EvaluationCriteriaandModelforRiskBetweenWaterSupplyandWaterDemandanditsApplicationinBeijing
LongxiaQian&HongruiWang&KeniZhang
Received:17October2012/Accepted:15April2014/Publishedonline:1September2014
#SpringerScience+BusinessMediaDordrecht2014
AbstractInChina,studiesonwatersupplyandwaterdemandbalancehavereceivedmuchattention,butriskbetweenwatersupplyandwaterdemandlacksthesamefocus.Thispaperpresentsevaluationcriteriaofriskbetweenwatersupplyandwaterdemand,whichincludesthreat,susceptibility,andvulnerability.Anewquantitativedefinitionofthreatisgivenbasedonfuzzyprobability;Susceptibilityisproposedforevaluatingtheinherentstateofthewaterresourcesystems;Vulnerabilityisqualitativelydefinedandcomputedintermsofeconomiclosses.Amodelforriskevaluationisdevelopedbasedonthemaximumentropyprincipleanddiscriminantanalysis.RisksinBeijing,usedasacasestudy,areevaluatedunderdifferentscenariosofinflow.Theresultsshowthatalltherisksin2020arefirstorsecondgrade.Afterusingreclaimedwaterandtransferredwater,thethirdgradeandfourthgraderiskaccountfor75%,with25%ofthefirstgradeandsecondgraderisk.Therefore,risksarestillhighinthesituationsoflowprecipitationperiods.
KeywordsThreat.Susceptibility.Vulnerability.Riskbetweenwatersupplyandwaterdemand.Fuzzyprobability.Maximumentropy.Discriminantanalysis
1Introduction
Riskisequaltothetwo-dimensionalcombinationofevents/consequencesandassoci-ateduncertainties(KaplanandGarrick1981;Aven2007;Haimes2009;Guetal.2012),andprobabilityisoftenusedasatooltoexpressanddescribeuncertaintiesinriskassessment(Suetal.2013;Arenaetal.2014;RosenbergandLund2009;MadaniMadanietal.2014;Tsakiris2007).Hashimotoetal.(1982)proposedthenotionofreliabilityas“thefrequencyorprobabilitythatasystemisinasatisfactorystate”forwaterresourcessystemperformanceevaluation.Manyresearchersappliedreliabilitytotheirstudies,suchaswatersupplyrisk,watershortagerisk,andwaterdistribution
L.Qian:H.Wang(*):K.Zhang
CollegeofWaterSciences,BeijingNormalUniversity,Beijing100875,Chinae-mail:henrywang@bnu.edu.cn
L.Qian
ResearchCenterofOceanEnvironmentNumericalSimulation,InstituteofMeteorologyandOceanography,PLAUniversityofScienceandTechnology,Nanjing211101,China
4434L.Qianetal.
network(Ruanetal.2005;Rajagopalanetal.2009;Sandoval-Solisetal.2011;Liserraetal.2014).However,thewaterresourcessystemisverycomplicated;itischaracterizedbyuncertaintiesduetorandomnessandfuzziness(Zuoetal.Zuoetal.2003;Mujumdaretal.MujumdarandSasikumar2002;Bardossyetal.BardossyandDisse1993).Therearelittlestudiesonwaterresourcesriskincludingbothrandom-nessandfuzziness.Threatisproposedforsimultaneoustreatmentofrandomnessandfuzzinessinthispaper.
AccordingtoHaimes(2006),riskarisesbecauseoftheinteractionsbetweennaturalorhuman-inducedhazardsandvulnerableconditionsofasystem.Haimes(2009)alsopointedoutthatitiscrucialtoconsidertheinherentstatesofthesystem(e.g.,physical,technical,organizational,andcultural)thatcanbesubjectedtoanaturalhazardorbeexploitedtoadverselyaffect(causeharmordamageto)thatsysteminriskanalysis.Hashimotoetal.(1982)proposedcriteria(reliability,vulnerabilityandresiliency)forevaluatingthepossibleperformanceofwaterresourcesystem,butnoneofthesecriteriareflecttheinherentstatesofwaterresourcesystemthatcanbeexploitedtocauseharmordamagetothesystem.AndsincethenmanyresearchersproposedcriteriaforwaterresourcesystemsriskbasedonthoseofHashimoto(Ruanetal.2005;Liuetal.2006;Sandoval-Solisetal.2011)withoutmanifestationoftheparticularstatesofthesystem.Thispaperpresentsanindicatortoevaluatetheinherentstatesofthewaterresourcesystemswhichiscalledsusceptibility.
