IntroductiontoRotorDynamics
Rotordynamicsisthebranchofengineeringthatstudiesthelateralandtorsionalvibrationsofrotatingshafts,withtheobjectiveofpredictingtherotorvibrationsandcontainingthevibrationlevelunderanacceptablelimit.Theprincipalcomponentsofarotor-dynamicsystemaretheshaftorrotorwithdisk,thebearings,andtheseals.Theshaftorrotoristherotatingcomponentofthesystem.Manyindustrialapplicationshaveflexiblerotors,wheretheshaftisdesignedinarelativelylongandthingeometrytomaximizethespaceavailableforcomponentssuchasimpellersandseals.Additionally,machinesareoperatedathighrotorspeedsinordertomax-imizethepoweroutput.Thefirstrecordedsupercriticalmachine(operatingabovefirstcriticalspeedorresonancemode)wasasteamturbinemanufacturedbyGus-tavDelavalin1883.Modernhighperformancemachinesnormallyoperatesabovethefirstcriticalspeed,generallyconsideredtobethemostimportantmodeinthesystem,althoughtheystillavoidcontinuousoperatingatornearthecriticalspeeds.Maintainingacriticalspeedmarginof15%betweentheoperatingspeedandthenearestcriticalspeedisacommonpracticeinindustrialapplications.
Theothertwoofthemaincomponentsofrotor-dynamicsystemsarethebear-ingsandtheseals.Thebearingssupporttherotatingcomponentsofthesystemandprovidetheadditionaldampingneededtostabilizethesystemandcontainthero-torvibration.Seals,ontheotherhand,preventundesiredleakageflowsinsidethemachinesoftheprocessingorlubricatingfluids,howevertheyhaverotor-dynamicpropertiesthatcancauselargerotorvibrationswheninteractingwiththerotor.Gen-erally,thevibrationinrotor-dynamicsystemscanbecategorizedintosynchronousorsubsynchronousvibrationsdependingonthedominantfrequencyandsourceofthedisturbanceforces.Synchronousvibrationshaveadominantfrequencycom-ponentthatmatchestherotatingspeedoftheshaftandisusuallycausedbytheunbalanceorothersynchronousforcesinthesystem.Thesecondtypeisthesub-synchronousvibrationorwhirling,whichhasadominantfrequencybelowtheop-eratingspeedanditismainlycausedbyfluidexcitationfromthecross-couplingstiffness.
Inthischapterwepresentashortintroductiontorotordynamics,withthein-tentiontofamiliarizethereaderwithbasicconceptsandterminologiesthatareof-S.Y.Yoonetal.,ControlofSurgeinCentrifugalCompressorsbyActiveMagneticBearings,AdvancesinIndustrialControl,
DOI10.1007/978-1-4471-4240-9_2,©Springer-VerlagLondon2013
17
182IntroductiontoRotorDynamics
tenusedindescribingAMBsystems.Thematerialpresentedhereisbasedontherotor-dynamicscoursenotespreparedbyAllaire[5],andthemanybooksavail-ableinrotordynamicsbyauthorssuchasChilds[30],Genta[49],Kramer[78],Vance[115],andYamamotoandIshida[119].First,themathematicsbehindthebasicrotor-dynamicprinciplesareintroducedthroughtheexampleofasimplero-tor/bearingsystemmodel.Theprimaryconcernsinrotor-dynamicsystems,includ-ingthecriticalspeed,unbalanceresponse,gyroscopiceffectsandinstabilityexci-tation,arediscussedinthesectionsthroughoutthischapter.Finally,thestandardspublishedbytheAmericanPetroleumInstituteforauditingtherotorresponseincompressorsarepresentedindetail.MostofthesestandardsaredirectlyapplicabletocompressorswithAMBs,andtheywillplayanimportantroleinthedesignoftheAMBlevitationcontrollerforthecompressortestriginChap.7.
2.1Föppl/JeffcottSingleMassRotor
Rotor-dynamicsystemshavecomplexdynamicsforwhichanalyticalsolutionsareonlypossibletoobtaininthemostsimplecases.Withthecomputationalpowerthatiseasilyavailableinmoderndays,numericalsolutionsfor2Dandeven3Drotor-dynamicanalysishavebecomethestandard.However,thesenumericalanalysesdonotprovidethedeepinsightthatcanbeobtainedfromastep-by-stepderivationofananalyticalsolution,suchashowthedifferentsystemresponsecharacteristicsareinterconnectedinthefinalsolution.Forexample,numericalanalysiscanaccuratelyestimatethelocationoftheresonancemodeofthesystem,butitcannotgiveananalyticalrelationshipbetweenthatmodefrequencyandtheamountofdampingandstiffnessontherotor.
Thevibrationtheoryforrotor-dynamicsystemswasfirstdevelopedbyAugustFöppl(Germany)in15andHenryHomanJeffcott(England)in1919[5].Em-ployingasimplifiedrotor/bearingsystem,theydevelopedthebasictheoryonpre-dictionandattenuationofrotorvibration.Thissimplifiedrotor/bearingsystemthatiscommonlyknownastheFöppl/Jeffcottrotor,orsimplytheJeffcottrotor,isof-tenemployedtoevaluatemorecomplexrotor-dynamicsystemsintherealworld.Inthissectionweoverviewtheanalyticalderivationoftheundampedanddampedre-sponsesoftheFöppl/Jeffcottrotor.Wewillusetheseresultsthroughoutthischaptertocharacterizethedynamicsofcomplexrotor-dynamicsystemsthatcanbefoundinactualindustrialapplications.
Figure2.1illustratesthesinglemassJeffcottrotorwithrigidbearings.Therotordiskwithmassmislocatedattheaxialcenteroftheshaft.ThemassoftheshaftintheJeffcottrotorisassumedtobenegligiblecomparedtothatofthedisk,andthusisconsideredtobemasslessduringtheanalysis.ThegeometriccenterofthediskCislocatedatthepoint(uxC,uyC)alongcoordinateaxisdefinedaboutthebearingcenterline,andthediskcenterofmassGislocatedat(uxG,uyG).TheunbalanceeccentricityeuisthevectorconnectingthepointsCandG,anditrepresentstheunbalanceintherotordisk.Therotatingspeedofthedisk/shaftisgivenbyω,and
2.1Föppl/JeffcottSingleMassRotorFig.2.1SinglemassJeffcottrotoronrigidbearings
19
withoutlossofgeneralityweassumethateuisparallelwiththex-axisattheinitialtimet=0.Lastly,uCisthedisplacementvectorwithphaseangleθthatconnectstheoriginandthepointC,andφisdefinedtobetheanglebetweenthevectorsuCandeu.
Undertheassumptionthattherotordiskdoesnotaffectthestiffnessofthemass-lessshaft,thelateralbendingstiffnessattheaxialcenterofasimplysupporteduniformbeamisgivenby
48EI
,(2.1)L3
whereEistheelasticmodulusofthebeam,Listhelengthbetweenthebearings,andIistheshaftareamomentofinertia.Forauniformcylindricalshaftwithdiam-eterD,theequationfortheareamomentofinertiais
ks=πD4I=.
(2.2)
Additionally,weassumethatthereisarelativelysmalleffectivedampingactingonthelateralmotionofthediskattherotormidspan,andthecorrespondingdampingconstantisgivenbycs.Thisviscousdampingisacombinationoftheshaftstructural
202IntroductiontoRotorDynamics
damping,fluiddampingduetotheflowinturbomachines,andtheeffectivedampingaddedbythebearings.
ThedynamicequationsfortheFöppl/JeffcottrotorarederivedbyapplyingNew-ton’slawofmotiontotherotordisk.Withtheassumptionthattheshaftismassless,theforcesactingonthediskaretheinertialforceandthestiffness/dampingforcesgeneratedbythelateraldeformationoftheshaft.Thelateralequationsofmotioninthex-andy-axesasshowninFig.2.1arefoundtobe
˙xC,mu¨xG=−ksuxC−csumu¨yG=−ksuyC−csu˙yC,
(2.3a)(2.3b)
where(uxG,uyG)and(uxC,uyC)arethecoordinatesofthemasscenterandgeomet-riccenter,respectively.Thecoordinatesofthediskcenterofmasscanberewritten
intermsofitsgeometriccenterCandtherotorangleofrotationωtattimet,
uxG=uxC+eucos(ωt),uyG=uyC+eusin(ωt).
(2.4a)(2.4b)
SubstitutingthesecondtimederivativeofEqs.(2.4a),(2.4b)intoEqs.(2.3a),(2.3b),weobtaintheequationsofmotionfortheFöppl/Jeffcottrotorintermsofthediskgeometriccenteras
mu¨xC+ksuxC+csu˙xC=meuω2cos(ωt),˙yC=meuω2sin(ωt).mu¨yC+ksuyC+csu
(2.5a)(2.5b)
Wenoteherethat,asthebearingsareconsideredtobeinfinitelystiffandthe
rotordiskdoesnottilt,thismodeldoesnotincludethegyroscopiceffectsactingontherotor.Theshaftisfixedatthebearinglocations,thusitisalwaysalignedtothebearingcenterline.Theeffectofthegyroscopicforcesinrotor-dynamicsystemswillbediscussedinSect.2.2.Additionally,noaerodynamicsorfluid-filmcross-couplingforcesareincludedinthissimplifiedanalysis.Thesedisturbanceforcesaremostlygeneratedatthesealsandimpellersoftherotorduetothecircumferentialdifferenceintheflow,andtheyarenotmodeledinthissection.Aerodynamiccross-couplingforceswillbediscussedinSect.2.3.Asaresultofallthis,theequationsofmotioninEqs.(2.5a),(2.5b)aredecoupledinthex-andy-axes.
2.1.1UndampedFreeVibration
Theundampedfreevibrationanalysisdealswiththerotorvibrationinthecaseofnegligibleunbalanceeccentricity(eu=0)anddamping(cs=0).TheequationsofmotioninEqs.(2.5a),(2.5b)aresimplifiedto
mu¨xC+ksuxC=0,mu¨yC+ksuyC=0.
