您好,欢迎来到微智科技网。
搜索
您的当前位置:首页(高鸿业主编)西方经济学(微观部分)第5版课后习题答案前六章

(高鸿业主编)西方经济学(微观部分)第5版课后习题答案前六章

来源:微智科技网


西方经济学微观部分 第五版(高鸿业主编) 课后习题答案

第二章 需求、供给和均衡价格

1. (1)将需求函数Q=50-5P和供给函数Qs=-10+5P代入均衡条件Qd=Qs, 有 50-5P=-10+5P 得 Pe=6

将均衡价格Pe=6代入需求函数Qd=50-5P,得Qe=50-5×6=20

或者,将均衡价格Pe=6代入供给函数Qs=-10+5P,得 Qe=-10+5×6=20 所以,均衡价格和均衡数量分别为Pe=6,Qe=20。如图2-1

d

图2—1

(2)将由于消费者收入水平提高而产生的需求函数Q=60-5P和原供给函数Qs=-10+5P代入均衡条件Qd=Qs,有

d 60-5P=-10+5P 得 Pe=7 将均衡价格Pe=7代入Q=60-5P,得 Qe=60-5×7=25 或者,将均衡价格Pe=7代入Qs=-10+5P,得 Qe=-10+5×7=25 所以,均衡价格和均衡数量分别为Pe=7,Qe=25。如图2—2所示。

d图2—2

(3)将原需求函数Q=50-5P和由于技术水平提高而产生的供给函数Qs=-5+5P代入均衡条件Qd=Qs,有

50-5P=-5+5P 得 Pe=5.5 将均衡价格Pe=5.5代入Qd=50-5P,得 Qe=50-5×5.5=22.5

或者,将均衡价格Pe=5.5代入Qs=-5+5P,得 Qe=-5+5×5.5=22.5 所以,均衡价格和均衡数量分别为Pe=5.5,Qe=22.5。如图2—3所示。

d

图2—3

(4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征。也可以说,静态

分析是在一个经济模型中根据给定的外生变量来求内生变量的一种分析方法。以(1)为例,在图2—1中,均衡点E就是一个体现了静态分析特征的点。它是在给定的供求力量的相互作用下达到的一个均衡点。在此,给定的供求力量分别用给定的供给函数Qs=-10+5P和需求函数Qd=50-5P表示,均衡点E具有的特征是:均衡价格Pe=6,且当Pe=6时,有Qd=Qs=Qe=20;同时,均衡数量Qe=20,且当Qe=20时,有Pd=Ps=Pe=6。也可以这样来理解静态分析:在外生变量包括需求函数中的参数(50,-5)以及供给函数中的参数(-10,5)给定的条件下,求出的内生变量分别为Pe=6和Qe=20。

依此类推,以上所描述的关于静态分析的基本要点,在(2)及图2—2和(3)及图2—3中的每一个单独的均衡点Ei (i=1,2)上都得到了体现。

而所谓的比较静态分析是考察当原有的条件发生变化时,原有的均衡状态会发生什么变化,并分析比较新旧均衡状态。也可以说,比较静态分析是考察在一个经济模型中外生变量变化时对内生变量的影响,并分析比较由不同数值的外生变量所决定的内生变量的不同数值,以(2)为例加以说明。在图2—2中,由均衡点E1变动到均衡点E2就是一种比较静态分析。它表示当需求增加即需求函数发生变化时对均衡点的影响。很清楚,比较新、旧两个均衡点E1和E2可以看到:需求

1

增加导致需求曲线右移,最后使得均衡价格由6上升为7,同时,均衡数量由20增加为25。也可以这样理解比较静态分析:在供给函数保持不变的前提下,由于需求函数中的外生变量发生变化,即其中一个参数值由50增加为60,从而使得内生变量的数值发生变化,其结果为,均衡价格由原来的6上升为7,同时,均衡数量由原来的20增加为25。 类似地,利用(3)及图2—3也可以说明比较静态分析方法的基本要点。 (5)由(1)和(2)可见,当消费者收入水平提高导致需求增加,即表现为需求曲线右移时,均衡价格提高了,均衡数量增加了。

由(1)和(3)可见,当技术水平提高导致供给增加,即表现为供给曲线右移时,均衡价格下降了,均衡数量增加了。总之,一般地,需求与均衡价格成同方向变动,与均衡数量成同方向变动;供给与均衡价格成反方向变动,与均衡数量成同方向变动。

2002+4300+100

·(/)=1.5 222

dQP22

(2)由于当P=2时,Qd=500-100×2=300,所以,有ed=-·=-(-100)·=

dPQ3003GB2002FO2

(3)根据图2—4,在a点即P=2时的需求的价格点弹性为ed=== 或 ed==

OG3003AF3

有 ed=

2. (1)根据中点公式,

图2—4

显然,在此利用几何方法求出的P=2时的需求的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是ed

2=。 3

43+54+84

3. (1)根据中点公式 有 es=·(/)=

2223

dQP3s

(2)由于当P=3时,Q=-2+2×3=4,所以,es=·=2·=1.5

dPQ4

AB6

(3)根据图2—5,在a点即P=3时的供给的价格点弹性为es===1.5

OB4

图2—5

显然,在此利用几何方法求出的P=3时的供给的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是es

=1.5。

4. (1)根据求需求的价格点弹性的几何方法,可以很方便地推知:分别处于三条不同的线性需求曲线上的a、b、c三点的

FO

需求的价格点弹性是相等的。其理由在于,在这三点上,都有ed=

AF

(2)根据求需求的价格点弹性的几何方法,同样可以很方便地推知:分别处于三条不同的线性需求曲线上的a、e、f三点

afe

的需求的价格点弹性是不相等的,且有ed<ed<ed。其理由在于

GBGCGD

在a点有:ea 在f点有:efd= 在e点有:ee d=d=

OGOGOG

e

在以上三式中,由于GB<GC<GD,所以,ead<efd<ed。 5.

2

dQPdQ

·,此公式的-项是需求曲线某一点斜率的绝对值的倒数,又因dPQdP

dQ

为在图(a)中,线性需求曲线D1的斜率的绝对值小于线性需求曲线D2的斜率的绝对值,即需求曲线D1的-值大于需求

dP

dQ

曲线D2的-值,所以,在两条线性需求曲线D1和D2的交点a,在P和Q给定的前提下,需求曲线D1的弹性大于需求曲

dP

(1)因为需求的价格点弹性的定义公式为ed=-线D2的弹性。

dQPdQ

·,此公式中的-项是需求曲线某一点的斜率的绝对值的倒数,dPQdP

而曲线型需求曲线上某一点的斜率可以用过该点的切线的斜率来表示。在图(b)中,需求曲线D1过a点的切线AB的斜率

(2)因为需求的价格点弹性的定义公式为ed=-

的绝对值小于需求曲线D2过a点的切线FG的斜率的绝对值,所以,根据在解答(1)中的道理可推知,在交点a,在P和Q给定的前提下,需求曲线D1的弹性大于需求曲线D2的弹性。

MdQ1M11 有 =-· 得 100dM21002100

dQM1M11M1M2

eM=·=-··100·=

dMQ210021001001002

2

观察并分析以上计算过程及其结果,可以发现,当收入函数M=aQ(其中a>0,为常数)时,则无论收入M为多少,相

1

应的需求的收入点弹性恒等于。

2

dQPPdQM-NM-N-N-1

7由已知条件Q=MP,可得ed=-·=-M·(-N)·P·-N=N eM=·=P·-N=1

dPQMPdMQMP

由此可见,一般地,对于幂指数需求函数Q(P)=MP-N而言, 其需求的价格点弹性总等于幂指数的绝对值N。而对于线性需求函数Q(M)=MP-N而言,其需求的收入点弹性总是等于1。

8.令在该市场上被100个消费者购买的商品总量为Q,相应的市场价格为P。

1

根据题意,该市场的商品被60个消费者购买,且每个消费者的需求的价格弹性都是3,于是,单个消费者i的需求

36.由已知条件M=100Q2,可得Q=60

dQiPdQiQiQ的价格弹性可以写为edi=-·=3 即 =-3· (i=1,2,„,60) (1) 且 Qi= (2) dPQidPP3

i=1

2

类似地,再根据题意,该市场的商品被另外40个消费者购买,且每个消费者的需求的价格弹性都是6,于是,单个

3

dQiPdQjQj

消费者j的需求的价格弹性可以写为 edj=-·=6 即 =-6· (j=1,2,„,40) (3)

dPQjdPP

40

2Q且 Qj= (4) 此外,该市场上100个消费者合计的需求的价格弹性可以写为

3

j=1

4060

dQi+Qj40dQjP60dQidQPi=1j=1Ped=-·=-· =-. dPQdPQj1dPQi1dP60Q将式(1)、式(3)代入上式,得 ed=(3.i)Pi1

Qjp3(-6.). =PQj1p4060Qii16pQ. jpj1Q403

再将式(2)、式(4)代入上式,得 ed=-3P.Q362Q.p3pQP.(14).5 PQQ所以,按100个消费者合计的需求的价格弹性系数是5。.