Vulnerabilityisatermusedbydifferentresearcherswithdifferentmeanings(Haimes2006;Preziosietal.2013;Wuetal.2014;Wangetal.2012;Safavietal.2014).Oneofthemostcommonnotionsisthatvulnerabilityisperceivedasadirectconsequencesoftheexposuretoagivenhazard,e.g.Alexander(2000)definedvulnerabilityas“thepotentialforcasualty,destruction,damage,disruptionorotherformsoflosswithrespecttoaparticularelement.”Dilleyetal.(2005)proposedvulnerabilityas“theapparentweaknessofthephysicalandsocialsystemstoparticularhazards”andmadethenumericalestimationofvulnerabilityintermsoffatalitiesoreconomiclosses.AlthoughHashimotoetal.(1982)proposedaquantitativedefinitionforoverallsystemvulnerabilityexpresssedintermsofexpectedmaximumseverity,theexpectedvaluehassomeshortcomings(Aven2010).Intheresearch,vulnerabilityisqualitativelydefinedandexpressedintermsofeconomiclosses.
InChina,balancebetweenwatersupplyandwaterdemandhasreceivedmuchattention,whilethequantitativestudiesonrelationshipsbetweenwatersupplyandwaterdemandarefarmoresufficient(Gao1997;Shenetal.2006).Thereexistuncertaintiesinwatersupplyandwaterdemandbecauseofuncertaintiesinprecipitation,runoff,andwateruse(Zuoetal.Zuoetal.2003;Bardossyetal.BardossyandDisse1993).Therefore,thereexistsriskbetweenwatersupplyandwaterdemand.
Motivatedbytheabovediscussion,thispaperaimstopresentevaluationcriteriaforriskbetweenwatersupplyandwaterdemandthatmakesitpossibletodescribetheinherentnatureofriskinaqualitativeway.Thesemeasuresdescribethelikelyhoodthatasystemisinaunsatisfactorystateincludingbothrandomnessandfuzziness(threat),theinherentstatesofthewaterresourcesystems(susceptibility),andadirectconsequenceoftheexposuretoagivenhazardexpressedintermsofeconomiclosses(vulnerability).Moreover,amodelisdesignedforevaluatingriskbetweenwatersupplyandwaterdemand.
Thepaperisorganizedasthefollowing:first,evaluationcriteriaforriskbetweenwatersupplyandwaterdemandaredescribedanddefined;second,amodelforevaluatingriskbetweenwatersupplyandwaterdemandisdeveloped;third,theuncertaintyofinflow,riskevaluationunderdifferentscenariosinBeijingareconsidered.finally,discussionandconclu-sionsarepresented.
EvaluationCriteriaandModelforRiskBetweenWaterSupplyandDemand4435
2EvaluationCriteriaforRiskBetweenWaterSupplyandWaterDemand
AccordingtoMileti(1999)andDilleyetal.(2005),theevaluationcriteriafornaturaldisasterriskareprobability,exposureandvulnerability.Tsakiris(2014)believesthatriskistherealthreattoasystemgivenitsvulnerablestatestowardsthephenomenon.Basedonthediscussionintheintroduction,weconcludethatriskisduetothefollowingcombinedeffects:threatofnaturalorhuman-inducedeventsandsuscepti-bilityofasystemtobeaffectedbytheexternalevent.Vulnerabilityisamanifestationoftheconsequenceofrisk.Threatreferstotheprobabilityofsomethingundesirablehappeninginthegiventime.Susceptibilityisreferredtoastheinherentstatesofthesystemorthesetofconditionsresultingfromphysical,social,andeconomicfactorsthatareexploitedtoadverselyaffectthesystem.Vulnerabilityisdefinedaspotentiallossesduetoaparticularhazardforagivenareaandreferenceperiod.Threatandvulnerabilitywillbequantitativelydefinedfromanewviewpoint.2.1Threat(T)
Forawatersupplysystem,awatersupplyisafailureifWsislessthanWd,makingthewatersupplysystembeastateofshortage.WdandWsdenotetheamountofwaterdemandandwatersupplyrespectively.Werefertothreatastheprobabilityofthewatersupplysystembeinginthestateofwatershortage.Inordertodefinethreat,twoimportantconceptsareintroducedinthispaper,thefirstoneisrelatedtoviewingthewatersupplysystembeinginthestateofshortageasafuzzyevent;thesecondoneisrelatedtofuzzyprobabilitywhichcanincludebothrandomnessandfuzziness.Zadeh(Zadeh1968)definedfuzzyprobabilityasfollows:
ZÀÁeAf¼μAfðyÞfðyÞdyð1ÞP
Rn
WhereμAfðyÞisthemembershipfunctionofthefuzzyeventAfandf(y)istheprobability
densityfunctionoftherandomvariableY.