(2.6a)(2.6b)
2.1Föppl/JeffcottSingleMassRotor21
Thesolutiontothissecondorderhomogeneoussystemtakestheformof
uxC=Axest,uyC=Ayest,
(2.7a)(2.7b)
forsomecomplexconstants.ThevaluesoftheconstantsAxandAyareobtainedfromtheinitialconditionsoftherotordisk.SubstitutingthesolutioninEqs.(2.7a),(2.7b)intoEqs.(2.6a),(2.6b)weobtain
(2.8a)ms2Axest+ksAxest=ms2+ksAxest=0,
(2.8b)ms2Axest+ksAxest=ms2+ksAyest=0.TheaboveequationsholdtrueforanyvalueofAxandAyiftheundampedcharac-teristicequationholds,
ms2+ks=0.
(2.9)
Solvingtheaboveequalityforthecomplexconstants,weobtainthefollowing
solution:
s1,2=±jωn,
whereωnistheundampednaturalfrequencyoftheshaftdefinedas
ks48EI=.ωn=mL3m
(2.10)
(2.11)
Thus,thesolutionstotheequationofmotioninEqs.(2.6a),(2.6b),areundamped
oscillatoryfunctionswithfrequency±ωn.Theundampedcriticalspeedofthesys-temisdefinedas
ωcr=±ωn,
(2.12)
correspondingtothepositiveforward+ωnandthenegativebackward−ωncompo-nents.Theforwardcomponentindicatesthelateralvibrationthatfollowsthedirec-tionoftheshaftrotation,andthebackwardcomponentrepresentsthevibrationthatmovesintheoppositedirection.ThefinalsolutionstotheundampedfreevibrationaregivenbythelinearcombinationofthetwosolutionsfoundinEqs.(2.7a),(2.7b)andEq.(2.10),
uxC=Ax1ejωnt+Ax2e−jωnt
=Bx1cos(ωnt)+Bx2sin(ωnt),
and
uyC=Ay1ejωnt+Ay2e−jωnt
=By1cos(ωnt)+By2sin(ωnt),
(2.14)(2.13)
forsomevaluesofAxiandAyi,orBxiandByi,whichcanbefoundfromtheinitialconditionsoftherotor.
222IntroductiontoRotorDynamics
2.1.2DampedFreeVibration
NowconsiderthefreevibrationoftheFöppl/Jeffcottrotorwithanon-zeroeffectiveshaftdampingactingonthesystem.Newton’sequationofmotioninEqs.(2.5a),(2.5b)becomes
mu¨xC+ksuxC+csu˙xC=0,˙yC=0.mu¨yC+ksuyC+csu
(2.15a)(2.15b)
Thesolutionstotheabovesystemofhomogeneoussecondorderdifferentialequa-tionstakethesameformasinEqs.(2.7a),(2.7b).Substitutingthesesolutionsinto
Eqs.(2.15a),(2.15b),weobtain
2
ms+ks+csAxest=0,(2.16a)
2
(2.16b)ms+ks+csAyest=0.Theseequationsholdforanyinitialconditionifthedampedcharacteristicequation
holds:
ms2+ks+cs=0.
(2.17)
Thezerosofthecharacteristicequation,alsoknowasthedampedeigenvaluesofthesystem,arefoundtobe
cskscs
±j−.(2.18)s1,2=−2mm2mGenerally,therotor/bearingsystemisunderdamped,whichmeansthat
csks
<,2mm
andswillhaveanimaginarycomponent.Definethedampingratioas
ζ=
cs
.2mωn
(2.19)
Thisvaluecorrespondstotheratiooftheeffectivedampingcstothecriticalvalueinthedampingconstantwhenthesystembecomesoverdamped,ortheimaginarypartofthesolutioninEq.(2.18)vanishes.Withthisnewlydefinedratio,thesolutionstoEqs.(2.16a),(2.16b)canberewrittenas
s1,2=−ζωn±jωn1−ζ2.(2.20)Theimaginarycomponentofs1,2isknownasthedampednaturalfrequency,
ωd=ωn1−ζ2.(2.21)
2.1Föppl/JeffcottSingleMassRotor23
Fortraditionalpassivebearings,thevalueofthedampingcoefficientcanvarybe-tween0.3>ζ>0.03,althoughaminimumofζ=0.1isnormallyconsideredasneededforthesafeoperationofthemachine.ThefinalsolutionstotheundampedfreevibrationarefoundtobethelinearcombinationofthesolutionsfoundinEqs.(2.7a),(2.7b)andEq.(2.18),thatis,
uxC=e−ζωntAx1ejωdt+Ax2e−jωdt
=e−ζωntBx1cos(ωnt)+Bx2sin(ωnt),(2.22)and
uyC=e−ζωntAy1ejωdt+Ay2e−jωdt
=e−ζωntBy1cos(ωnt)+By2sin(ωnt),
(2.23)
forsomevaluesofAxiandAyi,orBxiandByi,dependentontheinitialconditionoftherotor.
AtypicalresponseforanunderdampedsysteminfreevibrationisshowninFig.2.2.Weobservethattheresponseisoscillatory,wherethefrequencyisgivenbythedampednaturalfrequencyωd.Becauseofthedamping,themagnitudeoftheoscillationisreducedovertime,andtherateofdecayisafunctionofthedampingratioζandtheundampednaturalfrequencyωn.Formostrotor-dynamicsystems,thedampingratioissmallerthan0.3andthefreevibrationresponseissimilartotheunderdampedresponseinFig.2.2.
2.1.3ForcedSteadyStateResponse
Finally,weconsidertheforcedresponseoftheJeffcottrotorwithanon-zeromasseccentricity.Usingthedefinitionofωnandζasgivenabove,theequationsofmotionfortherotorarerewrittenintotheform
2
u¨xC+2ζωnu˙xC+ωnuxC=euω2cos(ωt),2u¨yC+2ζωnu˙yC+ωnuyC=euω2sin(ωt).
(2.24a)(2.24b)
Inordertosimplifytheequationsofmotion,wewillcombinethexandydisplace-mentsoftherotorintothecomplexcoordinatesas
uC=uxC+juyC,
(2.25)
whereuCisthedisplacementofthediskgeometriccenteronthecomplexcoordinate
axis.
Weassumethatthesteadystatesolutionsofthesystemofthedifferentialequa-tionsinEqs.(2.24a),(2.24b)areincomplexexponentialform,
uxC=Uxejωt,uyC=Uyejωt.
(2.26a)(2.26b)
242IntroductiontoRotorDynamics
Fig.2.2Typicalresponseofanunderdampedsysteminfreevibration
Itisobservedherethat,sinceEqs.(2.24a),(2.24b)isalinearsystemwithasinu-soidalinputoffrequencyω,thesteadystateoutputsolutionswillalsobesinusoidalsignalsofthesamefrequency.Then,thesolutionofthediskdisplacementinthecomplexformis
uC=Uxejωt+jUyejωt.
(2.27)
Combiningtheexponentialtermsintheexpressionfortheabovecomplexrotordisplacement,weobtainthesolutionintheform
uC=Uejωt,
where
U=Ux+jUy.
(2.29)
Next,thesetofsolutionsinEqs.(2.26a),(2.26b)aresubstitutedintoEqs.(2.24a),(2.24b),andtheresultingsystemofequationsis
22−ω+2jωζωn+ωnUxejωt=euω2cos(ωt),(2.30a)
2
2
(2.30b)Uyejωt=euω2sin(ωt).−ω+2jωζωn+ωnTheequationsforthex-axisandy-axisdisplacementsarecombinedintothecom-plexformasdoneinEq.(2.25)bymultiplyingEq.(2.30b)bythecomplexoperator
(2.28)
2.1Föppl/JeffcottSingleMassRotor25
1j,andaddingittotheexpressioninEq.(2.30a).Theresultingcomplexequationofmotionis
2jωt
2
−ω+2jωζωn+ωnUe=euω2eωt,(2.31)or
22
−ω+2jωζωn+ωnuC=euω2,
(2.32)
whereeuistheunbalanceeccentricityinthecomplexcoordinatesasillustratedin
Fig.2.1(b).
ConsideringthatthevaluesofboththerotordiskdisplacementuCandtheun-balanceeccentricityeuarejustcomplexnumbers,wecancomputefromEq.(2.32)theratiobetweenthesetwocomplexvaluesas
uCfr2
,=
eu[1−fr2+2jfrζ]
where
fr=
ω
ωn
(2.34)(2.33)
isknownasthefrequencyratio.WenoticethatrighthandsideofEq.(2.33)isnotafunctionoftime,anditonlydependsonthefrequencyratio.ThecomplexsolutioninEq.(2.33)canberewrittenastheproductofamagnitudeandaphaseshiftintheformof
|U|−jφuC=eeueu
=fr2e−jφ(1−fr2)2+(2ζfr)2.
(2.35)
Theratio|U|/euisknownasthedimensionlessamplituderatiooftheforcedre-sponseandisgivenby
|U||Uy||Ux|fr2===.eueueu(1−fr2)2+(2ζfr)2(2.36)
Theaboveequationgivestheexpectedamplitudeoftherotorvibrationasafunction
ofthefrequencyratio.Additionally,theangleφisthephasedifferencebetweentheuCandeuandisfoundfromEq.(2.32)tobe
2ζfr
φ=tan−1.(2.37)
1−fr2Thedimensionlessamplituderatio|U|/euisplottedinFig.2.3overthefre-quencyratiofrfordifferentvaluesofdampingratio.Forverylowfrequencies,theamplituderatioisnearlyzerosincetheunbalanceforcesaresmall.Astheshaft
262IntroductiontoRotorDynamics
Fig.2.3DimensionlessamplitudeoftheforcedresponsefortheJeffcottrotorvs.frequencyratio
speedincreases,theamplitudeshowsalargepeaknearfr=1whenωisneartheresonancefrequencyofthesystem.Theamplituderatioatthecriticalspeedfr=1canbefoundfromEq.(2.36)tobe
|U|1
.=
eu2ζ
(2.38)
Whenthedampingratioissmall,theamplituderatioincreasesrapidlynearfr=1
astheunbalanceforcesexcitetherotorresonancemode.Forlargervaluesofζ,thesystemisnearlycriticallydamped,andonlyalittleoftheresonanceisseenintheamplituderatioplot.Finally,forfr1theamplitudeofvibrationapproaches1.ThephaseangleφcorrespondingtodifferentvaluesofthedampingratioisalsopresentedhereoverarangeoffrequencyratiosinFig.2.4.Atlowfrequencies,thephaseangleisnearzero,andthecenterofgravityGisalignedwiththegeometriccenterofthediskduringtherotationoftheshaft.Whenthefrequencyratioisnear1andtheshaftspeedisclosetothenaturalfrequency,weseeinFig.2.4thatthephaseangleisabout90degreesforallvaluesofdampingratios.Thischaracteristiccanbehelpfulinidentifyingexperimentallythecriticalspeedofactualmachines.Lastly,athighfrequencieswherefr1,thephaseangleapproaches180degrees.Inthiscase,thecenterofgravityofthediskisinsidetherotororbitdrawnbytherotatingpathofC,andtheunbalanceforcesworkintheoppositedirectiontotheinertialforcesoftherotor.