QΔQP9、(1)由于ed=- 有 =e=-(1.3) ×(-2%)=2.6%即商品价格下降2%使得需求数量增加2.6%. d×QQPPPQ2)由于eM =- QMM 有

ΔQΔM

=eM·=2.2×5%=11% 即消费者收入提高5%使得需求数量增加11%。 QM

10. 1)关于A厂商:由于PA=200-QA=200-50=150,且A厂商的需求函数可以写成 QA=200-PA

dQAPA150

于是,A厂商的需求的价格弹性为 edA=-·=-(-1)×=3

dPAQA50

关于B厂商:由于PB=300-0.5QB=300-0.5×100=250,且B厂商的需求函数可以写成: QB=600-2PB

dQBPB250

于是,B厂商的需求的价格弹性为 edB=-·=-(-2)×=5

dPBQB100

(2)令B厂商降价前后的价格分别为PB和P′B,且A厂商相应的需求量分别为QA和Q′A,根据题意有 PB=300-0.5QB=300-0.5×100=250 P′B=300-0.5Q′B=300-0.5×160=220 QA=50 Q′A=40

ΔQAPB102505

因此,A厂商的需求的交叉价格弹性为 eAB=-·=·= ΔPBQA30503

(3)由(1)可知,B厂商在PB=250时的需求的价格弹性为edB=5,也就是说,对B厂商的需求是富有弹性的。我们知道,对于富有弹性的商品而言,厂商的价格和销售收入成反方向的变化,所以,B厂商将商品价格由PB=250下降为 P′B=220,将会增加其销售收入。具体地有:

降价前,当PB=250且QB=100时,B厂商的销售收入为 TRB=PB·QB=250×100=25 000

降价后,当P′B=220且Q′B=160时,B厂商的销售收入为 TR′B=P′B·Q′B=220×160=35 200

显然,TRB<TR′B,即B厂商降价增加了他的销售收入,所以,对于B厂商的销售收入最大化的目标而言,他的降价行为是正确的。

11. (1)令肉肠的需求为X,面包卷的需求为Y,相应的价格为PX、PY,且有PX=PY。

该题目的效用最大化问题可以写为 max U(X,Y)=min{X,Y} s.t. PX·X+PY·Y=M

M

解上述方程组有 X=Y=

PX+PY

-M·PX∂XPXPX2

M=由此可得肉肠的需求的价格弹性为 edX=-·=-(PX+PY)

PX+PY ∂PXX

PX+PY

PX1

由于一根肉肠和一个面包卷的价格相等,所以,进一步有 edX== PX+PY2

∂YPXMPXPX

(2)面包卷对肉肠的需求的交叉弹性为 eYX=·=-=- 2·∂PXY(PX+PY)MPX+PY

PX+PYPX1

由于一根肉肠和一个面包卷的价格相等,所以,进一步有 eYX=-=- PX+PY2

∂XPXPX2

(3)如果PX=2PY,则根据上面(1)、(2)的结果,可得肉肠的需求的价格弹性为 edX=-·==

∂PXXPX+PY3

∂YPXPX2

面包卷对肉肠的需求的交叉弹性为 eYX=·=-=-

∂PXYPX+PY3

dTR

12 由已知条件可得 MR==120-6Q=30 (1) 得Q=15

dQ

由式(1)式中的边际收益函数MR=120-6Q,可得反需求函数 P=120-3Q (2)

4

P

将Q=15代入式(2),解得P=75,并可由式(2)得需求函数Q=40-

3

dQP1755

最后,根据需求的价格点弹性公式有 ed=-·=--·= dPQ3153ΔQQ10%

13根据已知条件和需求的价格弹性公式,有 ed=-=-=1.6

ΔPΔPP4

由上式解得ΔP=-0.25。也就是说,当该商品的价格下降0.25,即售价为P=3.75时,销售量将会增加10%。 14. 厂商的销售收入等于商品的价格乘以销售量,即TR=P·Q。若令厂商的销售量等于需求量,则厂商的销售收入又可以

d

改写为TR=P·Q。由此出发,我们便可以分析在不同的需求的价格弹性的条件下,价格变化对需求量变化的影响,进而探讨相应的销售收入的变化。下面利用图2—8进行简要说明。

图2—8

在分图(a)中有一条平坦的需求曲线,它表示该商品的需求是富有弹性的,即ed>1。观察该需求曲线上的A、B两点,显然可见,较小的价格下降比例导致了较大的需求量的增加比例。于是有:降价前的销售收入TR1=P1·Q1,相当于矩形OP1AQ1的面积,而降价后的销售收入TR2=P2·Q2,相当于矩形OP2BQ2的面积,且TR1<TR2。也就是说,对于富有弹性的商品而言,价格与销售收入成反方向变动的关系。

类似地,在分图(b)中有一条陡峭的需求曲线,它表示该商品的需求是缺乏弹性的,即ed<1。观察该需求曲线上的A、B两点,显然可见,较大的价格下降比例却导致一个较小的需求量的增加比例。于是,降价前的销售收入TR1=P1·Q1(相当于矩形OP1AQ1的面积)大于降价后的销售收入TR2=P2·Q2(相当于矩形OP2BQ2的面积),即TR1>TR2。也就是说,对于缺乏弹性的商品而言,价格与销售收入成同方向变动的关系。

分图(c)中的需求曲线上A、B两点之间的需求的价格弹性ed=1(按中点公式计算)。由图可见,降价前、后的销售收入没有发生变化,即TR1=TR2,它们分别相当于两块面积相等的矩形面积(即矩形OP1AQ1和OP2BQ2的面积相等)。这就是说,对于单位弹性的商品而言,价格变化对厂商的销售收入无影响。

15. 图2—9 产品市场和生产要素市场的循环流动图

(1)关于微观经济学的理论体系框架。

微观经济学通过对个体经济单位的经济行为的研究,说明现代西方经济社会市场机制的运行和作用,以及改善这种运行的途径。或者,也可以简单地说,微观经济学是通过对个体经济单位的研究来说明市场机制的资源配置作用的。市场机制亦可称作价格机制,其基本的要素是需求、供给和均衡价格。

以需求、供给和均衡价格为出发点,微观经济学通过效用论来研究消费者追求效用最大化的行为,并由此推导出消费者的需求曲线,进而得到市场的需求曲线。生产论、成本论和市场论主要研究生产者追求利润最大化的行为,并由此推导出生产者的供给曲线,进而得到市场的供给曲线。运用市场的需求曲线和供给曲线,就可以决定市场的均衡价格,并进一步理解在所有的个体经济单位追求各自经济利益的过程中,一个经济社会如何在市场价格机制的作用下,实现经济资源的配置。其中,从经济资源配置效果的角度讲,完全竞争市场最优,垄断市场最差,而垄断竞争市场比

5

较接近完全竞争市场,寡头市场比较接近垄断市场。至此,微观经济学便完成了对图2—9中上半部分所涉及的关于产品市场的内容的研究。为了更完整地研究价格机制对资源配置的作用,市场论又将考察的范围从产品市场扩展至生产要素市场。生产要素的需求方面的理论,从生产者追求利润最大化的行为出发,推导生产要素的需求曲线;生产要素的供给方面的理论,从消费者追求效用最大化的角度出发,推导生产要素的供给曲线。据此,进一步说明生产要素市场均衡价格的决定及其资源配置的效率问题。这样,微观经济学便完成了对图2—9中下半部分所涉及的关于生产要素市场的内容的研究。

在以上讨论了单个商品市场和单个生产要素市场的均衡价格决定及其作用之后,一般均衡理论讨论了一个经济社会中所有的单个市场的均衡价格决定问题,其结论是:在完全竞争经济中,存在着一组价格(P1,P2,„,Pn),使得经济中所有的n个市场同时实现供求相等的均衡状态。这样,微观经济学便完成了对其核心思想即“看不见的手”原理的证明。

在上面实证研究的基础上,微观经济学又进入了规范研究部分,即福利经济学。福利经济学的一个主要命题是:完全竞争的一般均衡就是帕累托最优状态。也就是说,在帕累托最优的经济效率的意义上,进一步肯定了完全竞争市场经济的配置资源的作用。

在讨论了市场机制的作用以后,微观经济学又讨论了市场失灵的问题。市场失灵产生的主要原因包括垄断、外部经济、公共物品和不完全信息。为了克服市场失灵导致的资源配置的无效率,经济学家又探讨和提出了相应的微观经济。

(2)关于微观经济学的核心思想。

微观经济学的核心思想主要是论证资本主义的市场经济能够实现有效率的资源配置。通常用英国古典经济学家亚当·斯密在其1776年出版的《国民财富的性质和原因的研究》一书中提出的、以后又被称为“看不见的手”原理的那一段话,来表述微观经济学的核心思想,其原文为:“每人都在力图应用他的资本,来使其生产品能得到最大的价值。一般地说,他并不企图增进公共福利,也不知道他所增进的公共福利为多少。他所追求的仅仅是他个人的安乐,仅仅是他个人的利益。在这样做时,有一只看不见的手引导他去促进一种目标,而这种目标绝不是他所追求的东西。由于他追逐他自己的利益,他经常促进了社会利益,其效果要比他真正想促进社会利益时所得到的效果为大。”