Wedefinethreatbasedonthedefinitionoffuzzyprobabilityas:
Zx
TðxÞ¼μðtÞfðtÞdtð2Þ
0A
WhereArepresentsfuzzyevent(thewatersupplysystembeingthestateofshortage),xis
amountofwatershortage,i.e.x=Wd−Ws.f(t)istheprobabilitydensityfunctionofwatershortage,andμAðtÞisthemembershipfunctionofwatershortage.Asaresultofuncertaintiesofinflowintheplanningyear,theamountofwatershortagexisavariable,sotheintegralintervaloftheEq.(2)is[0,x]andthreatisafunctionofx.
f(t)willbedeterminedthroughthemaximumentropyprincipleandμAðtÞcanbeexpressedasfollows:
80;><t−Wp
a
μðtÞ¼;
>A:Wm−Wa
1;
0≤t≤WaWa≺t≺Wmt≥Wm
ð3Þ
WhereWadenotesanacceptablevalueofwatershortage,Wmdenotesthemaximumvalueofwatershortage,andpisapositiveintegerwhichiscomputedbyfitting.
4436L.Qianetal.
2.2Susceptibility(S)
Susceptibilityisreferredtoastheinherentstates(e.g.physical,social,andecolog-ical)ofthewaterresourcessystemthatcausethesystemtobesubjecttowatershortage,includingthreeevaluationindicators:precipitation(P),satisfactoryrateofwaterdemand(Sr)andutilizationrateofwaterresources(Ur).Precipitationisthemainreplenishmentsourceofwaterresources,thatnotonlydeterminessurfacerunoffandsurfacewater,butalsoinfluencesreplenishmentandavailablegroundwateramount.Sristhereflectionofsatisfactiondegreeofwaterdemand.Uristhemanifestationofexploitationdegreeofwaterresources.WedefineSrandUras:
Sr¼
WasWtd
ð4Þ
WhereWasdenotestheavailablewatersupply,andWtddenotestotalwaterdemand.
Ur¼
WssþWgs
Wt
ð5Þ
WhereWssdenotestheavailablesurfacewatersupply,WgsdenotestheavailablegroundwatersupplyandWtdenotestotalwaterresources.2.3Vulnerability(V)
Vulnerabilityreferstopotentialeconomiclossduetowatershortage,anditsunitisbillionrmb(ChineseYuan).Wedefinevulnerabilityas:
80> i¼1 Wherexiswatershortage,E′istheutilizationbenefitofwaterresourcespercube(m3), wi(i=1,2,3)denotethemassesofei(i=1,2,3),andei(i=1,2,3)denotethebenefitcoefficientsofagriculturalwateruse,industrialwateruseanddomesticwateruserespectively. AccordingtothestudyofYuan(Yuanetal.2002)ontheefficiencyofwateruse,thedefinitionsofei(i=1,2,3)are: 1Xbi e1¼ mi¼1Mi m ð7Þ Wheremisthecategoryofthemaincrops,biisthenetirrigationbenefitofthejthkindofcropperacreage,andMiisthewaterconsumptionnormofthejthkindofcrop. e2¼ 10000 Âg2Âf2D2 ð8Þ WhereD2iswaterconsumptionamountpertenthousandRMB(ChineseYuan)product,g2istheallocationcoefficient,i.e.therateofbenefitbroughtbywateruse,andf2istheratioofnetindustrialbenefittoproduct. Becausedomesticwaterbenefitisdifficulttoquantifyandthewatersupplysystemofindustrialwateristhesameasthatofdomesticwater,thecoefficientofdomesticwaterbenefit(i.e.e3)isassumedtobeequaltothatofindustrialwaterbenefitinthepaper. EvaluationCriteriaandModelforRiskBetweenWaterSupplyandDemand4437 3ModelDevelopmentforRiskBetweenWaterSupplyandWaterDemand3.1SimulationofProbabilityDistributionofWaterShortageSequence ClausiusRpresentedentropyforthefirsttimein1865.ShannonCEproposedinformationentropyin1948andhethoughtentropyisareflectionoftheuncertaintydegreeoftheinformationsource.Jaynes(1957)putforwardthemaximumentropyprincipleonthebasisofinformationsource.Inviewofrandomnessofwaterresourcessystem,wesimulatetheprobabilitydistributionofwatershortagesequencebythemaximumentropyprinciple.Thearithmeticofsimulatingprobabilitydensityfunctionthroughthemaximumentropyprincipleisasfollows(Diaoetal.Diaoetal.2007): Zb fðxÞlnfðxÞdxmaxS¼− Zba s:t:fðxÞdx¼1 ð9Þ Zb a a xnfðxÞdx¼μn n¼1;2;⋯;N Whereμnisthenthorderoforiginmoment,Nistheorderoforiginmoment.First, Lagrangianmultipliers(l0+1)andln(n=1,2,⋯,N)areintroducedandthesolutionoftheprobabilitydensityfunctioncanbetransformedintoaproblemofconditionalfunctionalextremum.Andthentheprobabilitydensityfunctioncanbeobtainedthroughvariationandderivation: !NX ð10ÞλnxnfðxÞ¼expλ0þ n¼1 Whereλn(n=0,1,⋯,N)areundeterminedparameters,theycanbeobtainedbymathemat-icalcalculation.3.2ClusterAnalysis