2.2RotorGyroscopicEffects27
Fig.2.4PhaseangleφoftheforcedresponsefortheJeffcottrotorvs.frequencyratio
2.2RotorGyroscopicEffects
Sofar,wehavefoundthattherotorlateraldynamicsaredecoupledinthehorizon-talandtheverticaldirectionsofmotionwhenrigidbearingsareassumed.IntheFöppl/JeffcottrotorconsideredinSect.2.1,theshaftaxisofrotationwasalwaysalignedwiththebearingcenterline,andthustheinertiainducedmomentsactingonthediskwereneglected.Inthissectionweinvestigatehowthegyroscopicmomentsaffectthedynamicsofthesystem,astheadditionofflexiblebearingsallowstheshaftrotationalaxistodivergefromthebearingcenterline.Throughanexampleofasimplecylindricalrotorsupportedonflexiblebearings,theundampedfreevibra-tionoftherotorisanalyzed,andthenaturalfrequencyoftherotorispredictedasafunctionoftheshaftspeed.Theresultswilldemonstratethesensitivityoftheactualcriticalspeedofrotor-dynamicsystemstothegeometryandrotatingspeedoftherotor.
Thetiltofarotatingshaftrelativetotheaxisofrotationgeneratesgyroscopicdis-turbanceforces.Aswewillfindlaterinthissection,themagnitudeofthegeneratedforceisproportionaltotheangleoftilt,angularmomentofinertiaoftherotor,andtheshaftrotationalspeed.Inthemodelingandanalysisofrotor-dynamicsystems,therearetwomainphenomenathatareattributedtothegyroscopiceffects.First,thegyroscopicmomentstendtocouplethedynamicsinthetworadialdirectionofmotions.Achangeintheverticalstateoftherotoraffectsthehorizontaldynamics,
282IntroductiontoRotorDynamics
Fig.2.5Cylindricalrotorwithisotropicsymmetricflexiblebearings[115]
andviceversa.Second,gyroscopicmomentscausethecriticalspeedsofthesystemtodriftfromtheiroriginalpredictionsatzerospeed.Aswewillseelaterinthissec-tion,thegyroscopicmomentactingonarotorcanincreaseordecreasethecriticalspeedsrelatedtosomesystemmodesasafunctionoftherotationalspeed.
2.2.1RigidCircularRotoronFlexibleUndampedBearings
ConsidertherigidrotorasshowninFig.2.5withalongcylindricaldiskofmassm,lengthL,androtatingspeedω.Thesupportbearingsareconsideredtobeflexiblewithstiffnesscoefficientsofk1andk2inthelateraldirectionsasshowninFig.2.5.TheaxialdistancebetweenthebearinglocationandtherotorcenterofgravityGisafortheleftbearingandbfortherightbearing.ThetotaldistancebetweenthebearingsisLb.
Undertheassumptionthattheshafthasnegligiblemass,thepolarmomentofinertiaoftheuniformrigidcylindricalrotorisgivenby
mR2
,Jp=2
(2.39)
whereRistheradiusoftherotor.Thisrepresentstherotationalinertiaofthecylin-deraboutitsmainaxisofrotation.Thetransversemomentofinertiaforthesamerotoris
m122
R+L,(2.40)Jt=43whichrepresentstherotationalinertiaabouttheaxisperpendiculartothemainaxis
ofrotation.AcharacteristicoftherotorthatwillbeimportantinthederivationstofollowthroughoutthissectionistheratioPofthepolartothetransversemoment
2.2RotorGyroscopicEffects29
ofinertia,whichisgivenby
P==JpJt
2
L2
1+13(R)
.(2.41)
Wenoticethatthevalueofthisratioisaffectedbythegeometryoftherotor.For
cylindricalrotorswheretheradiusismuchlargerthanthelength,orRL,thevalueofthemomentofinertiaratioapproachesP≈2.Ontheotherhand,forthecaseofalongthinrotorwithRL,thedenominatorofEq.(2.41)approachesinfinityandthevalueofthemomentofinertiaratioisapproximatelyP≈0.Finally,theratio√inEq.(2.41)isequaltooneiftheratioofthelengthLtotheradiusRisequalto3.2.2.2ModelofRigidCircularRotorwithGyroscopicMoments
ConsidertherigidcylindricalrotorpresentedinFig.2.5.ThelateraldisplacementsoftherotorcenterofmassaregivenbyxGinthex-direction,andyGinthey-direction.Additionally,therotationoftherotoratthecenterofmassGaboutthex-axisisdenotedasθxG,andtheequivalentrotationaboutthey-axisisθyG,asFig.2.5illustrates.Thedisplacementsandrotationsabouttherotorcenterofmasscanbecomputedas
xG=yG=θxG≈θyG≈
1
(bx1+ax2),Lb
1
(by1+ay2),Lb
1
(y2−y1),Lb
1
(x2−x1),Lb
(2.42a)(2.42b)(2.42c)(2.42d)
wherex1andy1arethelateraldisplacementsoftheshaftatthefirstbearingloca-tion,asshowninFig.2.5.ThecorrespondingdisplacementsatthesecondbearinglocationinFig.2.5aregivenbyx2andy2.Forcomputingtherotortiltangle,theapproximationsin(θ)≈θforθ1wasused.
TheequationsofmotionforthetranslationandrotationoftherotoraboutitscenterofmasscanbefoundonceagainasinSect.2.1throughtheuseofNewton’slawofmotion.Theresultingequationsare
mx¨G+αxG−γθyG=0,my¨G+αyG−γθxG=0,
(2.43a)(2.43b)
302IntroductiontoRotorDynamics
˙yG+γxg+δθxG=0,¨xG+JpωθJtθ
˙xG+γyg+δθyG=0.¨yG−JpωθJtθ
Thedefinedstiffnessparametersintheaboveequationsare
α=k1+k2,γ=−k1a+k2b,δ=k1a2+k2b2.
(2.43c)(2.43d)
(2.44a)(2.44b)(2.44c)
ThefirsttwoequationsinEqs.(2.43a)–(2.43d)describethelateraltranslationof
therotor,andthelasttwoequationsdescribestheangulardynamics.Thesecondtermintheleft-handsideofEq.(2.43c)andEq.(2.43d)isthelinearizedgyroscopicmomentaboutthex-andthey-axes,respectively,forsmallamplitudemotionsasdiscussedin[119].Animportantcharacteristicoftheabovedynamicequationsisthatthetwoequationsoftranslationalmotionaredecoupledfromtheequationsofangularmotionwhenγis0,inwhichcasetheycanbesolvedseparately.
ThedifferentialequationsofEqs.(2.43a)–(2.43d)aresometimeswritteninthevectorform
¨+ωGX˙+KX=0,MX(2.45)wherethegeneralizedstatevectorisgivenby
⎡⎤xG⎢yG⎥
⎥X=⎢⎣θxG⎦,θyG
(2.46)
andthemassmatrixM,gyroscopicmatrixG,andstiffnessmatrixKaregivenby
⎡⎤m000⎢0m00⎥
⎥(2.47)M=⎢⎣00Jt0⎦,
000Jt⎡⎤0000⎢0000⎥⎢⎥,(2.48)G=⎣
000Jp⎦00−Jp0and
⎡
⎤γ0⎥⎥,0⎦δ
α⎢0K=⎢⎣0
γ
respectively.
0αγ00γδ0
(2.49)
2.2RotorGyroscopicEffects31
Wenoticeherethatthemassmatrixisalwaysdiagonal,andthestiffnessmatrixisdiagonalwhenγiszero.Ontheotherhand,thegyroscopicmatrixisskewsym-metric,anditrepresentsthecouplingbetweenthemotionsinthex-andthey-axes.Thisisoneofthemaincharacteristicsofthegyroscopiceffectsasmentionedatthebeginningofthissection.Fortheremainderofthissection,wewillmakethesimplifyingassumptionthatthestiffnessesofallsupportbearingsarethesame,
k=k1=k2,
andthattherotorisaxiallysymmetricaboutitscenterofmass,
Lb
=a=b.2
Thisprovidesthedecouplingconditionofγ=0fortherotorequationsofmotioninthetranslationalandtheangulardirectioninEqs.(2.43a)–(2.43d).Inthiscase,thesystemstiffnessmatrixbecomes
⎡⎤α000⎢0α00⎥
⎥K=⎢(2.50)⎣00δ0⎦.
000δ
2.2.3UndampedNaturalFrequenciesoftheCylindricalMode
HerewearetosolvetherotorequationsgiveninEq.(2.43a)andEq.(2.43b)cor-respondingtotherotortranslationalorparallelmotion.UsingthemethodsasinSect.2.1,weassumethatthesystemofhomogeneouslineardifferentialequationshassolutionsinthecomplexexponentialform
xG=UxGest,yG=UyGest,
(2.51a)(2.51b)
forsomeconstantvaluesofUxGandUyG.SubstitutingthesesolutionsintoEq.(2.43a)andEq.(2.43b),werewritetheequationsofmotionas
2
ms+αUxG=0,(2.52a)
2
(2.52b)ms+αUyG=0.Theexpressionwithintheparenthesesontheleft-handsidesoftheabovetwoequa-tionsisknownasthecharacteristicpolynomial.WeknowfromSect.2.1thatthe
zerosofthecharacteristicequation,
ms2+α=0,
(2.53)
322IntroductiontoRotorDynamics
aretheeigenvaluesofthesystemcorrespondingtothecylindricalmode.Thechar-acteristicequationsforthehorizontalx-andtheverticaly-axesofmotiongivenaboveareidenticalanddecoupled.Thisisexpectedsincethelateraltranslationdoesnotcauserotortilt,andthecorrespondinggyroscopicmomentiszero.