第三章 效用论

ΔY1.按照两商品的边际替代率MRS的定义公式,可以将一份肯德基快餐对衬衫的边际替代率写成: MRSXY=- ΔX其中,X表示肯德基快餐的份数;Y表示衬衫的件数;MRSXY表示在维持效用水平不变的前提下,消费者增加一份肯德基快餐消费时所需要放弃的衬衫的消费数量。

PX20

在该消费者实现关于这两种商品的效用最大化时,在均衡点上有 MRSXY= 即有 MRSXY==0.25

PY80

它表明,在效用最大化的均衡点上,该消费者关于一份肯德基快餐对衬衫的边际替代率MRS为0.25。 2.线段AB为消费者的预算线,曲线U为消费者的无差异曲线,E点为效用最大化的均衡点。

图3—1 某消费者的均衡

(1)图中的横截距表示消费者的收入全部购买商品1的数量为30单位,且已知P1=2元,所以,消费者的收入

M=2元×30=60元。

(2)图中的纵截距表示消费者的收入全部购买商品2的数量为20单位,且由(1)已知收入M=60元,所以,商品2的价格

M60

P2===3元。

2020

(3)由于预算线方程的一般形式为 P1X1+P2X2=M 所以,由(1)、(2)可将预算线方程具体写为:2X1+3X2=60。

22

(4)将(3)中的预算线方程进一步整理为X2=-X1+20。很清楚,预算线的斜率为-。

33(5)在消费者效用最大化的均衡点E上,有MRS12=,即无差异曲线斜率的绝对值即MRS等于预算线斜率的绝对值。因

P1

P2P1P2

P12

此,MRS12==。

P23

3.请画出以下各位消费者对两种商品(咖啡和热茶)的无差异曲线,同时请对(2)和(3)分别写出消费者B和消费者C的

6

效用函数。

(1)消费者A喜欢喝咖啡,但对喝热茶无所谓。他总是喜欢有更多杯的咖啡,而从不在意有多少杯热茶。 (2)消费者B喜欢一杯咖啡和一杯热茶一起喝,他从来不喜欢单独喝咖啡,或者单独喝热茶。 (3)消费者C认为,在任何情况下,1杯咖啡和2杯热茶是无差异的。 (4)消费者D喜欢喝热茶,但厌恶喝咖啡。

解答:(1)根据题意,对消费者A而言,热茶是中性商品,因此,热茶的消费数量不会影响消费者A的效用水平。消费者A的无差异曲线见图3—2(a)。图3—2中的箭头均表示效用水平增加的方向。

(2)根据题意,对消费者B而言,咖啡和热茶是完全互补品,其效用函数是U=min{x1,x2}。消费者B的无差异曲线见图3—2(b)。

(3)根据题意,对消费者C而言,咖啡和热茶是完全替代品,其效用函数是U=2x1+x2。消费者C的无差异曲线见图3—2(c)。

(4)根据题意,对消费者D而言,咖啡是厌恶品。消费者D的无差异曲线见图3—2(d)。

图3—2 关于咖啡和热茶的不同消费者的无差异曲线

4

图3—3 解答:一般说来,发给消费者现金补助会使消费者获得更大的效用。其原因在于:在现金补助的情况下,消费者可以按照自己的偏好来购买商品,以获得尽可能大的效用。如图3—3所示。

在图3—3中,直线AB是按实物补助折算的货币量构成的现金补助情况下的预算线。在现金补助的预算线AB上,消费者根据自己的偏好选择商品1和商品2的购买量分别为x*1和x*2,从而实现了最大的效用水平U2,即在图3—3中表现为预算线AB和无差异曲线U2相切的均衡点E。

而在实物补助的情况下,则通常不会达到最大的效用水平U2。因为,譬如,当实物补助的商品组合为F点(即两商品数量分别为x11、x21),或者为G点(即两商品数量分别为x12和x22)时,则消费者能获得无差异曲线U1所表示的效用水平,显然,U1MU1P1dTU

5.根据消费者的效用最大化的均衡条件 = 其中,由U=3X1X22 可得 MU1==3X22

MU2P2dX1

dTU3X22042

MU2==6X1X2 于是,有 = 整理得 X2=X1 (1)

dX26X1X2303

4

将式(1)代入预算约束条件20X1+30X2=540,得20X1+30·X1=540 解得 X1=9

3



将X1=9代入式(1)得 X2=12 因此,该消费者每年购买这两种商品的数量应该为9、11

22

将以上最优的商品组合代入效用函数,得 U*=3X*1(X*2)=3×9×12=3 888 它表明该消费者的最优商品购买组合给他带来的最大效用水平为3 888。

6. (1)由消费者A的需求函数QdA=20-4P,可编制消费者A的需求表;由消费者B的需求函数QdB=30-5P,可编制消费B

7

的需求表。至于市场的需求表的编制可以使用两种方法,一种方法是利用已得到消费者A、B的需求表,将每一价格水平上两个消费者的需求数量加总来编制市场需求表;另一种方法是先将消费者A和B的需求函数加总来求得市场需求函数,即

dddd市场需求函数Q=QA+QB=(20-4P)+(30-5P)=50-9P, 然后运用所得到的市场需求函数Q=50-9P来编制市场需求表。这两种方法所得到的市场需求表是相同的。按以上方法编制的3张需求表如下所示。

消费者A的需求表 消费者B的需求表 市场需求表 P QdA P Qd 0 20 P Q

0 50 1 2 3 4 5 16 12 8 4 0 0 1 2 3 4 5 6 30 25 20 15 10 5 0 1 2 3 4 5 6 41 32 23 14 5 0

(2)由(1)中的3张需求表,所画出的消费者A和B各自的需求曲线以及市场的需求曲线如图3—4所示。

图3—4

35

7. 根据消费者效用最大化的均衡条件MU 1 /MU 2 =P1 /P2 由以知的效用函数Ux18x28 可得:

MUdTUdx138x18x28 MU5521dTUdx2583x18x28 于是,有:85833x1x3585823P1P2

x18x28整理得:

3x25x1P1P2 即有x25p1x13p2 (1)式代入约束条件P1X1+P2X2=M,有:

5M8P2P1x1P25P1x13P2M

解得:x13M8P1 代入(1)式得 x2

所以,该消费者关于两商品的需求函数为 x13M8P1 x25M8P2

8. 由于无差异曲线是一条直线,所以该消费者的最优消费选择有三种情况,其中的第一、第二种情况属于边角解。

第一种情况:当MRS12>P1/P2时,即a> P1/P2时,如图,效用最大的均衡点E的位置发生在横轴,它表示此时的最优解是一个边角解,即 X1=M/P1,X2=0。也就是说,消费者将全部的收入都购买商品1,并由此达到最大的效用水平,该效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一个商品组合所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。

第二种情况:当MRS128

解是一个边角解,即 X2=M/P2,X1=0。也就是说,消费者将全部的收入都购买商品2,并由此达到最大的效用水平,该效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一个商品组合所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。

第三种情况:当MRS12=P1/P2时,a= P1/P2时,如图,无差异曲线与预算线重叠,效用最大化达到均衡点可以是预算线上的任何一点的商品组合,即最优解为X1≥0,X2≥0,且满足P1X1+P2X2=M。此时所达到的最大效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一条无差异曲线所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。

UQq

图3—5 12q0.5

UM29. (1)由题意可得,商品的边际效用为: MUMUP12 货币的边际效用为:3

于是,根据消费者均衡条件,有:

0.53p 整理得需求函数为q1/36p 16qq0.5(2)由需求函数q1/36p2,可得反需求函数为:p(3)由反需求函数,可得消费者剩余为 CS10. (1)由消费者的效用函数Uxx,算得:MU

112413q044160.50dq1313

1xUQx1y MUyUyxy

消费者的预算约束方程为PxPyM (1) 根据消费者效用最大化的均衡条件

PMUxxPyMUyPxPyMyxx1yPx (2) 得xy1PyPxPyMyx (3) 解方程组(3),可得 xM/px (4)

yM/py (5) 式(4)即为消费者关于商品x和商品y的需求函数。如图3—6所示

(2)商品x和商品y的价格以及消费者的收入同时变动一个比例,相当于消费者的预算线变为

pxxpyyM (6)其中为一个非零常数。 此时消费者效用最大化的均衡条件变为

x1yPx1 (7) 故方程组(7)化为 xy1PxypyypxxpyyMPxxPyyMx1ypx (8)

显然,方程组(8)就是方程组(3),故其解就是式(4)和式(5)。这表明,消费者在这种情况下对两商品的需求关系维持不变。

(3)由消费者的需求函数(4)和(5),可得pxx/M (9) pyy/M (10)