Clusteranalysis,amethodofMultivariateStatistics,isoftenusedforclassifyingsampleor variable.Accordingtothetheoryofdiscriminantanalysis,riskrankofthetrainingsampleisdeterminedinadvance.Inthispaper,clusteranalysisisusedtoclassifythesequencesofthreat,susceptibilityandvulnerability.Therearethreemethodsofclusters,includingTwoStepCluster,K-MeansClusterandHierarchicalCluster.Inthispaper,HierarchicalClusterisappliedforriskclassification.TheprincipleofHierarchicalCluster(Liuetal.LiuandGu2007)is:nobservationsareregardedasnkinds,andtwokindswhosedistanceisclosesttoeachotherareincorporatedintoonekind,andthentwokindswhosequalityisclosesttoeachotherarefoundfromthe(n-1)kinds.Byanalogy,theclusteringprocessdoesn’tstopuntilallobservationsareincorporatedintoonekind.3.3DiscriminantAnalysis Inthispaper,thepurposeofriskevaluationistojudgetheriskrankintheplanningyearintermsofthesequencesofthreat,susceptibilityandvulnerability.Discriminantanalysis(Lu 4438L.Qianetal. 2006)canjudgewhatkindtheobjectbelongstoonthebasisofsomeobservedormeasuredvariables,makingtheerrorprobabilitysmallest.Therefore,discriminantanalysisisusedforjudgingriskrankintheresearch.Discriminantanalysiscanalsochoosethevariablesthatcontainmoreinformationfrommanyindependentvariablesreflectingfeaturesoftheobject.Thegeneraldescriptionoflineardiscriminantfunctiontakestheform: y¼a1x1þa2x2þ…þanxn ð11Þ Whereyisthediscriminantvalue,x1,x2,…,xnarevariablesthatarereflectionsoffeaturesoftheobject,anda1,a2,…,anarediscriminantcoefficients. ThemodelforevaluatingriskbetweenwatersupplyandwaterdemandisshowninFig.1. 4CaseStudy Inthissection,riskbetweenwatersupplyandwaterdemandin2020forBeijingisevaluatedandanalyzedbyusingtheproposedmodel. TheanalysismodelforriskbetweensupplyanddemandofwaterresourcesSusceptibilityThreatVulnerabilityProbabilitydistributionmodelbasedonmaximumentropyContstructionofmembershiofunctionFuzzyprobabilityClassifyingtheseriesbyhierarchicalclusterConstructionoffourdiscriminantfunctionsAnalysisforsupplyanddemandbalanceofwaterresourcesEvaluationofriskbetweensupplyanddemandofwaterresourcesunderdifferentscenariosintheplanningyearFig.1Arithmeticprocessofanalysismodelforriskbetweensupplyanddemandofwaterresources EvaluationCriteriaandModelforRiskBetweenWaterSupplyandDemand4439 4.1FeaturesofWaterResourcesofBeijing Beijing,locatedintheHaiheBasin,consistsoffivewatersystemsfromtheeasttowest(Fig.2).Theaverageprecipitationis585mmannualy.Asaresultofinfluencesofmonsoon,precipitationischaracterizedbyasymmetryintemporalandspatialdistribution,aswellasalternationofdryandwetperiods.Thefloodseason(JunetoSeptember)hascentralizedabout85%ofthesumofall-yearprecipitation,whichoftenresultsinflooddisaster.However,watershortageoccursintheremaindermonthsduetolowprecipitationandlargewateruse.Beijingisaninternationalmetropoliswithmorethan16millionpeople,anditisalsoacitywithseriouswatershortage.Theamountofwaterresourcespercapitaisabout200m3inBeijing,whichis1/8ofthatinChinaand1/30ofthatintheworld.WatershortagehasbecomethemaincauseofhinderingtheeconomicandsocialdevelopmentofBeijing(Wangetal.WangandLiu2001;Wangetal.WangandWang2009;Hanetal.HanandRuan2007). 4.2ModelforEvaluatingRiskBetweenWaterSupplyandWaterDemand Watershortagesequence(1956–1978)isusedtoconstructthethreatfunction,sequencesofthreat,susceptibility,andvulnerability(1979–2008).Theyareappliedtoconstructthemodelofdiscriminantanalysis. Fig.2DistributionofwatersystemofBeijing 4440L.Qianetal. 4.2.1ConstructionoftheThreatFunction Accordingtothearithmeticofsimulatingprobabilitydensityfunctionthroughthemaximumentropyprinciple,theprobabilitydensityfunctionofwatershortagecanbeobtained.Itisexpressedasfollows: fðxÞ¼exp−0:9021−0:002ðx−11:2213Þ−0:0519ðx−11:22Þ2þ0:0007ðx−11:22Þ3ðx>0Þð12ÞSubstitutingtheEq.