ThenaturalfrequencyωncorrespondingtotherotorparallelvibrationisfoundfromthezerosofthecharacteristicequationinEq.(2.53).Moreprecisely,theimag-inarycomponentsofthezerosgivethenaturalfrequency
s=±jωn.
(2.54)
Inthecaseofthecylindricalmode,thehorizontalundampednaturalfrequencyhastheforwardmodeωn1andthebackwardmodeωn2.Theundampednaturalfrequencyintheverticaldirectionhastheforwardmodeωn3andthebackwardmodeωn2.Thesenaturalfrequenciesarefoundtobe
ωn1=ωn3=2k/m,(2.55a)
ωn2=ωn4=−2k/m.(2.55b)
2.2.4UndampedNaturalFrequenciesoftheConicalMode
Wenowconsidertheangulardynamicsoftherotor,giveninEq.(2.43d)and
Eq.(2.43c).Wewillassumeonceagainthatthesolutionstothehomogeneoussys-temofdifferentialequationstaketheform
θxG=ΘxGest,θyG=ΘyGest,
(2.56a)(2.56b)
forsomeconstantvaluesofΘxGandΘyG.SubstitutingthesesolutionsintoEq.(2.43c)andEq.(2.43d),weobtainthefollowingsystemofhomogeneousequa-tions:
2
Jts+δΘxG+JpωsΘyG=0,(2.57a)
2
(2.57b)Jts+δΘyG−JpωsΘxG=0.Thecharacteristicequationfortheabovesystemis
2Jts+δJpωsdet=0.
−JpωsJts2+δ
(2.58)
Theangulardynamicsaboutthedifferentlateralaxesofmotionarecoupledthroughthetermscorrespondingtothegyroscopicmomentintheabovecharacteristicequa-tion.Intheremainderofthissection,wewilldiscusshowtherotatingspeedoftheshaft,andthusthegyroscopicmomentactingontherotor,affectsthenaturalfrequenciesoftheconicalmode.
2.2RotorGyroscopicEffects33
2.2.4.1ConicalModeatZeroRotatingSpeed
Forthespecialcasewheretherotationalspeediszero(ω=0),thecharacteristicequationinEq.(2.58)becomesdecoupledinthex-andthey-axes.Theconicalnaturalfrequenciesforthenon-rotatingrotorcanbefoundbysolvingforthezerosoftheundampedcharacteristicequationinEq.(2.58),
kL2b
s=±j.(2.59)
2JtTheresultingnon-rotatingconicalnaturalfrequencyis
kL2b
ωnC0=.
2Jt
(2.60)
Thenon-rotatingconicalnaturalfrequencyωnC0willappearagaininthecalculationoftherotorconicalmodewithnon-zerorotatingspeed.
2.2.4.2ConicalModeatZeroRotatingSpeed
Inthegeneralcasewithnon-zerorotatingspeed(ω=0),thecharacteristicequation,afterexpandingthedeterminantofthematrixinEq.(2.58),becomes
22
Jts+δ+(Jpωs)2=0.
(2.61)
InthesamewayasinSect.2.1,theundampedconicalnaturalfrequencyωnCisfoundfromthecomplexzerosofthecharacteristicequationinEq.(2.61),
s=±jωnC.
Thisisanexpressionequivalentto
2
s2=−ωnC.
ReplacingtheaboveexpressionsforsinthecharacteristicequationinEq.(2.61),
weobtain
2
2−JtωnC+δ−(JpωωnC)2=0.(2.62)Factoringtheaboveexpressionintotwotermsgives
22JtωnC−δ+JpωωnCJtωnC−δ−JpωωnC=0.
(2.63)
ThisequationisfurthersimplifiedbydividingbothsidesoftheaboveequalitybyJt,
andsubstitutinginthederivedexpressionforthemomentofinertiaratioPandthe
342IntroductiontoRotorDynamics
non-rotatingconicalnaturalfrequencyωnC0.Theresultingcharacteristicequationis
22
22
(2.)+PωωnCωnC−ωnC0−PωωnC=0.ωnC−ωnC0Next,wedefinethedimensionlessconicalmodenaturalfrequencyratioω¯nCand
thedimensionlessconicalmodefrequencyratiofrC0as
ω¯nC=
and
frC0=
ω
,ωnC0
(2.66)
ωnC
,ωnC0
(2.65)
respectively.Then,bydividingbothsidesofEq.(2.)bythesquareofωnC0,andsubstitutinginthenon-dimensionalparametersdefinedinEqs.(2.65)and(2.66),weobtain
22ω¯nC+PfrC0ω¯nC−1ω¯nC−PfrC0ω¯nC−1=0.(2.67)ThenaturalfrequenciesoftheconicalmodesarethefourzerosofEq.(2.67).
Hereweorganizethesemodesasthelowermodesandthehighermodes.ThezerosofthefirstterminEq.(2.67)providefrequenciescorrespondingtotheforwardcomponentofthenon-dimensionallowermodeω¯n3,andthebackwardcomponentofthenon-dimensionalhighermodeω¯n8as
ω¯n5=−PfrC0/2+(PfrC0/2)2+1>0,(2.68a)
(2.68b)ω¯n8=−PfrC0/2−(PfrC0/2)2+1<0.Ontheotherhand,thezerosofthesecondterminEq.(2.67)providefrequencies
correspondingtothebackwardcomponentofthenon-dimensionallowermodeω¯n6,andtheforwardcomponentofthenon-dimensionalhighermodeω¯n7as
(2.69a)ω¯n6=PfrC0/2−(PfrC0/2)2+1<0,
(2.69b)ω¯n7=PfrC0/2+(PfrC0/2)2+1>0.TheforwardandbackwardconicalmodesareplottedinFig.2.6overthefrequency
ratiofrC0andfordifferentvaluesofP.Thedashedlineinthefiguresconnectsthepointswheretherotorspeedmatchesthefrequencyofthemodeatthecorrespondingfrequencyratio,andthesystemisintheconditionofresonance.
Figure2.6showshowthegyroscopicseffectsactingontherotorcausesthenat-uralfrequencyofthesystemtodrift.ForlongrotorswhereP≈0,thegyroscopicmomentissmall,andthefrequencyoftheconicalmoderemainsunaffectedtotherotationalspeedandfrC0.AsthevalueofPincreasesfordifferentgeometriesoftherotor,wecanobserveamoresignificantdriftinthemodefrequency.Forexample,
2.2RotorGyroscopicEffects35
Fig.2.6Dimensionlessconicalnaturalfrequencyratioversustheconicalmodefrequencyratio
362IntroductiontoRotorDynamics
fortheextremecaseofP≥1,weobserveinFig.2.6thattheshaftrotationwouldneverexciteoneoftheforwardconicalmodesasthegyroscopiceffectskeepthemodefrequencyalwaysabovetherotoroperatingspeed.
2.3InstabilityduetoAerodynamicCrossCoupling
Cross-couplingforcesareinmanycasesthemaincauseofinstabilityinrotor-dynamicsystems.Theseforcesaregeneratedincomponentssuchasfluid-filmbear-ings,impellersandseals,whichareessentialfortheoperationoftheturbomachines.Theaerodynamiccross-couplingforcesaregeneratedbytheflowdifferenceintheunevenclearancesaroundimpellersandsealscausedbytherotorlateralmotion.Machineswithtraditionalfluid-filmbearingsaresometimesmorevulnerabletotheseeffects,astherotorisnotcenteredintheclearanceanditissusceptibletogointothewhirlingmotion.Itiscommonforcross-couplingdisturbanceforcestogeneratelargerotorvibration,andeventuallydrivethemachinetoinstability.Inthissectionwefocusontheaerodynamiccross-couplestiffnessgeneratedbytheflowofgasthroughtheimpellerandsealclearances.
Acommonlyobservedeffectofthecross-couplingforcesistherapidlossofdampingintherotor/bearingsystemmodes,particularlytheforwardmodecorre-spondingtothefirstcriticalspeed.Thisresultsinlargesubsynchronousrotorvi-brations,asthecross-couplingforcesincreasetogetherwiththepressurebuild-upinthecompressororpump.Eventually,thesystemmodelosesallitsdampingforlargeenoughmagnitudesofthecross-couplingforces,andtherotor-dynamicsys-tembecomesunstable.Thedestabilizingeffectsoftheaerodynamiccross-couplingforcesareamplifiedwhentheyaregeneratedneartherotormidspan,farfromthesupportingbearings,wheretheeffectivenessoftheaddeddampingbythebearingsissignificantlyreduced.
2.3.1AerodynamicCrossCouplinginTurbines
J.S.Alfordin1965studiedtheforcesfoundintheclearancesaroundtheaircraftgasturbineenginerotors,whichtendtodrivetheturbinewheelunstable[3,30].Theseforces,affectingbothturbinesandcompressors,cametobeknownasAlfordforcesoraerodynamiccross-couplingforces.Theaerodynamiccross-couplingforcesarenormallyexpressedintermsofstiffnessvalues,connectingthetwoaxesoftherotorlateralmotion.DefinetherotorlateralaxesofmotionasshowninFig.2.1.Giventhattherotorxandydisplacementsatthelocationofaturbinestagealongtherotorlengtharedenotedbyxdandyd,thecross-couplingforcesactingontheturbinerotortaketheform
qsxxqsxyxdFdx
=,(2.70)Fdyqsyxqsyyyd
2.3InstabilityduetoAerodynamicCrossCoupling37
whereFdxandFdyarethex-axisandy-axiscomponentsoftheresultingcross-couplingforces,respectively.Thecoefficientsqsxxandqsyyarerelatedtotheprinci-pal(direct)aerodynamicstiffness,andqsxyandqsyxareknownasthecross-couplingaerodynamicstiffnesscoefficients.