9

关系(9)的右边正是商品x的消费支出占消费者收入的份额。关系(10)的右边正是商品y的消费支出占消费者收入的份额。故结论被证实。

图3—6

11在图3—7中,当P1=4,P2=2时,消费者的预算线为AB,效用最大化的均衡点为a。当P1=2,P2=2时,消费者的预

算线为AB′,效用最大化的均衡点为b。

图3—7

(1)先考虑均衡点a。根据效用最大化的均衡条件MRS12=P1/P2,其中,MRS12=MU1/MU2=X2/X1,P1/P2=4/2=2,

于是有X2/X1=2,X1=1/2 X2。将X1=1/2 X2代入预算约束等式4X1+2X2=80,有 4·1/2 X2+2X2=80 解得 X2=20 进一步得 X1=10 则最优效用水平为 U1=X1X2=10×20=200

再考虑均衡点b。当商品1的价格下降为P1=2时,与上面同理,根据效用最大化的均衡条件MRS12=P1/P2 有X2/X1=2/2=1 即X1=X2。将X1=X2代入预算约束等式2X1+2X2=80,解得X1=20,X2=20。

从a点到b点商品1的数量变化为ΔX1=20-10=10,这就是P1变化引起的商品1消费量变化的总效应。 (2)为了分析替代效应,作一条平行于预算线AB′且相切于无差异曲线U1的补偿预算线FG,切点为c点。

在均衡点c,根据MRS12=P1/P2 的均衡条件,有X2/X1=2/2=1,X1=X2。将X1=X2代入效用约束等式U1=X1X2=200,解得X1=14,X2=14(保留整数)。

从a点到c点的商品1的数量变化为ΔX1=14-10=4,这就是P1变化引起的商品1消费量变化的替代效应。 (3)至此可得,从c点到b点的商品1的数量变化为ΔX1=20-14=6,这就是P1变化引起的商品1消费量变化的收入效

应。当然,由于总效应=替代效应+收入效应,故收入效应也可由总效应ΔX1=10减去替代效应ΔX1=4得到,仍为6。

12 该风险回避的消费者不会参与这场。因为如果该消费者不参与这场,那么,在无风险条件下,他可拥有一

笔确定的货币财富量509.5元,其数额刚好等于风险条件下的财富量的期望值10 000×5%+10×95%=509.5元。由于他是一个风险回避者,所以在他看来,作为无风险条件下的一笔确定收入509.5元的效用水平,一定大于风险条件下这场所带来的期望效用。

13.(1)基数效用论者认为,商品得需求价格取决于商品得边际效用.某一单位得某种商品的边际效用越小,消费者愿意支付

的价格就越低.由于边际效用递减规律,随着消费量的增加,消费者为购买这种商品所愿意支付得最高价格即需求价

格就会越来越低.将每一消费量及其相对价格在图上绘出来,就得到了消费曲线.且因为商品需求量与商品价格成反

方向变动,消费曲线是右下方倾斜的.

(2)在只考虑一种商品的前提下,消费者实现效用最大化的均衡条件:MU /P=。由此均衡条件出发,可以计算出需求

价格,并推导与理解(1)中的消费者的向右下方倾斜的需求曲线。

14.(1)本题涉及的两个基本分析工具是无差异曲线和预算线。无差异曲线是用来表示消费者偏好相同的两种商品的全部组

合的,其斜率的绝对值可以用商品的边际替代率MRS来表示。预算线表示在消费者收入和商品价格给定的条件下,消费者全部收入所能购买到的两种商品的全部组合,其斜率为P1/P2。

(2)消费者效用最大化的均衡点发生在一条给定的预算线与无数条无差异曲线中的一条相切的切点上,于是,消费者效

用最大化的均衡条件为:MRS12=P1/P2,或者MU1/P1=MU2/P2。

(3)在(2)的基础上进行比较静态分析,即令一种商品的价格发生变化,便可以得到该商品的价格—消费曲线。价格—

10

消费曲线是在其他条件不变的前提下,与某一种商品的不同价格水平相联系的消费者效用最大化的均衡点的轨迹。如图3—8(a)所示。

(4)在(3)的基础上,将一种商品的不同价格水平和相应的最优消费量即需求量之间的一一对应关系描绘在同一坐标平面上,就可以得到需求曲线,如图3—8(b)所示。显然有:需求曲线一般斜率为负,表示商品的价格和需求量成反方向变化;而且,在需求曲线上与每一价格水平相对应的需求量都是可以在该价格水平给消费者带来最大效用的最优消费数量。

图3—8 图3—9

15. (1)当一种商品的价格发生变化时所引起的该商品需求量的变化可以分解为两个部分,它们分别是替代效应和收入效

应。替代效应是指仅考虑商品相对价格变化所导致的该商品需求量的变化,而不考虑实际收入水平(即效用水平)变化对需求量的影响。收入效应则相反,它仅考虑实际收入水平(即效用水平)变化导致的该商品需求量的变化,而不考虑相对价格变化对需求量的影响。

(2)无论是分析正常物品还是低档物品,甚至吉芬物品的替代效应和收入效应,都需要运用的一个重要分析工具即补偿

预算线。在图3—9中,以正常物品的情况为例加以说明。图3—9中,初始的消费者效用最大化的均衡点为a点, 相应的正常物品(即商品1)的需求为x11。价格P1下降以后的效用最大化的均衡点为b点,相应的需求量为x12。即P1下降的总效应为x11x12,且为增加量,故有总效应与价格成反方向变化。然后,作一条平行于预算线AB′且与原有的无差异曲线U1相切的补偿预算线FG(以虚线表示),相应的效用最大化的均衡点为c点,而且注意,此时b点的位置一定处于c点的右边。于是,根据(1)中的阐述,则可以得到:给定的代表原有效用水平的无差异曲线U1与代表P1变化前后的不同相对价格的(即斜率不同的)预算线AB、FG分别相切的a、c两点,表示的是替代效应,即替代效应为x11x13,且为增加量,故有替代效应与价格成反方向变化;代表不同效用水平的无差异曲线U1和U2分别与两条代表相同相对价格的(即斜率相同的)预算线FG、AB′相切的c、b两点,表示的是收入效应,即收入效应为x13x12,且为增加量,故有收入效应与价格成反方向变化。最后,由于正常物品的替代效应和收入效应都分别与价格成反方向变化,所以,正常物品的总效应与价格一定成反方向变化,由此可知,正常物品的需求曲线是向右下方倾斜的。 (3)关于低档物品和吉芬物品。在此略去关于这两类商品的具体的图示分析。需要指出的要点是,这两类商品的替代效

应都与价格成反方向变化,而收入效应都与价格成同方向变化,其中,大多数低档物品的替代效应大于收入效应,而低档物品中的特殊商品吉芬物品的收入效应大于替代效应。于是,大多数低档物品的总效应与价格成反方向变化,相应的需求曲线向右下方倾斜,低档物品中少数的特殊商品即吉芬物品的总效应与价格成同方向的变化,相应的需求曲线向右上方倾斜。 (4)基于(3)的分析,所以,在读者自己利用与图3—9相似的图形来分析低档物品和吉芬物品的替代效应和收入效应时,

在一般的低档物品的情况下,一定要使b点落在a、c两点之间,而在吉芬物品的情况下,则一定要使b点落在a点的左边。唯有如此作图,才符合(3)中理论分析的要求。

第4章 生产论 1、结果如下表: 可变要素的数量 可变要素的总产量 可变要素平均产量 可变要素的边际产量 1 2 3 4

2 12 24 48 11 2 6 8 12 2 10 12 24 5 6 7 8 9 60 66 70 70 63 12 11 10 35/4 7 12 6 4 0 -7 (2)所谓边际报酬递减是指短期生产中一种可变要素的边际产量在达到最高点以后开始逐步下降的这样一种普遍的生产现象。本题的生产函数表现出边际报酬递减的现象,具体地说,由表可见,当可变要素的投入量由第4单位增加

到第5单位时,该要素的边际产量由原来的24下降为12。

2.(1).过TPL曲线任何一点的切线的斜率就是相应的MPL的值。

(2)连接TPL曲线上热和一点和坐标原点的线段的斜率,就是相应的APL的值。

(3)当MPL>APL时,APL曲线是上升的。当MPL3.(1)由生产数Q=2KL-0.5L2-0.5K2,且K=10,可得短期生产函数为: Q=20L-0.5L2-0.5*102 = 20L-0.5L2-50

于是:劳动的总产量函数TPL=20L-0.5L2-50 劳动的平均产量函数APL=20-0.5L-50/L 劳动的边际产量函数MPL=20-L

(2)关于总产量的最大值:20-L=0解得L=20 所以,劳动投入量为20时,总产量达到极大值。

关于平均产量的最大值:-0.5+50L-2=0 L=10(负值舍去) 所以,劳动投入量为10时,平均产量达到极大值。 关于边际产量的最大值:由劳动的边际产量函数MPL=20-L可知,边际产量曲线是一条斜率为负的直线。考虑到劳动 投入量总是非负的,所以,L=0时,劳动的边际产量达到极大值。