(3)andEq.(12)intotheEq.(2)andthenintegratingover[0,x],the functionofthreatcanbeobtained.However,theanalyticfunctionexpressionofthreatcannotbeobtainedduetocomplexityofintegratedfunction.Thethreatfunctioncanbedrawnbymeansofnumericalintegral(Fig.3)andthevaluesofthreat(1979–2008)canbecomputed.InFig.3,thehorizontalcoordinatexdenoteswatershortagewiththeunitofbillionm3.FromFig.3,it’sconcludedthatthreatincreaseswiththeincreaseofwatershortage.4.2.2ComputationofSusceptibilityandVulnerability Substitutingavailablewatersupply,wateruse,waterconsumptionnormofmaincropsandindustrialproducts(1979–2008)intoEq.(4),Eq.(5),Eq.(6),Eq.(7)andEq.(8),satisfactoryrateofwaterdemand,utilizationrateofwaterresourcesandvulnerabilityfrom1979to2008canbeobtained.4.2.3RiskClassification Accordingtothesequencesofthreat,vulnerabilityandsusceptibility(1979–2008),risksofBeijingareclassifiedbymeansofhierarchicalcluster(Fig.4).InFig.4,thehorizontalcoordinatedenotesthreat,theverticalcoordinatedenotesvulnerability,andthemarkerdenotesriskrank.RiskfeaturesofallranksareshowninTable1.4.2.4ConstructionofModelofDiscriminantAnalysis Thesequencesofthreat,precipitation,andsatisfactoryrateofwaterdemand,aswellasutilizationrateofwaterresources,vulnerability,andriskclassification(1979–2008)are 3.532.52Threat1.510.50−0.5051015202530x Fig.3Threatfunctionofwatershortage EvaluationCriteriaandModelforRiskBetweenWaterSupplyandDemand4441 Fig.4RiskclassificationofBeijing(1979–2008) regardedasatrainingsampleofdiscriminantanalysis.Weusestepwisemethod.TheresultsareshowninTable2andTable3. Table2isasummaryofstepwisediscriminantanalysis.ThefirstStatisticisusedtoselectthevariablewhichcanenterdiscriminantfunctionineachstep.ThesecondStatisticisusedtodecidewhethertheselectedvariablecanretainineachstep.Theresltshowstheselectedthreevariables(i.e.threat,vulnerabilityandsatisfactorydegreeofwaterresources)havesignificantcontributionsfordiscriminant. Table3representsthecoefficientsofFisher’slineardiscriminantfunction.AccordingtotheresultsofTable3,fourdiscriminantfunctionscanbeexpressedasfollows: F1F2F3F4 ¼10:530T¼25:858T¼16:431T¼22:230T þ14:410Vþ767:468Sr−340:355þ14:270Vþ806:928Sr−390:498þ14:336Vþ857:291Sr−421:674þ18:773Vþ869:911Sr−480:321 ð13Þ Table1RiskfeaturesofallranksRiskRankRiskoffirstgradeRiskofsecondgradeRiskofthirdgradedRiskoffourthgrade Feature WatersupplyisseriouslyscarceandthelossisverygreatWatersupplyisscarceandthelossisgreat WaterdeficiencyamountislittleandthelossissmallWatersupplyisenoughwithoutloss 4442 Table2Variablesentered/removedStep Entered Wilks’LamberStatistic df1df2 df3 ExactFStatistic 123 Threat(T) Vulnerability(V) Satisfactoryrateofwaterdemand(Sr) 0.1160.0540.03 123 333 26.00026.00026.000 66.12127.57420.817 L.Qianetal. df1df2369 26.00050.00058.560 Sig.0.0000.0000.000 4.3RiskEvaluationin2020inBeijing 4.3.1AnalysisonWaterSupplyandWaterDemandBalance Calculationoflongseriesmonthbymonthisappliedtoanalyzewatersupplyandwaterdemandbalance.Thewatersupplysequenceisinflowamountsfrom1956to2007(52yearsinall)andthewaterdemandsequenceispredicatedvaluesofwaterusein2020.Weobtainwatershortagesequenceunder52kindsofinflowin2020. 4.3.2RiskEvaluation(WithoutConsiderationofUsingTransferredWaterandReclaimedWater) Sequencesofthreat,vulnerabilityandsatisfactoryrateofwaterdemandunder52kindsofinflowin2020areobtainedaccordingtothethreatfunction(Fig.4)andEq.