Itisnormallythecaseinactualmachinesthattheprincipalaerodynamicstiffnesscoefficientsarenegligiblewhencomparedtothecross-couplingcoefficients,and−qsxy=qsyx.Then,theexpressionforthecross-couplingforcescanbesimplifiedtotheform
xdFsx0−qa
=,(2.71)Fsyqa0ydforsomecross-couplingstiffnesscoefficientqa.Asimpleestimateofthecross-couplingaerodynamicstiffnesscoefficientforoneturbinestagewasintroducedby
Alfordinhisderivationas
Tβqa=,(2.72)
DmLtwhereTisthetorqueontheturbinestage,βisacorrectionconstant,Dmisthemeanbladediameter,andLtistheturbinebladeradiallength.Baseduponhisexperiencewithaircraftgasturbines,Alfordsuggestedthevalueofthisconstanttobe1.0<β<1.5.
2.3.2AerodynamicCrossCouplinginCompressors
Inthecaseofcompressors,theimpellersaresubjecttothesamecross-couplingstiffnessaspresentedinEq.(2.71)forasingleturbinestage.Inindustrialcom-pressorapplications,acommonrangeforthevalueoftheimpelleraerodynamiccross-couplingcoefficientpereachstageorimpelleris
175,000N/m≥qa≥525,000N/m.
(2.73)
Intherotor-dynamicanalysisofcompressors,therotorvibrationlevelandstabil-ityareoftenevaluatedattheaveragecross-couplingstiffnesscoefficientvalueofqa=350,000N/mperimpellerstage[5].Moreover,acommonruleforcompres-sorsthatisalsobasedonexperienceisthatthecross-couplingstiffnesscontributionoftheendimpellersinmulti-stagemachinesisnegligibleandnotcountedwhencomputingthetotalcross-couplingstiffnessofcompressors.
Sealsareemployedincompressorsandotherturbomachinestopreventthegasleakagebetweenthedifferentmachinestages.Thecompressibleflowinthesesealsgeneratelateralforcesthatactontherotorintheformofstiffnessanddamping,
Fsxksxxksxyxdcsxxcsxyx˙d
=+,(2.74)Fsyksyxksyyydcsyxcsyyy˙d
382IntroductiontoRotorDynamics
whereFsxandFsxarethexandycomponentsofthecross-couplingforcesgener-atedbytheseals,respectively.Onceagain,theprincipalstiffnesscoefficientsandthedampingtermsarerelativelysmallwhencomparedtothecross-couplingstiff-nesscoefficients,andareusuallytakentobeequaltozero.Thus,theequationforthesealcross-couplingforcesisoftensimplifiedto
xd0ksxyFsx
=,(2.75)Fsyksyx0ydwhereksxy<0andksyx>0areknownasthesealcross-couplingstiffnesscoeffi-cients.
Finally,thetotalaerodynamiccrosscouplingforcompressorsissometimesesti-matedbasedonthehorsepowerofthemachine.Thisapproximationisgivenas
Qa=
63,000(HP)β
.
DhN
(2.76)
TheparametersoftheaboveexpressionarethecompressorhorsepowerHP,theimpellerdiameterD(in),thedimensionofthemostrestrictiveflowpathh(in)andtheshaftrotatingspeedN(rpm).AcommonvalueofthecorrectionconstantintroducedbyAlfordisβ=1.0baseduponexperience[5].Thetotalcross-couplingstiffnessisgivenintheEnglishunitoflbf/inandcanbeconvertedintotheequivalentSIunitN/mbyafactorof175.AnexpressionsimilartoEq.(2.76)isemployedbytheAPItopredicttheappliedaerodynamiccross-couplingstiffnessinthestabilityanalysisforcompressors.ThisexpressionwillbediscussedbelowinSect.2.4.
2.4Rotor-DynamicSpecificationsforCompressors
Turbomachinessuchascompressorsplayanintegralroleinthemanufacturingpro-cessesofthechemicalandpetrochemicalindustries.Therefore,eachmachineiscarefullyauditedbeforebeingcommissionedinordertoguaranteethatitmeetstheperformanceandreliabilitystandardsagreedtobeneededforcontinuousoperation.BoththeInternationalOrganizationforStandardization(ISO)andtheAmericanPetroleumInstitute(API)publishedsetsofspecificationsdevelopedfordifferenttypesofturbomachineusedinindustrialapplications,althoughtheAPIstandardsarelargelypreferredinthechemicalandpetrochemicalindustries.AlistofthoseAPIstandardsrelevanttodifferenttypesofturbomachinearepresentedinTable2.1.Inthissectionwepresentabriefsummaryofthedifferentlateralrotor-dynamicanalysesthatarerequiredbytheAPIspecificationsforcompressors.Theseanalysesguidecompressorend-users,originalequipmentmanufacturers(OEM),componentmanufacturers,servicecompaniesandeducationalinstitutionsonproperdesign,manufacturingandon-siteinstallationofmachines.Foramoredetaileddescriptionoftherequiredanalysesforcompressors,pleaserefertotheoriginalAPIStandard617[6].
2.4Rotor-DynamicSpecificationsforCompressorsTable2.1APISpecificationforCompressors,FansandPumps[111]
APIstandardnumber610612617673
MachinetypeCentrifugalpumpsSteamturbines
39
AxialandcentrifugalcompressorsCentrifugalfans
2.4.1LateralVibrationAnalysis
TheAPIdefinesthecriticalspeedtobetherotationalspeedoftheshaftthatcausestherotor/bearing/supportsystemtooperateinastateofresonance.Inotherwords,thefrequencyoftheperiodicexcitationforcesgeneratedbytherotoroperatingatthecriticalspeedcoincideswiththenaturalfrequencyoftherotor/bearing/supportsystem.Generally,thelateralcriticalspeedisthemostrelevant,anditisgivenbythenaturalfrequencyofrotorlateralvibrationinteractingwiththestiffnessanddampingofthebearings.Inthepresentday,ithasbecomecommonforhighperformancemachinestooperateabovethefirstcriticalspeed,butthecontinuousoperationatornearthenaturalfrequenciesisgenerallynotrecommended.
Figure2.7illustratesthelateralvibrationamplitudeversustherotatingspeedforatypicalrotor-dynamicsystem.ThebasiccharacteristicsofthevibrationresponsethatAPIemploystoevaluatethemachineareidentifiedinthefigure.TheithcriticalspeedisdenotedasNci,whichislocatedattheithpeakinthevibrationresponseplotwithamplitudeofAci.Theamplificationfactorofacriticalspeedisdefinedastheratioofthecriticalspeedtothedifferencebetweentheinitialandfinalspeedabovethehalf-powerofthepeakamplitudeN1−N2,asshowninFig.2.7.Lastly,themaximumcontinuousoperatingspeed(MCOS)ofthesystemcorrespondstothe105%ofthehighestratedspeedofthemachineinconsideration,andthespeedsbetweentheMCOSandtheminimumoperatingspeedofthemachineisknownastheoperatingspeedrange.
Theeffectivedampingataparticularcriticalspeedinarotor-dynamicsystemismeasuredthroughtheamplificationfactor,
AF=
Nc1
.
N2−N1
(2.77)
ThemeasurementoftheamplificationfactorisillustratedinFig.2.7forthefirstcriticalspeed.Alargeamplificationfactorcorrespondstoasteepresonancepeakwithlowdamping.Therefore,asmallvalueofAFisdesiredformodeswithinorneartheoperatingspeedrangeofthemachine.Formodeswithlargeamplificationfactors,aminimumseparationmarginSMisrequiredbetweenthecorrespondingcriticalspeedandtheoperatingspeedrangeofthemachine.
Thecriticalspeedsoftherotor/supportsystemcanbeexcitedbyperiodicdis-turbanceforcesthatneedtobeconsideredinthedesignofthemachine.TheAPIidentifiessomeofthesourcesfortheseperiodicdisturbancestobe[6]:
402IntroductiontoRotorDynamics
NciNmcN1,N2AFSMAci
=======Rotorithcriticalspeed(rpm).
MaximumcontinuousoperatingspeedMCOS(105%ofhighestratespeed).
Initialandfinalspeedat0.707×peakamplitude.Amplificationfactor.Nc1N2−N1.
Separationmargin.AmplitudeatNci.
Fig.2.7Exampleofarotorforcedresponse[6]
•••••••••••••rotorunbalance,oilfilminstabilities,internalrub,
blade,vane,nozzle,anddiffuserpassingfrequencies,geartoothmeshingandsidebands,couplingmisalignment,looserotorcomponents,hystereticandfrictionwhirl,boundarylayerflowseparation,
acousticandaerodynamiccross-couplingforces,asynchronouswhirl,
ballandracefrequencyofrolling-elementbearings,andelectricallinefrequency.
2.4Rotor-DynamicSpecificationsforCompressors41
Fig.2.8Undampedcriticalspeedvs.stiffnessmap[6]
Manyofthesedisturbancesarerelatedtothemechanicalandelectricalcharacteris-ticsofthemachinehardwareandtheycanbecorrectedatthedesignstageorthroughpropermaintenance.Forthelateralvibrationanalysis,wefocusontheforcedre-sponseduetotherotorunbalance.Thecross-couplingforceswillbediscussedintherotorstabilityanalysislaterinthissection.
2.4.1.1UndampedCriticalSpeedAnalysis
Estimatingthecriticalspeedsandthemodeshapesoftherotor-dynamicsystembetweenzeroand125%oftheMCOSisgenerallythefirststepinthelateralanalysis.Thecriticalspeedsoftherotor/supportsystemareestimatedfromtheun-dampedcriticalspeedmap,superimposedbythecalculatedsystemsupportstiffnessinthehorizontaldirection(kxx)andtheverticaldirection(kyy)asshowninFig.2.8.Aquickestimateofaparticularcriticalspeedcanbefoundfromthefigureattheintersectionofthecorrespondingcurveinthecriticalspeedmapandthebearingstiffnesscurve.TheactuallocationsofthecriticalspeedsofthesystembelowtheMCOSshouldbevalidatedinateststandasrequiredbytheAPIstandard[6].Modeshapeplotsfortherelevantcriticalspeedsshouldalsobeincludedinthisinitialanalysis.