(3)当劳动的平均产量达到最大值时,一定有APL=MPL。由(2)可知,当劳动为10时,劳动的平均产量APL达最大值, 及相应的最大值为:APL的最大值=10 MPL=20-10=10 很显然APL=MPL=10 5.(1)生产函数表示该函数是一个固定投入比例的生产函数,所以,厂商进行生产时,Q=2L=3K.相应的有L=18,K=12 (2)由Q=2L=3K,且Q=480,可得:L=240,K=160 又因为PL=2,PK=5,所以C=2*240+5*160=1280即最小成本。 10、(1)思路:先求出劳动的边际产量与要素的边际产量,根据最优要素组合的均衡条件,整理即可得。

1(1)K=(2PL/PK)L (2)K(PL/PK)2*L (3) K=(PL/2PK)L (4) K=3L (2)思路:把PL=1,PK=1,Q=1000,代人扩展线方程与生产函数即可求出(1) L200*41113 K400*413

(2) L=2000 K=2000 (3) L10*23K5*23 (4) L=1000/3 K=1000

11.(1).QALK1313 F(1,k)A(1)(K)1313AL13K13f(L,K)

所以,此生产函数属于规模报酬不变的生产函数。

(2)假定在短期生产中,资本投入量不变,以K表示;而劳动投入量可变,以L表示。

对于生产函数QALK1313,有:MPL13AL23K13,且dMPL/dL2/9AL53K230

这表明:在短期资本投入量不变的前提下,随着一种可变要素劳动投入量的增加,劳动的边际产量是递减的。 相类似的,在短期劳动投入量不变的前提下,随着一种可变要素资本投入量的增加,资本的边际产量是递减的。

12

12、(1)当α0=0时,该生产函数表现为规模保持不变的特征

(2)基本思路:在规模保持不变,即α0=0,生产函数可以把α0省去。求出相应的边际产量再对相应的边际产量求导,

一阶导数为负。即可证明边际产量都是递减的。

13 (1).由题意可知,C=2L+K,QL23K13 为了实现最大产量:MPL/MPK=W/r=2. 当C=3000时,得.L=K=1000. Q=1000.

(2).同理可得。800=L2/3K1/3.2K/L=2 L=K=800 C=2400

14 分析三条等产量线,Q1、Q2、Q3与等成本线AB之间的关系.等产量线Q3虽然高于等产量线Q2。但惟一的等成本线

AB与等产量线Q3既无交点又无切点。这表明等产量曲线Q3所代表的产量是企业在既定成本下无法实现的产量。再看Q1 虽然它与惟一的等成本线相交与a、b两点,但等产量曲线Q1所代表的产量是比较低的。所以只需由a点出发向右或由b点出发向左沿着既定的等成本线 AB改变要素组合,就可以增加产量。因此只有在惟一的等成本线AB和等产量曲线Q2的相切点E,才是实现既定成本下的最大产量的要素组合。如下图1

图1 图2 15、(1)由于本题的约束条件是既定的产量,所以,在图中,只有一条等产量曲线;此外,有三条等成本线以供分析,并

从中找出相应的最小成本。

(2)在约束条件即等产量曲线给定的条件下, A”B”虽然代表的成本较低,但它与既定的产量曲线Q既无交点又无切点,它无法实现等产量曲线Q所代表的产量,等成本曲线AB虽然与既定的产量曲线Q相交与a、b两点,但它代表的成本过高,通过沿着等产量曲线Q由a点向E点或由b点向E点移动,都可以获得相同的产量而使成本下降。所以只有在切点 E,才是在既定产量条件下实现最小成本的要素组合。由此可得,厂商实现既定产量条件下成本最小化的均衡条件是MRL/w=MPK/r。如上图2

第五章 成本论

1.(1)

L 1 2 3 4 5 6 7 TPL APL MPL

10 10 10 30 15 20 70 70/3 40 100 25 30 120 24 20 130 65/3 10 135 135/7 5 (2)

图5—1

(3)

L

Q TVC=ωL 13

AVC=ω/ APL MC=ω/ MPL 1 2 3 4 5 6 10 30 70 100 120 130 200 400 600 800 1000 1200 20 40/3 60/7 8 25/3 120/13 20 10 5 20/3 10 20 7 135 1400 280/27 40 (4)根据(3)中的短期生产成本表所绘制的TVC曲线、AVC曲线和MC曲线如图5—2所示: 图5—2

(5) 在w给定的条件下,AVC值和APL值成相反方向的变化,MC值和MPL值也成相反方向的变化。换言之,与由边际报酬递减规律决定的先递增后递减的MPL值相对应的是先递减后递增的MC值;与先递增后递减的APL值相对应的是先递减后递增的AVC值。而且,APL的最大值与AVC的最小值相对应;MPL的最大值与MC的最小值相对应。

以上关系在(2)中的图5—1和(4)中的图5—2中得到体现。在产量曲线图5—1中,MPL曲线和APL曲线都是先上

升各自达到最高点以后再下降,且APL曲线与MPL曲线相交于APL曲线的最高点。相应地,在成本曲线图5—2中,MC曲线和AVC曲线便都是先下降各自达到最低点以后再上升,且AVC曲线与MC曲线相交于AVC曲线的最低点。此外,在产量曲线图5—1中,用MPL曲线先上升后下降的特征所决定的TPL曲线的斜率是先递增,经拐点之后再递减。相对应地,在成本曲线图5—2中,由MC曲线先下降后上升的特征所决定的TVC曲线的斜率是先递减,经拐点之后再递增。1 2.

图5—4

3.(1)在TC(Q)=Q-5Q+15Q+66中, 可变成本部分为TVC(Q)=Q3-5Q2+15Q; 不变成本部分为TFC=66。 (2) TVC(Q)=Q3-5Q2+15Q AC(Q)=Q2-5Q+15+66/Q

AVC(Q)=Q2-5Q+15 AFC(Q)=66/Q MC(Q)=3Q2-10Q+15

3

2

4.根据题意,可知AVC(Q)=0.04Q2-0.8Q+10 令AVC0.08Q0.80 解得Q=10。

又因为AVC0.080 所以当Q=10时,AVC6

MIN5. (1)根据边际成本函数和总成本函数之间的关系,由边际成本函数MC=3Q2-30Q+100积分可得总成本函数,即有

232

TC=∫(3Q-30Q+100)dQ =Q-15Q+100Q+α(常数)

32

又因为根据题意有Q=10时的TC=1 000,所以有 TC=10-15×10+100×10+α=1 000 解得 α=500 所以,当总成本为1 000时,生产10单位产量的总固定成本TFC=α=500。

(2)由(1),可得 TC(Q)=Q3-15Q2+100Q+500 TVC(Q)=Q3-15Q2+100Q AC(Q)=Q2-15Q+100+500/Q AVC(Q)=Q2-15Q+100 6.因为TC=∫MC(Q)dQ 所以,当产量从100增加到200时,总成本的变化量为

14

ΔTC=∫100MC(Q)d(Q)=∫100 (110+0.04Q)dQ=(110Q+0.02Q)|100

22

=(110×200+0.02×200)-(110×100+0.02×100)=22 800-11 200=11 600

FQ1FQ2F4Q1Q20Q1152Q2Q10Q225

35Q1Q24002002002 200

7. 构造F(Q)=2Q12+Q22-Q1Q2+λ(Q1+ Q2-40) 令

使成本最小的产量组合为Q1=15,Q2=25

MPAQAQLAA3434L148. 因为k16,所以Q4A14L14 (1)

MPAMPLMPLQ14L34 所以L=A (2)

ALPA1434A1QALPBL14由(1)(2)可知L=A=Q2/16 又TC(Q)=PA&A(Q)+PL&L(Q)+PK&16 = Q2/16+ Q2/16+32 = Q2/8+32 AC(Q)=Q/8+32/Q TVC(Q)= Q2/8 AVC(Q)= Q/8 MC= Q/4

9. (1)当K=50时,PK·K=PK·50=500 所以PK=10 MPL=1/6L-2/3K2/3 MPK=2/6L1/3K-1/3

1MPLP5 整理得K/L=1/1,即K=L 将其代入Q=0。5L1/3K2/3,可得:L(Q)=2Q 6L21313MPkPK10LK6(2)STC=ω·L(Q)+r·50=5·2Q+500=10Q +500 SAC= 10+500/Q SMC=10

L23K23(3)由(1)可知,K=L,且已知K=50,所以。有L=50 代入Q=0 5L1/3K2/3, 有Q=25。 又π=TR-STC=100Q-10Q-500=1750 所以利润最大化时的产量Q=25,利润π=1750