(4)and(6),showninFig.5. FromFig.5,wecanconcludethat:boththreatandvulnerabilityaregreaterinthesituationsoflowprecipitationperiods;themaximumvaluesofthemappearinthesituationoftheprecipitationof448mm;threatandvulnerabilityvarywithprecipitationandthevariationtrendsofthemaresimilar;andsatisfactoryrateofwaterdemand(Sr)islessinthesituationsoflowprecipitationperiodsandtheminimumvalueappearsinthesituationoftheprecipitationof499mm. Risksunder52kindsofinflowin2020areevaluatedbasedonthediscriminantanalysismodel(Eq.13),showninFig.6.Theresultshowsthat:inthesituationofdifferentprecipi-tationperiods(1956–2007),thefirstgraderiskaccountsfor32.7%andtheremainderissecondgrade.Thereby,thesituationofwatersupplyandwaterdemandin2020inBeijingisextremelydangerous.Somemeasuresmustbetakentoreducerisk. Table3Classificationfunctioncoefficients(Fisher’slineardiscriminantfunction)VariableFunction Satisfactorydegreeofwaterresources(Sr)Threat(S)Vulnerability(V)(Constant) 1767.46810.53014.410−340.355 2806.92825.85814.270−390.498 3857.29116.43114.336−421.674 4869.91122.23018.773−480.321 EvaluationCriteriaandModelforRiskBetweenWaterSupplyandDemand4443 (a) 2.652.62.559.49.298.88.68.4Threat2.52.452.42.352.32.252.2(b) Satisfactory rate of water demand0.580.570.560.550.540.530.520.51Fig.5Valuesofthreatandvulnerability(a)andsatisfactoryrateofwaterdemand(b)under52kindsofinflow 4.3.3EvaluationofInfluencesofSouth-to-NorthWaterTransferandReclaimedWaterUseAsforBeijing,middlerouteprojectofSouth-to-NorthWaterTransfer,whichwillstartoperatingin2014,isanimportantmeasureofmitigatingwaterdeficiencyfromthepointofresources.Atpresent,Beijing-ShijiazhuangsectionofmiddlerouteprojectofSouth-to-NorthWaterTransferhasopened,withTransferredwaterof3billionm3everyyear.AccordingtotheplanningofSouth-to-NorthWaterTransferProject,waterof14billionm3wouldbetransferredtoBeijingin2020.Moreover,reclaimedwaterusehasbeenincreasinganditmayachieve10billionm3in2020. Valuesofthreat,vulnerabilityandsatisfactoryrateofwaterdemandafterusingtransferredwaterandreclaimedwaterin2020areobtainedaccordingtothethreatfunction(Fig.3)andEq.(4)and(6). Risksunder52kindsofinflowafterusingtransferredwaterandreclaimedwaterin2020areevaluatedbasedonthediscriminantanalysismodel(Eq.13),showninFig.7.Theresultshowsthatrisksofthirdgradeandfourthgradeaccountfor75%.ItindicatesthatSouth-to-NorthWaterTransferandreclaimedwaterareessentialtoreduceriskbetweenwatersupply 3.2508469.1797.9585.7479.1572.3433.1596631.4668387.3585.1442.1560.3594.7662.4500727.7669.4687.4446.13539445753.85046.1797.9585.7479.1572.3433.1596361.4663887.3585.1442.1560.3594.7662.4507207.7669.4687.4446.13539448.53753.2Precipitation [mm]ThreatvulnerabilityPrecipitaion [mm]Vulnerability [billion RMB]2.79.444L.Qianetal. Fig.6Riskevaluationunder52kindsofinflowwithouttakinganymeasures andwaterdemandinBeijing.However,theproportionofrisksoffirstgradeandsecondgradeisstillhigh(around25%,Fig.7).ShowninFig.7,risksoffirstgradeandsecondgradeappearinthesituationofprecipitationof350mmto400mm.Itindicatesthat:eveniftransferredwaterandreclaimedwaterareusedsimultaneously,riskisstillhighinthesituationoflowprecipitationperiods.Therefore,othermeasuresshouldbetakentoreducerisk. 5Discussion Since1999,Beijinghasbeenaridintensuccessiveyears,whichhasstronglyaffectedwaterresourcesofBeijing.Themeanannualprecipitationandavailablewaterresourcesare469mmand26billionm3respectively,farlowerthanthoseofmulti-annualmean(585mmand37.4billionm3).Asaresultoflargerdecreaseinsurfacewater,groundwaterhasbecometheprimarysourceofwatersupply,withaproportionof70%to80%.However,thegroundwaterisinastateofsevereover-exploitationandthelevelofgroundwaterisdecreasingyearbyyear.Since1960s,thestorageofgroundwaterhasdecreasedby100billionm3,withseveredecreaseof60billionm3intenofthelasttwelveyears(2000–2011).Ontheotherhand,themeanannualwateruseisabout42billionm3(since1970s).Since1999,themeanannualwaterusehasdecreasedto35billionm3bycuttingdownwateruseduetodrought.Withoutspreadofcityscopeandrapidincreaseinpopulation,industrialanddomesticwaterusewillincreasetoacertainextent.Watershortagewillbeseriousinthefuture.AccordingtoFig.6,riskbetweenwatersupplyandwaterdemandwillbehigh.Somemeasuresmustbetakensuchasreclaimedwateruseandtransferredwateruse. In2008,thereclaimedwateruseaccountsfor17%ofthetotalwateruse,exceedingsurfacewateruseforthefirsttime.ThereclaimedwaterwillplayamoreandmoreimportantpartinwaterresourcesallocationofBeijing.IftheprojectofSouth-to-NorthWaterTransfercan