422IntroductiontoRotorDynamics
2.4.1.2DampedUnbalanceResponseAnalysis
Adampedunbalanceorforcedresponseanalysisincludingallthemajorcompo-nentsoftherotor/bearing/supportsystemisrequiredbytheAPIstandardtobein-cludedinthemachineaudit.Thecriticalspeedandthecorrespondingamplificationfactorareidentifiedhereforallmodesbelow125%oftheMCOS.
TheproperlevelofunbalanceincompressorrotorsfortheforcedresponsetestisspecifiedintheSIunitstobe4×Ub,where
Ub=6350
W.N
(2.78)
ThetwoparametersintheabovedefinitionisthejournalstaticloadW(kg),andthemaximumcontinuousoperatingspeedN(rpm).ThejournalloadvalueusedforWandtheplacementoftheunbalancealongtherotoraredeterminedbythemodetobeexcitedasillustratedinFig.2.9.Forexample,toexcitethefirstbendingmode,theunbalanceisplacedatthelocationofthemaximumdeflectionneartherotormidspan,andWisthesumofthestaticloadsatbothsupportbearings.Figure2.9appliestomachineswithbetween-bearingandoverhungrotorsasgivenin[6].Basedontheresultsfromtheforcedresponse,aseparationmarginisrequiredforeachmodebelowtheMCOSthatpresentsanamplificationfactorequaltoorgreaterthan2.5.Therequiredminimumseparationmarginbetweenthemodecriticalspeedandtheoperatingspeedrangeisgivenas
1
SM=min171−,16.(2.79)
AF−1.5Ontheotherhand,ifthemodewithanamplificationfactorequaltoorgreaterthan2.5isabovetheMCOS,thentherequirementfortheminimumseparationmarginbetweenthemodecriticalspeedandthemachineMCOSisspecifiedtobe
1
SM=min10+171−,26.(2.80)
AF−1.5Therequirementsontheseparationmarginisemployedtodetermineanoperatingspeedofthemachinethatavoidsanycriticalspeedwiththepotentialtodamagethesystem.
Finally,fortraditionalfluid-filmandrolling-elementbearings,thepeak-to-peakamplitudelimitoftherotorvibrationisgivenby
12,000
A1=25,(2.81)
NwhereNisthemaximumcontinuousoperatingspeedinrpm.Atthesametime,thepeakamplitudeoftherotorvibrationatanyspeedbetweenzeroandNmcshouldnotexceed75%oftheminimummachineclearance.WewilllaterseeinChap.7thatthisparticularspecificationgenerallydoesnotapplytosystemswithactivemagneticbearings.
2.4Rotor-DynamicSpecificationsforCompressors43
Fig.2.9UnbalancevaluesandplacementsasspecifiedbyAPI[6]
2.4.2RotorStabilityAnalysis
Asthenameindicates,thisanalysisinvestigatesthestabilityoftherotor-dynamicsysteminthepresenceofcommondestabilizingforcesthatcompressorsandtur-binesaresubjectedtoduringnormaloperation.Thedominantforcesinthisgroupareoftentheaerodynamiccross-couplingforces,whichwereintroducedinSect.2.3.ThestabilityanalysisisrequiredbytheAPIforcompressorsandradialflowrotorswiththefirstrotorbendingmodebelowtheMCOS[6].
Thestabilityoftherotor-dynamicsystemintheAPIstandardisnormallyeval-uatedbytheamountofdampingonthefirstforwardmode.ThestandardmeasureofmechanicaldampingemployedintheAPIstandardisthelogarithmicdecrement,whichiscomputedasthenaturallogarithmoftheratiobetweentheamplitudesoftwosuccessivepeaks.Therelationbetweenthemodelogarithmicdecrementδand
442IntroductiontoRotorDynamics
thecorrespondingdampingratioζcanbefoundtobe
δ=2πζ1−ζ2.
(2.82)
2.4.2.1LevelIStabilityAnalysis
TheLevelIstabilityanalysisisthefirststepofthestabilityanalysis.Itisintendedtobeaninitialscreeningtoidentifythemachinesthatcanbeconsideredsafeforoper-ation.Theinletanddischargeconditionsforthestabilityanalysisareselectedtobeattheratedconditionofthemachine,althoughitisallowedforthevendorandthepurchasertoagreeonadifferentoperatingconditiontoperformthetest.Thepre-dictedcross-couplingstiffnessinkN/mmateachstageofacentrifugalcompressorisgivenby
qA=HP
BcCρd
,
DcHcNρsBtC
.
DtHtN
(2.83)
andthatofanaxialcompressorisgivenby
qA=HP
(2.84)
TheparametersintheaboveequationsareHPBcBtCDc,Dt
HcHtNρdρs
==========
ratedcompressorhorsepower,3,1.5,9.55,
impellerdiameter(mm),
minimumofdiffuserorimpellerdischargewidth(mm),effectivebladeheight(mm),operatingspeed(rpm),
dischargegasdensityperimpeller/stage(kg/m3),andsuctiongasdensityperimpeller/stage(kg/m3).
Thepredictedtotalcross-couplingstiffnessQAisthesumoftheqAforalltheimpellers/stagesinthecompressor.
IntheLevelIanalysis,thestabilityoftherotor-dynamicsystemistestedforavaryingamountofthetotalcross-couplingstiffness.Theappliedcross-couplingstiffnessvaluerangesfromzerotothesmallestbetween10QAandthemaximumcross-couplingstiffnessbeforethesystembecomesunstable.Thispointofinstabil-ityisidentifiedbytheAPItocorrespondtothecross-couplingstiffnessvalueQ0wherethedamping,orlogarithmicdecrementofthesystemfirstforwardmodebe-comeszero.FortheLevelIanalysis,thecross-couplingstiffnessisassumedtobeconcentratedattherotormid-spanforbetween-bearingmachines,oratthecenterofmassofeachimpeller/stageforcantileveredsystems.
2.4Rotor-DynamicSpecificationsforCompressors45
Fig.2.10Typicalplotoflogarithmicdecrementcorrespondingtothefirstforwardmodevs.ap-pliedcross-couplingstiffnessforLevelIstabilityanalysis
AnimportantgraphthatisrequiredbytheAPItobeincludedintheLevelIanalysisistheplotofthelogarithmicdecrementδforthefirstforwardmodeversustheappliedcross-couplingstiffnessQ,aspresentedinFig.2.10.Thepredictedtotalcross-couplestiffnessQAandthecorrespondinglogarithmicdecrementofthefirstforwardmodeδAaremarkedinthefigure.Additionally,Q0correspondstothecross-couplingstiffnesswhenthelogarithmicdecrementofthefirstforwardmodebecomeszero.Theboundaryatδ=0.1correspondstothepass/failconditionofthestabilityanalysis,whichwillbediscussedlaterinthissection.
Wenoteherethat,althoughwithtraditionalpassivebearingsthefirstforwardmodeisgenerallythefirstonetobedriventoinstabilitybythecross-couplingstiff-ness,thesituationisnotasstraightforwardwithAMBs.Astheactivecontrollerinthesemagneticbearingsnormallyhasadirectinfluenceonanysystemmodewithinthecontrollerbandwidth,theinteractionbetweenthecontrollerandthecross-couplingeffectshasthepotentialtodestabilizeagroupofmodeswithinandabovethecompressoroperatingspeedrange.Therefore,thelogarithmicdecrementofallmodeswithinthelevitationcontrollerbandwidthissometimesinspectedduringtheLevelIstabilityanalysisformachineswithmagneticbearings.
BasedontheresultsfromtheLevelIstabilityanalysis,machinesthatdonotmeetcertainstabilitycriteriaarerequiredtoundergoamoreadvancedLevelIIsta-bilityanalysis.Forcentrifugalcompressors,aLevelIIstabilityanalysisisrequired
462IntroductiontoRotorDynamics
ifeitherof
Q0/QA<2,
δA<0.1,
(2.85a)(2.85b)
isfoundtobetrue.Inthecaseofaxialcompressors,aLevelIIanalysisisrequiredonlyif
δA<0.1.
(2.86)
2.4.2.2LevelIIStabilityAnalysis
TheLevelIIstabilityanalysisisacompleteevaluationoftherotor/bearingsystemwiththedynamicsofallthecompressorcomponentsgeneratingtheaerodynamiccross-couplingstiffnessoraffectingthestabilityoftheoverallmachine.Someofthesecomponentsare[6]•••••
seals,
balancepiston,
impeller/bladeflow,shrinkfit,and
shaftmaterialhysteresis.
Detailsonthemethodologyoftheanalysisislefttoagreatextenttobedecidedbasedonthelatestcapabilitiesofthevendor.APIdoesnotspecifyhoweachdy-namiccomponentishandledintheanalysis.TheoperatingconditionofthemachineusedintheanalysisisthesameasintheLevelIanalysis.
DuringtheLevelIIanalysis,theAPIrequiresthevendortoinitiallyidentifythefrequencyandlogarithmicdecrementofthefirstforwarddampedmodeforthebarerotor/supportsystem.Then,theanalysisisrepeatedafteraddingthedynamicsofeachcomponentpreviouslyidentifiedtoaffectthestabilityoftherotor-dynamicsystem.Finally,thefrequencyandlogarithmicdecrementδfofthefirstdampedforwardmodeiscomputedforthetotalassembledsystem.
Thepass/failconditionoftheLevelIIstabilityanalysisstatedbyAPI617is
δf>0.1.
(2.87)
Ifthisissatisfied,thenthemachineisconsideredtohaveguaranteedstabilityintheratedoperatingcondition.Ontheotherhand,ifthepass/failconditioncannotbesatisfied,APIallowsthevendorandpurchasertomutuallyagreeonanacceptablelevelofδfconsideredtobesufficientforthesafeoperationofthemachine.Finally,itisrecognizedintheAPI617thatotheranalysismethodsexistforevaluatingthestabilityofrotor-dynamicsystems,andthesemethodsareconstantlybeingupdated.Therefore,itisrecommendedtofollowthevendor’sstabilityanalysismethodsifthevendorcandemonstratethatthesemethodscansuccessfullypredictastablerotor.