10.由总成本和边际成本之间的关系,有

STC(Q)=∫SMC(Q)dQ=∫(3Q2-8Q+100)dQ=Q3-4Q2+100Q+C=Q3-4Q2+100Q+TFC

以Q=10,STC=2 400代入上式,求TFC值,有 2 400=103-4×102+100×10+TFC TFC=800 进一步,可得到以下函数: STC(Q)=Q3-4Q2+100Q+800

SAC(Q)=STC(Q)/Q=Q2-4Q+100+800/Q AVC(Q)=TVC(Q)/Q=Q2-4Q+100

11. 如图,TC曲线是一条由水平的TFC曲线与纵轴的交点出发的向右上方倾斜的曲线。在每一个产量上,TC曲线和TVC曲线之间的垂直距离都等于固定的不变成本TFC。 TC曲线和TVC曲线在同一个产量水平上各自存在一个拐点 B和C。在拐点以前,TC曲线和 TVC曲线的斜率是递减的;在拐点以后, TC曲线和 TVC曲线的斜率是递增的。 AFC曲线随产量的增加呈一直下降趋势。AVC曲线,AC曲线和MC曲线均呈U形特征。MC先于AC和AVC曲线转为递增,MC

曲线和AVC曲线相交于AVC曲线的最低点F,MC曲线与AC曲线相交于AC曲线的最低点D。AC曲线高于AVC曲线,它们之间的距离相当于AFC。且随着产量的增加而逐渐接近。但永远不能相交。

15

12. 导致SAC曲线和LAC曲线呈U形特征的原因是不相同。在短期生产中,边际报酬递减规律决定,一种可变要素的边

际产量MP曲线表现出先上升达到最高点以后再下降的特征,相应地,这一特征体现在成本变动方面,便是决定了短期边际成本SMC曲线表现出先下降达到最低点以后再上升的U形特征。而SMC曲线的U形特征又进一步决定了SAC曲线必呈现出先降后升的U形特征。简言之,短期生产的边际报酬递减规律是导致SAC曲线呈U形特征的原因。

在长期生产中,在企业的生产从很低的产量水平逐步增加并相应地逐步扩大生产规模的过程中,会经历从规模经济(亦为内在经济)到规模不经济(亦为内在不经济)的变化过程,从而导致LAC曲线呈现出先降后升的U形特征。

13. 如图5—6所示,假设长期中只有三种可供选择的生产规模,分别由图中的三条STC曲线表示。从图5—6中看,生

产规模由小到大依次为STC1、STC2、STC3。现在假定生产Q2的产量。长期中所有的要素都可以调整,因此厂商可以通过对要素的调整选择最优生产规模,以最低的总成本生产每一产量水平。在d、b、e三点中b点代表的成本水平最低,所以长期中厂商在STC2曲线所代表的生产规模生产Q2产量,所以b点在LTC曲线上。这里b点是LTC曲线与STC曲线的切点,代表着生产Q2产量的最优规模和最低成本。通过对每一产量水平进行相同的分析,可以找出长期中厂商在每一产量水平上的最优生产规模和最低长期总成本,也就是可以找出无数个类似的b(如a、c)点,连接这些点即可得到长期总成本曲线。长期总成本是无数条短期总成本曲线的包络线。

由此可得长期总成本LTC曲线的经济含义:LTC曲线表示长期内厂商在每一个产量水平上由最优生产规模所带来的最小生产总成本。

图5—6

14.(1) 根据前面第13题的答案要点(1)中关于推导长期成本曲线(包括LTC曲线、LAC曲线和LMC曲线)的基本原则,

我们推导长期平均成本LAC曲线的方法是:LAC曲线是无数条SAC曲线的包络线,如图5—7所示。LAC曲线表示:例如,在Q1的产量水平,厂商应该选择以SAC1曲线所代表的最优生产规模进行生产,这样才能将生产的平均成本降到最低,即相当于aQ1的高度。同样,在产量分别为Q2、Q3时,则应该分别选择以SAC4曲线和SAC7曲线所代表的最优生产规模进行生产,相应的最低平均成本分别为bQ2和cQ3。

16

图5—7

由此可得长期平均成本曲线的经济含义:LAC曲线表示长期内厂商在每一个产量水平上通过选择最优生产规模所实现的最小的平均成本。

(2) LAC曲线的U形特征是由长期生产的内在经济和内在不经济所决定的。进一步地,在LAC曲线的最低点,如图中的b点,LAC曲线与相应的代表最优生产规模的SAC曲线相切在该SAC曲线的最低点。而在LAC曲线最低点的左边,LAC曲线与多条代表生产不同产量水平的最优生产规模的SAC曲线均相切在SAC曲线最低点的左边;相反,在LAC曲线最低点的右边,LAC曲线与相应的SAC曲线均相切在SAC曲线最低点的右边。此外,企业的外在经济将使LAC曲线的位置下移,而企业的外在不经济将使LAC曲线的位置上移。

15. 如同前面在第13题推导LTC曲线和在第14题推导LAC曲线一样,第13题的答案要点(1)中的基本原则,仍适用于

在此推导LMC曲线。除此之外,还需要指出的是,从推导LTC曲线的图5—6中可得:在每一个产量Qi上,由于LTC曲线与相应的STCi曲线相切,即这两条曲线的斜率相等,故有LMC(Qi)=SMCi(Qi)。由此,我们便可推导出LMC曲线,如图5—8所示。在图中,例如,当产量为Q1时,厂商选择的最优生产规模由SAC1曲线和SMC1曲线所代表,且在Q1时有SMC1曲线与LMC曲线相交于a点,表示LMC(Q1)=SMC1(Q1)。同样地,在产量分别为Q2和Q3时,厂商选择的最优生产规模分别由SAC2、SMC2曲线和SAC3、SMC3曲线所代表,且在b点有LMC(Q2)=SMC2(Q2), 在c点有LMC(Q3)=SMC3(Q3)。

图5—8

由此可得长期边际成本曲线的经济含义:LMC曲线表示的是与厂商在长期内通过选择最优的生产规模所达到的最低成本相对应的边际成本。

第六章 完全竞争市场

1. (1)完全竞争市场的均衡条件为D(P)=S(P),故有 22-4P=4+2P

解得市场的均衡价格和均衡数量分别为 Pe=3 Qe=10

(2)单个完全竞争厂商的需求曲线是由给定的市场价格出发的一条水平线,于是,在P=3时,有如图6—1所示的需求

曲线d 图6—1

2. 单个厂商的需求曲线是用来表示单个厂商所面临的对他产品的需求情况的。单个完全竞争厂商的需求曲线是由市场均衡价格出发的一条水平线(如同第1题所示),而市场的均衡价格取决于市场的需求与供给,单个完全竞争厂商只是该价格的接受者。

单个消费者的需求曲线产生于消费者追求效用最大化的行为。正如本教科书效用论中所描述的,利用对单个消费者追求效用最大化行为进行分析的无差异曲线分析法,可以得到单个消费者的价格—消费曲线,并进一步推导出单个消费者的需求曲线,单个消费者的需求曲线一般是向右下方倾斜的。把单个消费者的需求曲线水平加总,便可以得到市场的需求曲线,市场需求曲线一般也是向右下方倾斜的。

在这里,特别要区分单个厂商的需求曲线和单个消费者的需求曲线,两者之间没有直接的联系。

17

3. 在短期生产中,厂商根据MR=SMC这一利润最大化或亏损最小化的原则进行生产。在实现MR=SMC原则的前提下,厂商可以获得利润即π>0,也可以收支平衡即π=0,也可以亏损即π<0,其盈亏状况取决于厂商的生产技术、成本以及市场需求情况。当π>0和π=0时,厂商会继续进行生产,这是毫无问题的。但是,当π<0时,则需要进一步分析厂商是否应该继续生产这一问题。

需要指出的是,认为在π<0即亏损情况下,厂商一定会停产以避免亏损,是错误的判断。其关键是,在短期生产中厂商有固定成本。因此,正确的答案是:在短期生产亏损的情况下,如果TR>TVC(即AR>AVC),则厂商就应该继续生产。这样,总收益在弥补全部总可变成本以后,还可以弥补一部分固定成本。也就是说,生产比不生产强。如果TR=TVC(即AR=AVC),则对厂商来说生产与不生产都是一样的结果,即全部固定成本得不到任何弥补。如果TR0,厂商继续生产。第二种情况为π=0,厂商也继续生产。第三种情况为π<0,但TR>TVC,则厂商继续生产。第四种情况为π<0,但 TR=TVC,则厂商生产与不生产都一样。第五种情况为π<0,TRdSTC

4. (1)因为STC=0.1Q3-2Q2+15Q+10,所以SMC==0.3Q2-4Q+15。

dQ

2

根据完全竞争厂商实现利润最大化的原则P=SMC,且已知P=55,于是有 0.3Q-4Q+15=55

整理得0.3Q2-4Q-40=0,解得利润最大化的产量Q*=20(已舍去负值)。 将Q*=20代入利润等式有 π=TR-STC=P·Q-STC=55×20-(0.1×203-2×202+15×20+10)=1 100-310=790 即厂商短期均衡的产量Q*=20,利润π=790。