EvaluationCriteriaandModelforRiskBetweenWaterSupplyandDemand4445 Fig.7Riskevaluationunder52kindsofinflowafterusingtransferredwaterandreclaimedwater provide14billionm3in2020,riskbetweensupplyanddemandwillbereducedgreatly.However,WaterstorageofBeijinghasbeenusedupduetodurativedrought,andthewatersupplysystemisveryfragile.Iflowprecipitationeventswilloccurin2020,riskbetweenwatersupplyandwaterdemandmaybestillhigh.Besidesreclaimedwateruseandtransferredwateruse,othermeasuresmaybetakensuchasvirtualwateruse. 6Conclusions Inthispaper,wefirstlyproposeevaluationcriteriaforriskbetweenwatersupplyandwaterdemand,i.e.threat,susceptibilityandvulnerability.Anewquantitativedefinitionofthreatisgivenbasedonfuzzyprobability;susceptibilityisproposedforevaluatingtheinherentstateofthewaterresourcesystems;vulnerabilityisqualitativelydefinedandcomputedintermsofeconomiclosses.Webelievethattheproposedcriteriaareareflectionoftheinherentfeaturesofrisk.Furthermore,amodelforevaluatingriskbetweenwatersupplyandwaterdemandisdevelopedbasedonthemaximumentropyprincipleanddiscriminantanalysis.RisksinBeijing,usedasacasestudy,areevaluatedunderdifferentscenariosofinflow(1956–2007)byusingthemodel.Theresultindicatesthatthefirstgraderiskaccountsfor32.7%andtheremainderissecondgrade.Afterusingtransferredwaterandreclaimedwater,risksarereducedinthemostcircumstancesofinflow.Nevertheless,riskisstillhighinthesituationoflowprecipitationperiodswithaproportionoffirstgradeandsecondgraderiskof25%. AcknowledgmentsThestudyissupportedbytheNationalNaturalScienceFoundationofChina(GrantNo.51279006),(GrantNo.41375002)andtheChineseNationalNaturalScienceFund(BK2011123)ofJiangsuProvince.TheauthorswouldliketothanktheAssociateEditorandalltheanonymousreviewersfortheirvaluablecommentsandconstructivesuggestions,whichleadtotheimprovementofthepresentationofthispaper. 4446L.Qianetal. References AlexanderD(2000)Confrontingcatastrophe.Terra,Hertfordshire ArenaC,CannarozzoM,MazzolaMR(2014)Screeninginvestmentstoreducetheriskofhydrologicfailuresin theheadworksystemsupplyingApulia(Italy)-roleofeconomicevaluationandoperationhydrology.WaterResourManag28(5):1251–1275 AvenT(2007)Aunifiedframeworkforriskandvulnerabilityanalysisandmanagementcoveringbothsafetyand security.ReliabilityEngineeringandSystemSafety92:745–754 AvenT(2010)Onhowtodefine,understandanddescriberisk.ReliabilityEngineeringandSystemSafety95: 623–631 BardossyA,DisseM(1993)Fuzzyrulebasedmodelsforinfiltration.WaterResourRes29(2):373–382 DiaoYF,WangBD,LiuJ(2007)Studyondistributionoffloodforecastingerrorsbythemethodbasedon maximumentropy(inChinese).JournalofHydraulicEngineering38(5):591–595 DilleyM,ChenRS,DeichmannU,Lerner-LamAL,ArnoldM(2005)Naturaldisasterhotspots,aglobalrisk analysis.WorldBank,Washington GaoYC(1997)Limitanalysisonthedevelopmentandutilizationofregionalwaterresources(inChinese). JournalofHydraulicEngineering28(8):73–79 GuWQ,ShaoDG,JiangYF(2012)Riskevaluationofwatershortageinsourceareaofmiddlerouteprojectfor South-to-NorthwatertransferinChina.WaterResourManag26(12):3479–3493 HaimesYY(2006)Onthedefinitionofvulnerabilitiesinmeasuringriskstoinfrastructures.RiskAnalysis26(2): 293–296 HaimesYY(2009)Onthecomplexdefinitionofrisk:asystems-basedapproach.RiskAnalysis29(12):17–1654HanYP,RuanBQ(2007)Economiclossassessmentofshortageriskofwaterresources(inChinese).Journalof HydraulicEngineering38(10):1253–1257 HashimotoT,StedingerJR,LoucksDP(1982)Reliability,resiliencyandvulnerabilitycriteriaforwaterresources systemperformanceevaluation.WaterResourRes18(1):14–20 