2.5RotorFiniteElementModeling47
2.5RotorFiniteElementModeling
Thefirstpriorityofthebearingsinarotor-dynamicsystemiscommonlythesupportoftherotorlateraldynamics.Althoughtherotoraxialvibrationsalsoneedtobecarefullyanalyzedforpossiblesignsoftrouble,themainsourceofrotorinstabilityinmostrotatingmachinescomesfromthelateralorradialvibrations.Forthisrea-son,anaccuratemodelofthesystemlateraldynamicsisessentialfortheanalysisandsimulationtestingthatarerequiredduringthedesignandcommissioningphasesofthesemachines.InthecaseofsystemswithAMBs,theneedforanaccuratemodelisevenhigherastheunstablebearingsystemrequiresreliablemodel-basedrotorlevitationcontrollersfornormaloperation.
Thelateraldynamicsofflexiblerotorsaredescribedbypartialdifferentialequa-tions.Thesearecomplexequationswithspatiallydistributedparameters,anditusu-allyisnotpossibletoderiveanalyticsolutionsforrotorswithcomplexgeometries.Inrealworldapplications,alinearizedapproximationmodeloftherotorlateraldy-namicsisnormallysufficientforanalyzingrotor-dynamicsystemsanddesigningrotorlevitationcontrollersforAMBs.Suchamodelcanbeobtainedbymeansofthefiniteelementmethod(FEM),wherethedescriptionofthespatiallycontinu-ousrotorissimplifiedtothedegreesoffreedomcorrespondingtoafinitenumberofshaftelements,effectivelyeliminatingthespatialvariableintheoriginalbeamequation[119].
Inthissectionwepresentabriefsummaryoftheprocessforobtainingthetwo-dimensionalfiniteelementmodelofarotor-dynamicsystem.Detailedstep-by-stepdescriptionofthefiniteelementmethodcanbefoundinthemanyavailablefiniteelementtextbookssuchas[4],andtheapplicationofthismethodformodelingtherotor-dynamicsystemisthoroughlydiscussedin[5]and[119].Inthissection,weonlypresentaconcisedescriptionoftheprocessforderivingthefiniteelementmodel,asanintroductiontowhatwilllaterbeusedinChap.7forthesynthesisoftheAMBlaterallevitationcontroller.
2.5.1DiscretizingRotorintoFiniteElements
Asthefirststepofderivingafiniteelementmodel,therotorisaxiallydividedintosimpleuniformbeamelementsconnectingtwoadjacentnodepoints.AtypicalmeshofasimplerotorisillustratedinFig.2.11,wherethenodepointsareshownasdarkdots.Theselectionofanadequaterotormeshmustfollowsomerulesthatarebasedontherotorgeometry,aswellasthelocationsoftherotordisks,bearings,andotherrotor-dynamiccomponents.First,anodalpointmustbeplacedateachloca-tionalongtherotorwithastepchangeinthediameter,sothatallshaftelementshaveauniformradius.Thiswilllatersimplifythemodelingofthedynamicsforeachindividualshaftelement.Second,anodepointisdefinedateachlocationwithamass/inertiadisk,bearing,seal,andanyothersourceofexternaldisturbanceforce.Bythesametoken,allsensorlocationsandothermeasurementpointsarealsocollo-catedwiththeshaftnodepoints.Thisrulesimplifiesthedefinitionoftheinputand
48
Fig.2.11Rotormeshexample
2IntroductiontoRotorDynamics
Fig.2.12Beamelementandgeneralizeddisplacementsofnodesiandi+1
outputvariablesinthefinalexpressionofthefiniteelementmodel.Finally,theratiooftheelement’slengthtodiametermustbeaboutoneorlessinordertoguaranteetheaccuracyofthefiniteelementformulation.
TherotorshowninFig.2.11hasatotalof17elementsand18nodepoints.Itiscommonfortheelementsandnodestobenumberedfromlefttoright,asdemon-stratedinthefigure.Thesupportbearings,withgivenstiffnessanddampingcoeffi-cients,arelocatedinthisexampleatthenodes4and15.Fortheremainingofthissection,wewillassumethatthegeneralrotormeshconsideredhereiscomposedofnbeamelements,correspondingtoatotalofn+1nodepoints
2.5.2ApproximatingElementDisplacementFunctionsandNodal
Displacement
Oncetheshaftissectionedintosmallerelements,thedynamicsofeachshaftsectionisstudiedindependently.Thegeneralizeddisplacementsandrotationsoftheshaftelementaredescribedthroughthedegreesoffreedomthataredefinedateachnodepoint.ThedegreesoffreedomforatypicalbeamelementareshowninFig.2.12.Consideringonlythelateraldynamicsoftherotorforsimplicity,eachshaftsec-tionhaseightdegreesoffreedom,correspondingtothetwodisplacementsandtworotationsaboutthelateralaxesateachnodepoint.
AsshowninFig.2.12,thelateraldisplacementsoftheithnodearegivenasuxiinthehorizontalx-axis,anduyiintheverticaly-axis.Theangulardisplacementsatthesamenodeaboutthey-andx-axesaredefined,respectively,as
θy=∂ux
,∂z∂uy
.θx=∂z
(2.88a)(2.88b)
2.5RotorFiniteElementModeling49
Thedegreesoffreedomoftheithnodepointarecollectedinthegeneralizeddis-placementvectorqi,whichdescribesthepositionandrotationofthenodeatagiventime.Thedisplacementandrotationvariablesaresortedinthementionedvectoras
⎡⎤uxi⎢uyi⎥
⎥(2.)qi=⎢⎣θyi⎦.θxiLastly,thegeneralizeddisplacementoftheithshaftelementillustratedinFig.2.12combinesthegeneralizeddisplacementvectorsattheendnodesqiandqi+1.ThegeneralizeddisplacementvectorfortheithelementinFig.2.12isdefinedas
qi
Qi=.(2.90)
qi+1Thegeneralizeddisplacementvectordefinedaboveisusedinthederivationofthedynamicmodeltoestimatethestateoftheentireshaftsection.Thus,theeightvari-ablesinQiuniquelydescribetheshapeoftheithbeamelementinthefiniteelementformulation.
Basedonthedegreesoffreedomdefinedatashaftelementoftherotormesh,thelateraltranslationandrotationisinterpolatedatanyarbitrarypointalongtheshaftelement.TheshapeoftheentireshaftelementisestimatedintermsofthegeneralizeddisplacementvectorQiandtheshapefunctionsNi.Theshapefunctionsthatformathirdorderpolynomialbasisoftheshaftelementaregivenas[4]
N1=
1323
L,−3zL+2zL3
1
N2=2zL2−2z2L+z3,
L
123
N3=33zL−2z,
L
1
N4=2−z2L+z3.
L
(2.91a)(2.91b)(2.91c)(2.91d)
TheparameterListhelengthoftheshaftelement,andthevariablezistheaxialpositionalongtheelement’slength.TheaboveshapefunctionsareillustratedinFig.2.13.
ForthegivenbasisofshapefunctionsinEqs.(2.91a)–(2.91d),thegeneralizedlateraltranslationoftheithshaftelementatanarbitraryaxialpositionzisexpressedasafunctionofthetimetandtheaxialoffsetfromtheleftmostnodeas
uxi(z,t)N10N20N30N40
=(2.92)Qi.
uxi(z,t)0N10−N20N30−N4Inthesameway,thelateralrotationsθyi(z,t)andθxi(z,t)atanarbitraryaxialpositionzcanbefoundbycomputingthepartialderivativeofEq.(2.92)withrespect
502IntroductiontoRotorDynamics
Fig.2.13ElementHermiteshapefunction
totheaxialoffsetzasshowninEqs.(2.88a),(2.88b).AnimportantobservationfromtheexpressionsinEq.(2.92)isthatthespatialvariableziscontainedinthematrixofbasisfunctionsinEq.(2.92),whileonlythegeneralizeddisplacementvectorQiisafunctionoftime.Thus,thedescriptionofthedynamicsoftheoriginalcontinuousshaftelementissimplifiedinthefiniteelementformulationintoafinitenumberofdegreesoffreedomcorrespondingtoadiscreteshaft[119].
2.5.3FormulatingEquationsofMotionforEachElement
TheequationofmotionfortheithshaftelementisdeterminedfollowingtheLa-grangeformulation:
∂Rid∂Li∂Li+=0.(2.93)−
dt∂q˙i∂qi∂q˙i
2.5RotorFiniteElementModeling51
TheLagrangianoftheithelementLiisdefinedasthedifferencebetweentheele-ment’skineticenergyTiandpotentialenergyUi,
Li=Ti−Ui.
(2.94)
Additionally,Ricapturestheenergydissipationinthesystemduetotheinternalfrictionordamping,anditisknownasthedissipationfunction.Giventhatthegen-eralizeddisplacementofashaftelementisapproximatedasshowninEq.(2.92),thetermsforboththekineticandpotentialenergiescanbeeasilyfoundbasedoneithertheBernoulli–EulerortheTimoshenkobeamtheories[4].Foreachofthebeamele-ments,thepotentialenergycomesmainlyfromthebeambendingandsheareffects.Ontheotherhand,thelevelofthekineticenergyisdeterminedbyboththelateralandtherotatoryinertialeffectsintheshaftelement.
ByexpandingtheLagrangeequationinEq.(2.93)withtheenergyformulationfortheindividualshaftsection,anexpressiondescribingthelateraldynamicsoftheithelementoftherotormeshisobtainedintheformofthevectordifferentialequation,
˙i+GiQ¨i+CQ˙i+Kiqi=Fi.MiQ
(2.95)
ThesystemmatricesarethemassmatrixMi,gyroscopicsmatrixGi,stiffnessmatrix
Ki,andthedampingmatrixCi.ThegeneralizedexternalforcevectorFiisaddedtotheLagrangeequationtoaccountfortheexternalforcesandtorquesperturbingthesystem.Theobjectiveofthefiniteelementformulationistofindtheexpressionsforthesystemmatrices,basedonEq.(2.93)andthegeneralizeddisplacementsinEq.(2.92).