(2)当市场价格下降为P小于平均可变成本AVC即P≤AVC时,厂商必须停产。而此时的价格P必定小于最小的平均可变

成本AVC。

根据题意,有 AVC=

TVCQ20.1Q2Q15QQ32=0.1Q-2Q+15 令

2

dAVCdQ即有0,

dAVCdQ0.2Q20

解得 Q=10 且

dAVCdQ20.20 故Q=10时,AVC(Q)达到最小值。

2

将Q=10代入AVC(Q),得最小的平均可变成本 AVC=0.1×10-2×10+15=5 于是,当市场价格P<5时,厂商必须停产。

2

(3)根据完全竞争厂商短期实现利润最大化的原则P=SMC,有 0.3Q-4Q+15=P 整理得 0.3Q-4Q+(15-P)=0 解得 Q2

4161.2(15P)0.60.6

根据利润最大化的二阶条件MR′<MC′的要求,取解为Q41.2P2考虑到该厂商在短期只有在P≥5时才生产,而在P<5时必定会停产,所以,该厂商的短期供给函数Q=f(P)为 Q41.2P20.6,P>=5 Q=0,,P<5

dLTCdQ3Q24Q40

25. (1)根据题意,有 LMC且完全竞争厂商的P=MR,根据已知条件P=100,故有MR=100。 由利润最大化的原则MR=LMC,得 3Q2-24Q+40=100 整理得 Q2-8Q-20=0 解得 Q=10(已舍去负值)

STC(Q)2 又因为平均成本函数 SAC(Q)Q12Q40 所以,将Q=10代入上式,得

Q2

SAC=10-12×10+40=20 利润=TR-STC=PQ-STC=100×10-(103-12×102+40×10)=1 000-200=800

因此,当市场价格P=100时,厂商实现MR=LMC时的产量Q=10,平均成本SAC=20,利润π=800。 (2)由已知的LTC函数,可得 LAC(Q)dLAC(Q)dQdLAC(Q)dQLTC(Q)QQ12Q40QQ32Q12Q40

dLAC(Q)dQ222令0,即有:2Q120解得 Q=6 且 20 解得Q=6

18

故Q=6是长期平均成本最小化的解 将Q=6代入LAC(Q), 得平均成本的最小值为 LAC=6-12×6+40=4

由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=4,单个厂 商的产量Q=6。

3) 由于完全竞争的成本不变行业的长期供给曲线是一条水平线,且相应的市场长期均衡价格是固定的,它等于单个

厂商的最低的长期平均成本,所以,本题的市场的长期均衡价格固定为P=4。将P=4代入市场需求函数Q=660-15P,便可以得到市场的长期均衡数量为Q=660-15×4=600。

现已求得在市场实现长期均衡时,市场的均衡数量Q=600,单个厂商的均衡产量Q=6,于是,行业长期均衡时的厂商数量=600÷6=100(家)。

6. (1)在完全竞争市场长期均衡时有LS=D,即有5500+300P=8 000-200P 解得 Pe=5

将Pe=5代入LS函数,得 Qe=5 500+300×5=7 000 或者,将Pe=5代入D函数,得 Qe=8 000-200×5=7 000 所以,市场的长期均衡价格和均衡数量分别为Pe=5,Qe=7 000。 (2)同理,根据LS=D,有5500+300P=10 000-200P 解得 Pe=9

将Pe=9代入LS函数,得 Qe=5 500+300×9=8 200 或者,将Pe=9代入D函数,得 Qe=10 000-200×9=8 200 所以,市场的长期均衡价格和均衡数量分别为Pe=9,Qe=8 200。

(3) 比较(1)、(2)可得:对于完全竞争的成本递增行业而言,市场需求增加会使市场的均衡价格上升,即由Pe=5上

升为Pe=9;使市场的均衡数量也增加,即由Qe=7 000增加为Pe=8 200。也就是说,市场需求与均衡价格成同方向变动,与均衡数量也成同方向变动。

7. (1)根据市场短期均衡的条件D=SS,有 6 300-400P=3 000+150P 解得 P=6

将P=6代入市场需求函数,有Q=6 300-400×6=3 900或者,将P=6代入市场短期供给函数,有 Q=3 000+150×6=3 900 所以,该市场的短期均衡价格和均衡产量分别为P=6,Q=3 900。

(2)因为该市场短期均衡时的价格P=6,且由题意可知,单个企业在LAC曲线最低点的价格也为6,所以,由此可以判

断该市场同时又处于长期均衡。因为由(1)可知市场长期均衡时的产量是Q=3 900,且由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为:3 900÷50=78(家)。 (3)根据市场短期均衡的条件D′=SS′,有 8 000-400P=4 700+150P 解得 P=6

将P=6代入市场需求函数,有 Q=8 000-400×6=5 600 或者,将P=6代入市场短期供给函数,有 Q=4 700+150×6=5 600

所以,该市场在变化了的供求函数条件下的短期均衡价格和均衡产量分别为P=6,Q=5 600。

(4) 与(2)中的分析相类似,在市场需求函数和短期供给函数变化之后,该市场短期均衡时的价格P=6,且由题意可

知,单个企业在LAC曲线最低点的价格也是6,所以,由此可以判断该市场的这一短期均衡同时又是长期均衡。

因为由(3)可知,供求函数变化以后的市场长期均衡时的产量Q=5 600,且由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为:5 600÷50=112(家)。

(5) 由以上分析和计算过程可知:在该市场供求函数发生变化前后,市场长期均衡时的均衡价格是不变的,均为

P=6,而且,单个企业在LAC曲线最低点的价格也是6,于是,我们可以判断该行业属于成本不变行业。以上(1)~(5)的分析与计算结果的部分内容如图6—2所示。

2

图6—2

(6) 由(1)、(2)可知,(1)时的厂商数量为78家;由(3)、(4)可知,(3)时的厂商数量为112家。因此,由(1)到(3)

所增加的厂商数量为:112-78=34(家)。

LTCdTC228. (1)由题意可得LACQ40Q600 LMC3Q80Q600

QdQ222

由LAC=LMC,得以下方程 Q-40Q+600=3Q-80Q+600 Q-20Q=0 解得 Q=20(已舍去零值) 由于LAC=LMC时,LAC达到极小值点,所以,将Q=20代入LAC函数,便可得LAC曲线最低点的价格为:

2

P=20-40×20+600=200。

19

因为成本不变行业的长期供给曲线是从相当于LAC曲线最低点的价格高度出发的一条水平线,故有该行业的长期供

S

给曲线为P=200。

d

(2) 已知市场的需求函数为Q=13 000-5P,又从(1)中得行业长期均衡时的价格P=200,所以,将P=200代入市场需求函数,便可以得到行业长期均衡时的数量为:Q=13 000-5×200=12 000。

又由于从(1)中可知行业长期均衡时单个厂商的产量Q=20,所以,该行业实现长期均衡时的厂商数量为

dLTC29.(1)由已知条件可得 LMC3Q40Q200 且已知P=600

dQ22

根据完全竞争厂商利润最大化的原则LMC=P,有3Q-40Q+200=600 整理得 3Q-40Q-400=0

LTC2解得 Q=20(已舍去负值) 由已知条件可得 LACQ20Q200

Q2

将Q=20代入LAC函数,得利润最大化时的长期平均成本为 LAC=20-20×20+200=200

此外,利润最大化时的利润值为π=P·Q-LTC=600×20-(203-20×202+200×20)=12 000-4 000=8 000 所以,该厂商实现利润最大化时的产量Q=20,平均成本LAC=200,利润π=8 000。 20 0,即有2Q200 解得 Q=10 且 2dQdQdQ所以,当Q=10时,LAC曲线达到最小值。 将Q=10代入LAC函数,可得 最小的长期平均成本=102-20×10+200=100

综合(1)和(2)的计算结果,我们可以判断(1)中的行业未实现长期均衡。因为由(2)可知,当该行业实现长期均衡时,市场的均衡价格应等于单个厂商的LAC曲线最低点的高度,即应该有长期均衡价格P=100,且单个厂商的长期均衡产量应该是Q=10,每个厂商的利润π=0。而事实上,由(1)可知,该厂商实现利润最大化时的价格P=600,产量Q=20,π=8 000。显然,该厂商实现利润最大化时的价格、产量和利润都大于行业长期均衡时对单个厂商的要求,即价格600>100,产量20>10,利润8 000>0。因此,(1)中的行业未处于长期均衡状态。

(3)由(2)已知,当该行业处于长期均衡时,单个厂商的产量Q=10,价格等于最低的长期平均成本,即P=最小的LAC=

100,利润π=0。

(4) 由以上分析可以判断,(1)中的厂商处于规模不经济阶段。其理由在于:(1)中单个厂商的产量Q=20,价格P=600,

它们都分别大于行业长期均衡时单个厂商在LAC曲线最低点生产的产量Q=10和面对的价格P=100。换言之,(1)中的单个厂商利润最大化的产量和价格组合发生在LAC曲线最低点的右边,即LAC曲线处于上升段,所以,单个厂商处于规模不经济阶段。