JaynesET(1957)Informationtheoryandstatisticalmechanics.PhysicalReview106(4):620–630KaplanS,GarrickB(1981)Onthequantitativedefinitionofrisk.RiskAnalysis1(1):11–27 LiserraT,MaglionicoM,CirielloV,FedericoVD(2014)EvaluationofreliabilityindicatorsforWDNswith demand-drivenandpressure-drivenmodels.WaterResourManag28(5):1201–1217 LiuJN,GuY(2007)Applicationofdicriminantanalysisindistinguishingagriculturedrought(inChinese). JournalofChinaHydrology27(2):60–67 LiuT,ShaoDG,GUWQ(2006)Riskcomprehensiveevaluationofwatersupplyinmiddleandlowerreachesof HanjiangRiverafterimplementationofmiddlerouteofSouth-to-NorthWaterDiversion(inChinese).EngineeringJournalofWuhanUniversity39(4):25–28 LuWD(2006)SPSSforWindows(inChinese).ElectronandIndustryPress,Beijing MadaniK,ReadL,ShalikarianL(2014)Votingunderuncertainty:astochasticframeworkforanalyzinggroup decisionmakingproblems.WaterResourManag.doi:10.1007/s11269-014-0556-8 MiletiDS(1999)Disastersbydesign:areassessmentofnaturalhazardsintheUnitedStates.JosephHenryPress, Washington MujumdarPP,SasikumarK(2002)Afuzzyriskapproachforseasonalwaterqualitymanagementofariver system.WaterResourRes38(1):1–9 PreziosiE,DelBonA,RomanoE,PetrangeliAB,CasadeiS(2013)Vulnerabilitytodroughtofacomplexwater supplysystem.TheUpperTiberBasinCaseStudy(CentralItaly).WaterResourManag27(13):4655–4678RajagopalanB,NowakK,PrairieJetal.(2009)WatersupplyriskontheColoradaRiver:canmanagement mitigate?WaterResourResVol.45W08201.doi:10.1029/2008WR007652 RosenbergDE,LundJ(2009)Modelingintegrateddecisionsforamunicipalwatersystemwithrecourseand uncertainties:Amman,Jordan.WaterResourManag23(1):85–115 RuanBQ,HanYP,WangH,JiangRF(2005)Fuzzycomprehensiveassessmentofwatershortagerisk(in Chinese).JournalofHydraulicEngineering36(8):906–912 SafaviHR,EsfahaniMK,ZamaniAR(2014)Integratedindexforassesmentofvulnerabilitytodrought,case study:ZayandehroodRiverBasin,Iran.WaterResourManag.doi:10.1007/s11269-014-0576-4 Sandoval-SolisS,MckinneyMASCEDC,LoucksMASCEDP(2011)Sustainabilityindexforwaterresources planningandmanagement.JournalofWaterResourcesPlanningandManagement137(5):381–390 ShenDJ,LiuB,GuoMR,YangJS(2006)Supply-decidedwaterdeployment:acasestudyofHailaerRiverbasin (inChinese).JournalofHydraulicEngineering37(11):1398–1402 SuXS,WangH,ZhangYL(2013)Healthriskassessmentofnitratecontaminationingroundwater:acasestudy ofanagriculturalareainnortheastChina.WaterResourManag27(8):3025–3034 TsakirisG(2007)Practicalapplicationofriskandhazardconceptsinproactiveplanning.EuropeanWater19(20): 47–56 EvaluationCriteriaandModelforRiskBetweenWaterSupplyandDemand4447 TsakirisG(2014)Floodriskassesment:concepts,modelling,appllications.NatHazardsEarthSystSciDiscuss 2:261–286 WangHR,LiuXY(2001)InfluenceofscarcewaterresourcesontheincreaseofGDPinBeijing(inChinese). JournalofBeijingNormalUniversity(NaturalScience)37(4):559–562 WangHR,WangY(2009)Aninput–outputanalysisofvirtualwaterusesofthethreeeconomicsectorsin Beijing.WaterInternational34(4):451–467 WangJJ,HeJT,ChenHH(2012)Assessmentofgroundwatercontaminationriskusinghazardquantification,a modifiedDRASTICmodelandgroundwatervalue,BeijingPlain,China.SciTotalEnviron432:216–226WuWY,YinSY,LiuHL(2014)Groundwatervulnerabilityassesmentandfeasibilitymappingunderrecaimed waterirrigationbyamodifiedDRASTICmodel.WaterResourManag28(5):1219–1234 YuanRH,ZhuJL,TaoXYetal(2002)Applicationofshadowpricemethodincalculationofwaterresources theoreticalvalue(inChinese).JournalofNaturalResources11(6):757–161 ZadehLA(1968)Probabilitymeasuresoffuzzyevents.JMathAnalAppl23:421–427 ZuoQT,WuZN,ZhaoW(2003)Uncertaintiesinwaterresourcessystemandriskanalysismethod(inChinese). AridLandGeography26(2):116–121
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 7swz.com 版权所有 赣ICP备2024042798号-8
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务