2.5.4ElementMassandGyroscopicMatrices
Thekineticenergyofameshelementcomesfromthetranslationalandangularmomentumoftheshaft.Forauniformithbeamelementwiththegeneralizeddis-placementasdefinedbyEq.(2.92),theresultingexpressionofthekineticenergytakestheform
1˙T1˙T
˙Ti=QM+(2.96)ωQiWiQi.Qii
2i2
ThematrixMicorrespondstothemassmatrixoftheshaftelement,andthematrixWiisrelatedtothepolarmomentofinertiaoftheelementwitharotationalspeedofω.Adetailedstep-by-stepdescriptionofhowtodeterminetheexpressionsforthesematricescanbefoundin[5]and[119].
ThecontributionofthekineticenergyintheLagrangeequationappearsinthefirstandsecondtermsofEq.(2.93).ThefirsttermoftheLagrangeequationinEq.(2.93)withtheaboveformofthekineticenergyisgivenby
d∂T¨i+1ωWIQ˙i.(2.97)=MiQ
˙idt∂Q2
522IntroductiontoRotorDynamics
ThecorrespondingsecondtermoftheLagrangeequationis
−
1∂T˙i.=−ωWiTQ
∂Qi2
(2.98)
CombiningthetwotermsofthekineticenergyintheLagrangeequation,weobtain
theequation
∂Td∂T˙i,¨i+1ωWi−WiTQ=MiQ−
˙idt∂Q∂Qi2
¨i+GiQ˙i,=MiQ
(2.99)
wherethegyroscopicmatrixGiisdefinedaboveintermsofthematrixWiandthe
rotorspeedω.
ThefinalexpressionsofthemassmatrixMiandthegyroscopicmatrixGiforauniformshaftelementcanbefoundin[5]and[119].Thesematricesareexpressedintermsoftheelement’slength,crosssectionalarea,andmaterialdensity.Therefore,astheexpressionsareidenticalforallelementsinthemesh,itisrelativelysimpletoautomatetheprocessoffindingthesematricesforallshaftsections,giventhattherotormeshhasbeenselectedaccordingtotherulesdescribedatthebeginningofthissection.
2.5.5ElementStiffnessMatrix
BasedontheBernoulli–Eulerbeamtheory,thepotentialenergyofauniformshaftelementcomesfromtheinternalstrainenergyduetothelateralbending.Fortheithuniformbeamelementwiththegeneralizeddisplacementsuxi(z,t)anduxi(z,t)definedasinEq.(2.92),theresultingexpressionofthepotentialenergytakesthequadraticform
1
KiQi.(2.100)Ui=QT2i
ThematrixKiisthestiffnessmatrix.Itdescribestheaxialstrain/stressduetothelateralbendingofthebeamelement.AdetailedderivationofthepotentialenergytermUiandthestiffnessmatrixcanbefoundin[5]and[119].SubstitutingtheaboveexpressionofthepotentialenergytothesecondtermoftheLagrangeequationinEq.(2.93),weobtain
∂Ui
=KiQi.∂Qi
(2.101)
ThecoefficientsofthestiffnessmatrixKiarefoundin[5,119],andtheyaregivenintermsoftheelement’slength,crosssectionalareamomentofinertiaaboutthelat-eralaxes,andmodulusofelasticity.Therefore,sameasinthemassandgyroscopicmatrices,theprocessofcomputingthestiffnessmatrixforallshaftelementscanbeeasilyautomated,providedtheinformationabouttherotormesh.
2.5RotorFiniteElementModeling53
2.5.6ElementDampingMatrix
Thedissipationoftheenergyintheshaftduetotheinternalfrictionisgenerallysmall,andthusthedissipationfunctionisnormallyneglectedinthefiniteelementformulation.Forspecialcaseswherethedissipationfunctionisnotnegligible,theexpressionforRitakestheform
1˙T˙
CiQi,Ri=Q2i
(2.102)
wherethematrixCiisthedampingmatrixoftheshaftelement.Withtheaboveformofthedissipationfunction,thethirdtermoftheLagrangeequationinEq.(2.93)becomes
∂Ri
=CiQi.(2.103)˙i∂QFinally,combiningthetermsintheLagrangeequationcorrespondingtothekinetic
energyinEq.(2.99),potentialenergyinEq.(2.101)anddissipationfunctioninEq.(2.103),weobtainthevectordifferentialequationfortheshaftelementasshowninEq.(2.95)
2.5.7AddingLumpedMass,StiffnessandDampingComponents
Complexrotordesignscanincludeimpellers,motorcore,andothermassdisksthatcontributetothedynamicsoftherotor/supportsystem.Thesecomponentsaretreatedinthetwo-dimensionalfiniteelementformulationasrigiddiskslocatedatthedifferentshaftnodepoints,andthecorrespondingmassandmomentofinertiaareaddedtotheshaftmodel.Asdiscussedatthebeginningofthissection,thecentersofmassofthedisksareassumedinthefiniteelementformulationtobecollocatedwithsomenodalpointsintherotormesh.Undertheassumptionthatthegeneralizeddisplacementvectorcorrespondingtothenodeatthelocationofthediskisgivenas
⎡⎤uxd⎢uyd⎥
⎥(2.104)qd=⎢⎣θyd⎦,θxdthevectordifferentialequationofthedisktakestheform[119]
Mdq¨d+Gdq˙d=0,
(2.105)
whereMdisthediagonalmassmatrixofthedisk,andGdistheskew-symmetric
gyroscopicmatrix.TheexpressionsforthemassandthegyroscopicmatricesareasdescribedinSect.2.2
542IntroductiontoRotorDynamics
Sealsandbearingsarealsoimportantcomponentsinrotor-dynamicsystems,addingstiffnessanddampingtotherotoratparticularnodelocations.Giventhatqbisthegeneralizeddisplacementvectoratthenodepointcorrespondingtothebearing/seallocation,thevectordifferentialequationforthestiffnessanddampingcontributionis
Cbq˙b+Kbqb=0.
(2.106)
ThematrixCbisthedampingmatrix,andKbisthestiffnessmatrixofthebearing
orseal.Thesematricesaredesignparametersthatarecommonlyprovidedbythemanufacturer,andinmanycasestheyarefunctionsoftheshaftspeed.
2.5.8AssemblingtheGlobalMass,Gyroscopic,Stiffness,Damping
Matrices,andForceTerms
Finally,thesystemmatricesfortheshaft,disksandothercomponentsareassem-bledtoformthecorrespondingglobalmatrices.Giventhattheglobalgeneralizeddisplacementvectorisdefinedas
Q=[q1q2q3···qn+1]T,
(2.107)
thevectordifferentialequationforthecompleterotor-dynamicsystemhasthefinalformof
¨+GQ˙+CQ˙+KQ=F.MQ
(2.108)
ThesystemmatricesoftheequationofmotioninEq.(2.108)aretheglobalmassma-trixM,theglobalgyroscopicmatrixG,theglobaldampingmatrixCandtheglobal
stiffnessmatrixK.ThegeneralizedexternalforcevectorfortheglobalsystemisgivenbyF,whichincludesalltheexternaldisturbanceforces/torquesperturbingthedynamicsoftheglobalsystem.AllsystemmatricesandvectorsaredefinedinthesameorderasthenodaldisplacementsinthevectorQ.
TheglobalmatricesinEq.(2.108)areassembledbycombiningateachshaftnodepointthecontributionofallthecomponentsinthefiniteelementmodel.Herewedescribetheprocessfortheassemblyoftheglobalmassmatrix.Thesamestepscanbefollowedforformingtheremainingsystemmatrices.TheassemblyoftheglobalmassmatrixfromtheindividualmassmatricesoftheshaftelementsisshowninFig.2.14,whereMiisthemassmatrixfortheithshaftelement.Theoverlap-pingregionsbetweentheblockscorrespondingtoadjacentelementsinFig.2.14aresummedintheglobalmatrix.Next,themassmatricesfortherotordiskandanyothercontributingcomponentsareaddedintotheglobalsystembysummingthematrixentriestotheappropriateblocksinM.Foracomponentlocatedattheithnodeoftheshaft,themassmatrixofthecomponentisaddedtothesquareblockofMbetweenthecolumnandrownumbers4i−3and4i.Thefinalglobalmassmatrixisa4(n+1)×4(n+1)squaresymmetricmatrix,whichisconsistentwiththelengthofthedisplacementvectorQ.
2.6ConclusionsFig.2.14Globalmassmatrixassembly
55
2.6Conclusions
Abriefintroductiontorotor-dynamicswaspresentedinthischapter,withthein-tentionoffamiliarizingthereaderwiththeconceptsthatwillbeexpandedinthelatterchaptersofthisbook.ThediscussioninrotordynamicswasinitiatedherebystudyingtheequationsofmotionfortheJöppl/Jeffcottrotor.Basedonthissim-plifiedrotor-dynamicsystem,differentcharacteristicsthatareusedfordescribingthedynamicsofcomplexrotatingmachineswereidentified.Next,thegyroscopicmomentandthecross-couplingstiffnessweredefined,andtheireffectsonrotatingshaftswerediscussedinsomedetail.ThesearegenerallyknowntobethetwomainsourcesofinstabilityinAMBsupportedsystems,aswewilllaterobserveduringthedesignoftheAMBlevitationcontrollerinChap.7.Finally,theAPIstandardthatiswidelyusedforauditingtherotorresponseincompressorswerereviewed.Al-thoughmostofthesestandardsweredevelopedbasedontheresponseoftraditionalpassivebearings,manymanufacturersandend-usersrelyontheAPIspecificationsforauditingAMBsystems.
Aspreviouslymentioned,manyoftheconceptsintroducedherewillberevisitedduringthecharacterizationofthecompressortestriginChap.4andthedesignoftheAMBlevitationcontrollerinChap7.Rotordynamicsisaveryrichfieldofstudy.Itisnotpossibletopresentallthematerialwiththesamelevelofdetailasfoundinspecializedbooksonthetopic.SomeconceptswillplayamoreimportantrolethanothersinthedevelopmentofthestabilizingAMBcontrollersfortherotorvibrationandthecompressorsurge.Inthischapterwefocusedonaselectednumberoftopicsthatarerelevanttotheobjectivesofthisbook.Forfurtherreadingonthetheoryofrotordynamics,werecommendtheliteraturethatwasreferencedthroughoutthischapter.
http://www.springer.com/978-1-4471-4239-3
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务