10.由于对完全竞争厂商来说,有P=AR=MR AR=TR(Q)/Q=38,MR=dTR(Q)/dQ=38 所以 P=38。

根据完全竞争厂商利润最大化的原则MC=P,有 0.6Q-10=38 Q*=80 即利润最大化时的产量Q*=80。 再根据总成本函数与边际成本函数之间的关系,有

STC(Q)=∫SMC(Q)dQ=∫(0.6Q-10)dQ=0.3Q2-10Q+C=0.3Q2-10Q+TFC

2

将Q=20时STC=260代入上式,求TFC,有 260=0.3×20-10×20+TFC 得 TFC=340 于是,得到STC函数为 STC(Q)=0.3Q2-10Q+340

*

最后,将利润最大化的产量Q=80代入利润函数,有

π(Q)=TR(Q)-STC(Q)=38Q-(0.3Q2-10Q+340)=38×80-(0.3×802-10×80+340)=3 040-1 460=1 580 即利润最大化时,产量Q*=80,利润π*=1 580。

11.(1)短期内,完全竞争厂商是在给定的价格和给定的生产规模下,通过对产量的调整来实现MR=SMC的利润最大化的均

衡条件的。具体分析如图6—3所示。

(2)令

dLACdLACdLAC2

图6—3

20

(2)首先,关于MR=SMC。厂商先根据MR=SMC的利润最大化的均衡条件来决定产量。如在图6—3中,在价格顺次为P1、P2、P3、P4和P5时,厂商根据MR=SMC的原则,依次选择的最优产量为Q1、Q2、Q3、Q4和Q5,相应的利润最大化的均衡点为E1、E2、E3、E4和E5。

(3)然后,关于AR和SAC的比较。在(2)的基础上,厂商从(2)中所选择的产量出发,通过比较该产量水平上的平均收益AR与短期平均成本SAC的大小,来确定自己所获得的最大利润量或最小亏损量。在图6—3中,如果厂商在Q1的产量水平上,则厂商有AR>SAC,即π>0;如果厂商在Q2的产量水平上,则厂商有AR=SAC,即π=0;如果厂商在Q3或Q4或Q5的产量水平上,则厂商均有AR<SAC,即π<0。

(4)最后,关于AR和AVC的比较。如果厂商在(3)中是亏损的,即π<0,那么,亏损时的厂商就需要通过比较该产量水平上的平均收益AR和平均可变成本AVC的大小,来确定自己在亏损的情况下是否仍要继续生产。在图6—3中,当亏损时的产量为Q3时,厂商有AR>AVC,于是,厂商继续生产,因为此时生产比不生产强;当亏损时的产量为Q4时,厂商有AR=AVC,于是,厂商生产与不生产都是一样的;而当亏损时的产量为Q5时,厂商有AR<AVC,于是,厂商必须停产,因为此时不生产比生产强。

(5)综合以上分析,可得完全竞争厂商短期均衡的条件是:MR=SMC,其中,MR=AR=P。而且,在短期均衡时,厂商的利润可以大于零,也可以等于零,或者小于零。 12. (1)厂商的供给曲线所反映的函数关系为QS=f(P),也就是说,厂商供给曲线应该表示在每一个价格水平上厂商愿意而

且能够提供的产量。

(2)通过前面第11题利用图6—3对完全竞争厂商短期均衡的分析,我们可以很清楚地看到,SMC曲线上的各个均衡点,

如E1、E2、E3、E4和E5点,恰恰都表示了在每一个相应的价格水平上厂商所提供的产量,如当价格为P1时,厂商的供给量为Q1;当价格为P2时,厂商的供给量为Q2„„于是,我们可以说,SMC曲线就是完全竞争厂商的短期供给曲线。但是,这样的表述是欠准确的。考虑到在AVC曲线最低点以下的SMC曲线的部分,如E5点,由于AR<AVC,厂商是不生产的,所以,准确的表述是:完全竞争厂商的短期供给曲线是SMC曲线上等于和大于AVC曲线最低点的那一部分。如图6—4所示。

图6—4

(3)需要强调的是,由(2)所得到的完全竞争厂商的短期供给曲线的斜率为正,它表示厂商短期生产的供给量与价格成同

方向的变化;此外,短期供给曲线上的每一点都表示在相应的价格水平上可以给该厂商带来最大利润或最小亏损的最优产量。

13.(1)在长期,完全竞争厂商是通过对全部生产要素的调整,来实现MR=LMC的利润最大化的均衡条件的。在这里,厂商

在长期内对全部生产要素的调整表现为两个方面:一方面表现为自由地进入或退出一个行业;另一方面表现为对最优生产规模的选择。下面以图6—5加以说明。

图6—5

(2)关于进入或退出一个行业。在图6—5中,当市场价格较高为P1时,厂商选择的产量为Q1,从而在均衡点E1实现利

润最大化的均衡条件MR=LMC。在均衡产量Q1,有AR>LAC,厂商获得最大的利润,即π>0。由于每个厂商的π>0,于是,就有新的厂商进入到该行业的生产中来,导致市场供给增加,市场价格P1开始下降,直至市场价格下降到使得单个厂商的利润消失即π=0为止,从而实现长期均衡。如图6—5所示,完全竞争厂商的长期均衡点E0

21

发生在长期平均成本LAC曲线的最低点,市场的长期均衡价格P0也等于LAC曲线最低点的高度。

相反,当市场价格较低为P2时,厂商选择的产量为Q2,从而在均衡点E2实现利润最大化的均衡条件MR=LMC。在均衡产量Q2,有AR<LAC,厂商是亏损的,即π<0。由于每个厂商的π<0,于是,行业内原有厂商的一部分就会退出该行业的生产,导致市场供给减少,市场价格P2开始上升,直至市场价格上升到使得单个厂商的亏损消失即π=0为止,从而在长期平均成本LAC曲线的最低点E0实现长期均衡。

(3)关于对最优生产规模的选择。通过在(2)中的分析,我们已经知道,当市场价格分别为P1、P2和P0时,相应的利润最

大化的产量分别是Q1、Q2和Q0。接下来的问题是,当厂商将长期利润最大化的产量分别确定为Q1、Q2和Q0以后,他必须为每一个利润最大化的产量选择一个最优的生产规模,以确实保证每一产量的生产成本是最低的。于是,如图6—5所示,当厂商利润最大化的产量为Q1时,他选择的最优生产规模用SAC1曲线和SMC1曲线表示;当厂商利润最大化的产量为Q2时,他选择的最优生产规模用SAC2曲线和SMC2曲线表示;当厂商实现长期均衡且产量为Q0时,他选择的最优生产规模用SAC0曲线和SMC0曲线表示。在图6—5中,我们只标出了3个产量水平Q1、Q2和Q0,实际上,在任何一个利润最大化的产量水平,都必然对应一个生产该产量水平的最优生产规模。这就是说,在每一个产量水平上厂商对最优生产规模的选择,是该厂商实现利润最大化进而实现长期均衡的一个必要条件。 (4)综上所述,完全竞争厂商的长期均衡发生在LAC曲线的最低点。此时,厂商的生产成本降到了长期平均成本的最低点,商品的价格也等于最低的长期平均成本。由此,完全竞争厂商长期均衡的条件是:MR=LMC=SMC=LAC=SAC,其中,MR=AR=P。此时,单个厂商的利润为零。

14. 完全竞争厂商的短期供给曲线是厂商SMC曲线上大于与等于AVC曲线最低点的部分。完全竞争厂商根据利润最大化原

则P=SMC,在不同的价格水平选择相应的最优产量,这一系列的价格和最优产量组合的轨迹,构成了厂商的短期供给曲线。由于SMC曲线上大于和等于AVC曲线最低点的部分是向右上方倾斜的,所以,完全竞争厂商的短期供给曲线是向右上方倾斜的。完全竞争行业的短期供给曲线由行业内所有厂商的短期供给曲线水平加总得到,所以,行业的短期供给曲线也是向右上方倾斜的。

完全竞争行业的长期供给曲线的形状并不一定是向右上方倾斜的。在长期生产中,完全竞争行业可以区分为成本不变行业、成本递减行业和成本递增行业三种类型,相应的完全竞争条件下行业的长期供给曲线可以分别表现为一条水平线、向右下方倾斜、向右上方倾斜。

15.不是。首先,因为在完全竞争市场条件下,每一个消费者和生产者都具有完全的信息,所以,不需要广告宣传。其次,

由于所有的厂商生产的产品是完全无差异的,所以,一般不会有一个厂商去为市场上所有相同的产品做广告。再次,在完全竞争市场条件下,每一个厂商所占的市场份额非常小,而所面临的又是无数的消费者,这样一来,每一个厂商都认为在既定的市场价格下总可以卖出他的所有产品,所以,也不需要做广告。

22

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务