数乘一位小数是怎样计算的?
比较两次计算的相同与不同:都看成整数乘法计算,都在积里点小数点,都根据乘数的小数位数点小数点。由于乘数的小数位数不同,积的小数位数不同。
归纳计算法则:
先看成整数乘法计算,再在积里点小数点;
根据两个乘数一共的小数位数,确定积的小数位数。
(4)组织练习
按教科书练习编排的线索,适当修改、调整、变化。
先练习在得数里点小数点,再完整笔算小数乘小数,然后识别并改正错误。